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APPROXIMATION METHOD FOR GENERAL MIXED
EQUILIBRIUM MANN-TYPE VISCOSITY APPROXIMATION
METHOD FOR GENERAL MIXED EQUILIBRIUM

LU-CHUAN CENG*, YEONG-CHENG LIOU!, AND M. M. WONG#¥

ABSTRACT. In this paper, we introduce a Mann-type viscosity iterative algo-
rithm for finding a common element of the set of solutions of a general mixed
equilibrium problem, the set of solutions of a variational inequality for an inverse
strongly monotone mapping, and the set of common fixed points of a strict pseu-
docontraction, one finite family of nonexpansive mappings and another infinite
family of nonexpansive mappings in a real Hilbert space. The iterative algorithm
is based on composite viscosity approximation method, Mann’s iterative method,
W-mapping approach to common fixed points of infinitely many nonexpansive
mappings, and strongly positive bounded linear operator approach. We derive the
strong convergence of the iterative algorithm to a common element of these sets,
which also solves some hierarchical minimization. The result presented in this
paper improves and extends some corresponding ones in the earlier and recent
literature.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, C be a
nonempty closed convex subset of H and P¢ be the metric projection of H onto C.
Let S : C — C be a self-mapping on C'. We denote by Fix(S) the set of fixed points
of S and by R the set of all real numbers. A mapping V is called strongly positive
on H if there exists a constant 7 > 0 such that

(Va,z) >7||z|?, Vaec H.

A mapping A : C — H is called L-Lipschitz continuous if there exists a constant
L > 0 such that

Az — Ay|| < Lllz -y, Vz,yeC.
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In particular, if L = 1 then A is called a nonexpansive mapping; if L € [0,1) then A
is called a contraction. A mapping T : C' — C'is called &-strictly pseudocontractive
if there exists a constant £ € [0, 1) such that

|7 — Tyl < lle —ylI? + €11 = T)x — (I - T)y|?, Va,y e C.

In particular, if £ = 0, then T' is a nonexpansive mapping.
Let A : C — H be a nonlinear mapping on C. We consider the following
variational inequality problem (VIP): find a point T € C such that

(1.1) (Az,y —T) >0, VyeCl.

The solution set of VIP (1.1) is denoted by VI(C, A).

The VIP (1.1) was first discussed by Lions [35] and now is well known. Variational
inequalities have extensively been investigated; see the monographs [3,27-29, 32],
and also the articles [6,7,9-12,14,19,23,24,31,43,44,49,55,57] (and the references
therein). In 2003, for finding an element of Fix(S) N VI(C, A) when C' C H is
nonempty, closed and convex, S : C — C is nonexpansive and A : C — H is
a-inverse strongly monotone, Takahashi and Toyoda [49] introduced the following
Mann’s type iterative algorithm:

xg = x € C chosen arbitrarily,
Tpt1l = ATy + (1 — apn)SPo(xy, — ApAxy,), Vn >0,

where {a,} C (0,1) and {\,} C (0,2«). It was shown in [49] that, if Fix(S) N
VI(C, A) # 0, then the sequence {x,} converges weakly to some z € Fix(S) N
VI(C, A). Further, given a contractive mapping f : C' — C, an a-inverse strongly
monotone mapping A : C — H and a nonexpansive mapping T : C — C, Jung
[31] introduced the following two-step iterative scheme by the composite viscosity
approximation method

xg = x € C chosen arbitrarily,
(1'2) Yn = anf(xn) + (1 - O‘n)TPC’(xn - /\nAxn)y
Tp+1 = (1 - 6n)yn + BnTPC(yn - )\nAyn)a Vn > 0,

where {\,} C (0,2a) and {a, },{Bn} C [0,1). It was proven in [31] that, if Fix(T')N
VI(C, A) # 0, then the sequence {x,,} converges strongly to ¢ = Prix)nvi(c,4)f(q)-

Furthermore, if C is the fixed point set Fix(T') of a nonexpansive mapping 7" and
S is another nonexpansive mapping (not necessarily with fixed points), the VIP
(1.1) becomes the VIP of finding z* € Fix(T') such that

(1.3) (I —=8)z*,x—x*) >0, VzeFix(T).

This problem, introduced by Mainge and Moudafi [38,39], is called hierarchical
fixed point problem. It is clear that if S has fixed points, then they are solutions
of VIP (1.3). In the literature, the recent research work shows that variational
inequalities like (1.1) cover several topics, for example, monotone inclusions, convex
optimization and quadratic minimization over fixed point sets; see [36,41,52,53] for
more details.
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In [54], Yao, Liou and Marino [54] introduced two-step iterative algorithm that
generates a sequence {x,} via the explicit scheme

(1 4) { Yn = /anxn + (1 - 571)573113
’ Tn+1 = anf($n) + (1 — Oén)Tyna Vn > 1.

Theorem 1.1 (YLM see [54]). Let C be a nonempty closed convex subset of a
real Hilbert space H. Let S and T be two nonexpansive mappings of C' into itself.
Let f: C — C be a p-contraction and {an} and {Bn} two real sequences in (0,1).
Assume that the sequence {xy,} generated by scheme (1.4) is bounded and

(i) D2y an = oo;

1 : 1 An—1| _ .
(i) limy—00 an|6n - 1] =0, lim,_ 00 B—n\l — o =0;

)
(iii) limy—eo Brn =0, limy, oo 4 =0, lim, o % —0;
(iv) Fix(T) Nint(C) # 0;
v) there exists a constant k > 0 such that ||x — Tz|| > k - dist(x, Fix(T)) for
each x € C, where dist(z, Fix(T)) = inf cpix(r) |7 — yl|.

Then the sequence {xy} strongly converges to x* = PFiX(T)f(:L‘*) which solves the
VIP (1.3) with S = f.

In this paper, we consider the following general mixed equilibrium problem
(GMEP) (see, also, [5,34,45]) of finding = € C such that

(1.5) O(z,y) + h(z,y) >0, VyeC,

where ©,h : C x C — R are two bi-functions. We denote the set of solutions of
GMEP (1.5) by GMEP(6,h). The GMEP (1.5) is very general, for examples, it
includes the following equilibrium problems as special cases:

As an example, in [8,21,37,50] the authors considered and studied the generalized
equilibrium problem (GEP) which is to find « € C such that

O(r,y) + (Az,y —x) >0, VyeC.

The set of solutions of GEP is denoted by GEP(6, A).
In [5,8,20,39], the authors considered and studied the mixed equilibrium problem
(MEP) which is to find z € C such that

O(z,y) + ¢(y) —p(x) 20, VyeCl.
The set of solutions of MEP is denoted by MEP(©, ¢).
In [2,15,38,47], the authors considered and studied the equilibrium problem (EP)
which is to find z € C such that

O(z,y) >0, VyeC.

The set of solutions of EP is denoted by EP(©). It is worth to mention that the EP
is an unified model of several problems, namely, variational inequality problems,
optimization problems, saddle point problems, complementarity problems, fixed
point problems, Nash equilibrium problems, etc.

Throughout this paper, it is assumed as in [25] that @ : C'xC — R is a bifunction
satisfying conditions (61)-(03) and h : C' x C' — R is a bi-function with restrictions
(h1)-(h3), where
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(01) O(x,z) =0 for all z € C;
(62) © is monotone (i.e., O(z,y) + O(y,z) < 0,Vz,y € C') and upper hemicon-
tinuous in the first variable, i.e., for each z,y,z € C,
limsup O(tz + (1 — t)x,y) < O(z,y);

t—0+

) O is lower semicontinuous and convex in the second variable;

) h(z,xz) =0 for all x € C;

) h is monotone and weakly upper semicontinuous in the first variable;
) h is convex in the second variable.

For 7 > 0 and x € H, let T, : H — 2¢ be a mapping defined by

(63

(h1
(h2
(h3

1
TT:B: {Z €C: Q(Z7y)+h(zvy)+;<y_zuz_x> ZO,VZ/G C}

called the resolvent of © and h.

On the other hand, for a long time, many authors were interested in the con-
struction of iterative algorithms that weakly or strongly converge to a common
fixed point of a family of nonexpansive mappings; see e.g., [2,4,33].

Let {T},}>2, be an infinite family of nonexpansive self-mappings on C and {\,, }72
be a sequence of nonnegative numbers in [0,1]. For any n > 1, define a mapping
W, on C as follows:

Un,n+1 = I,
Un,n = )\nTnUn,n—l—l + (1 - )\n)Ia
Un,n—l — )\n—lTn—lUn,n + (1 - )\n—l)Iy

(1.6) Unk = MTeUp 1 + (1= M),
Unji—1 = MNe—1Th—1Up s + (1 — Mg—1) 1,

Un2 = XThUn3+ (1 — Xo)1,
L W, = Un,l = )\1T1Un72 + (1 — )\1)].
Such a mapping W,, is called the W-mapping generated by T,,T,_1,...,71 and
)\na )‘n—lu R 7)‘1-
In 2013, Rattanaseeha [47] introduced an iterative algorithm:

x1 € H arbitrarily given,
(1.7) O(Un,y) + 7= (Y = Un, un — xn) 20, Vy € C,
Tn+l = PC[an’Yf(xn) + (I - anv)Wnun]a Vn > 1,

and proved the following strong convergence theorem.

Theorem 1.2 (see [47, Theorem 3.1]). Let C' be a nonempty closed convex subset
of a real Hilbert space H. Let O : CxC — R be a bifunction satisfying assumptions
(01)-(03). Let f be an a-contraction on H with o € (0,1), and let {T,,}°2, be an
infinite family of nonexpansive self-mappings on C such that 2 := N Fix(T;,) N
EP(O) # 0. Let V : H — H be a 7-strongly positive bounded linear opemtor with
0 <y < g Let A, Ao, ... be a sequence of real numbers such that 0 < A\, < b <
1, n=1,2,.... Let W, be the W-mapping of C into itself generated by (1.6). Let
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W be defined by Wz = lim,,_oo Wpz,Vo € C. Let {x,} and {u,} be sequences
generated by (1.7), where {ay,} is a sequence in (0,1) and {r,} is a sequence in
(0,00) such that the following conditions hold:

(C1) limp oo atp, =0, (C2) 300 | oy = 00, and (C3) limy oo rp =1 > 0.
Then both {x,,} and {un} converge strongly to z* € §2, where z* = Po(I — (V —
vf))x* is a unique solution of the VIP

(V=7f)a*,a" —x) <0, Vzel

or, equivalently, the unique solution of the minimization problem

.1
%1850/90,1’) — U(z),

where ¥ is a potential function for vf.

In addition, Marino, Muglia and Yao [40] introduced a multi-step iterative scheme

Q(Umy)+h(umy)+%<y_umun_xn> >0, Vyed,
(1.8) Yn,1 = 5n,lslun + (1 - Bn,l)um .

Ynyi = Bn,zszun + (1 - Bn,i)yn,ifla 1= 2> cee >N>

Tntl = Oénf(:pn) + (1 - an)Tyn,Na

with f : C — C a p-contraction and {ay}, {Bni} C (0,1), {rn} C (0,00), that
generalizes the two-step iterative scheme (1.4) for two nonexpansive mappings to a
finite family of nonexpansive mappings 71,.5; : C — C, i = 1,..., N, and proved
that the proposed scheme (1.8) converges strongly to a common fixed point of the
mappings that is also an equilibrium point of the GMEP (1.5).

More recently, Marino, Muglia and Yao’s multi-step iterative scheme (1.8) was
extended to develop the following composite viscosity iterative algorithm by virtue
of Jung’s two-step iterative scheme (1.2).

Algorithm 1.3 (CPY (see (3.1) in [17]). Let f : C — C be a p-contraction and
A : C — H be an a-inverse strongly monotone mapping. Let S;,T : C — C be
nonexpansive mappings for each ¢ =1,...,N. Let © : C x C — R be a bifunction
satisfying conditions (01)-(63) and h : C'x C' — R be a bi-function with restrictions
(h1)-(h3). Let {x,} be the sequence generated by

O (tn, y) + h(tn, y) + 7=y = tn, up — 2,) > 0, Vy € C,
Yn,1 = 5n,151un + (1 - /Bn,l)una

(1.9) Yni = Bn,iSiun + (1 = Bni)yni-1, i=2,...,N,
Yn = anf(yn,N) + (1 - an)TPC(yn,N - )\nAyn,N)a
Tn+1 = (]- - ﬁn)yn + BnTPC(yn - AnAyn)y Vn > 1,

where {\,} is a sequence in (0,2a) with

0 < liminf A\, < limsup A, < 1,
n—oo

n—o0

{an}, {Bn} are sequences in (0,1) with

0 < liminf 8, < limsup g8, < 1,
n—oo

n—o0
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{Bn,i} is a sequence in (0, 1) for each i = 1,..., N, and {r,} is a sequence in (0, c0)
with liminf,,_yoo 7, > 0.

It was proven in [17] that the proposed scheme (1.9) converges strongly to a
common fixed point of the mappings T,5; : C — C,i = 1,..., N, that is also an
equilibrium point of the GMEP (1.5) and a solution of the VIP (1.1).

In this paper, we introduce a Mann-type viscosity iterative algorithm for finding
a common element of the solution set GMEP (O, h) of GMEP (1.5), the solution set
VI(C, A) of VIP (1.1) for an inverse-strongly monotone mapping A : C — H, and
the common fixed point set N, Fix(T;,) N NY, Fix(S;) N Fix(T) of a strict pseu-
docontraction T': H — H, one finite family of nonexpansive mappings 5; : C' —
C, i =1,...,N and another infinite family of nonexpansive mappings T, : C —
C, n=1,2,..., in the setting of the infinite-dimensional Hilbert space. The itera-
tive algorithm is based on composite viscosity approximation method [31], Mann’s
iterative method, W-mapping approach to common fixed points of infinitely many
nonexpansive mappings, and strongly positive bounded linear operator approach.
Our aim is to prove the strong convergence of the iterative algorithm to an element
of 2 := N>, Fix(T;,) N NY, Fix(S;) N GMEP(O, h) N VI(C, A) N Fix(T), which also
solves some hierarchical minimization. The result presented in this paper improves
and extends some corresponding ones in the earlier and recent literature. We observe
that related results have been derived say in [1,2,10,13,16-18,22,26,38-40,49,51,54].

2. PRELIMINARIES

Throughout this paper, we assume that H is a real Hilbert space whose inner
product and norm are denoted by (-,-) and || - ||, respectively. Let C' be a nonempty
closed convex subset of H. We write x,, — z to indicate that the sequence {z,}
converges weakly to x and x,, — x to indicate that the sequence {x,} converges
strongly to z. Moreover, we use wy(z,) to denote the weak w-limit set of the
sequence {z,} and ws(z,) to denote the strong w-limit set of the sequence {x,},
ie.,

ww(zy) == {x € H : ,, — z for some subsequence {z,,} of {x,}},
and
ws(zp) :={z € H : x,,;, — x for some subsequence {x,,} of {z,}}.

The metric (or nearest point) projection from H onto C' is the mapping Pc :
H — C which assigns to each point x € H the unique point Pox € C' satisfying the
property

x — Pozx|| = inf ||z — y|| =: d(z,C).
| cx| yeCH yl = d(z, C)

The following properties of projections are useful and pertinent to our purpose.

Proposition 2.1. Given any x € H and z € C. One has

(i) z=Pox & (z—2z,y—2) <0, VyeC;
(i) z =Pz & |lz— 2> <[l —y|* —lly — 2 ¥y € C;
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(iii) (Pox — Poy,x —y) > ||Pcx — Poyl|?, Yy € H, which hence implies that Pg
18 nonexpansive and monotone.
Definition 2.2. A mapping T : H — H is said to be
(a) nonexpansive if
[Tz —Ty| < |lz—yll, Vz,ye H;

(b) firmly nonexpansive if 27" — [ is nonexpansive, or equivalently, if 7" is 1-
inverse strongly monotone (1-ism),

(x —y,Tx —Ty) > ||[Tx — Ty||>, Vr,ye H;
alternatively, T" is firmly nonexpansive if and only if 7' can be expressed as
1
2
where S : H — H is nonexpansive; projections are firmly nonexpansive.

T=>(I+8),

Definition 2.3. A mapping A : C' — H is said to be
(i) monotone if
(Az — Ay,x —y) >0, Vz,y € C;
(ii) m-strongly monotone if there exists a constant 1 > 0 such that
(Az — Ay, —y) 2 llz —y|*, Va,y € C;
(iii) ¢-inverse-strongly monotone if there exists a constant ¢ > 0 such that

(Az — Ay, x — y) > (||Az — AyHZ, Ve, y € C.

It can be easily seen that if T is nonexpansive, then I — T is monotone. It is
also easy to see that the projection Pr is 1-ism. Inverse strongly monotone (also
referred to as co-coercive) operators have been applied widely in solving practical
problems in various fields.

On the other hand, it is obvious that if A : C' — H is (-inverse-strongly monotone,
then A is monotone and %—Lipschitz continuous. Moreover, we also have that, for
all u,v € C and A > 0,
(I = XA)u — (I — NA)v]|]?

(2.1) = H(u—v)2—)\(Au—Av)H2 , )
= [Ju —v|* = 2XA(Au — Av,u — v) + \*||Au — Av||
< lw—v]|% + A\ = 20)||Au — Av||%.

So, if A < 2(, then I — AA is a nonexpansive mapping from C' to H.

It is clear that, in a real Hilbert space H, T : C' — C' is &-strictly pseudocontrac-
tive if and only if the following inequality holds:

1—
(Ta—Ty,x—y) < o~ yl? ~ 5510~ T — (L -yl Vaye O,

This immediately implies that if T is a &-strictly pseudocontractive mapping, then

I-Tis 1;g—inverse strongly monotone; for further detail, we refer to [42] and the

references therein. It is well known that the class of strict pseudocontractions strictly
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includes the class of nonexpansive mappings and that the class of pseudocontractions
strictly includes the class of strict pseudocontractions.

Proposition 2.4 (see [42, Proposition 2.1]). Let C be a nonempty closed convex
subset of a real Hilbert space H and T : C'— C be a mapping.

(i) If T is a &-strictly pseudocontractive mapping, then T satisfies the Lips-
chitzian condition

1+

T2~ Ty| < =

§||x—yu, Va,y € C.

(ii) If T is a &-strictly pseudocontractive mapping, then the mapping I — T is
semiclosed at 0, that is, if {x,} is a sequence in C such that x, — T and
(I —T)xy, — 0, then (I —T)z = 0.

(i) If T is &-(quasi-)strict pseudocontraction, then the fixed-point set Fix(T') of
T is closed and convex so that the projection Priyr) is well defined.

Proposition 2.5 (see [55]). Let C' be a nonempty closed convexr subset of a real
Hilbert space H. Let T : C — C be a &-strictly pseudocontractive mapping. Let ~y
and § be two nonnegative real numbers such that (v + 0)€ < ~. Then

(@ —y) +6(Tz = Ty)|| < (y+ 0l —yll, Va,yeC.

We need some facts and tools in a real Hilbert space H which are listed as lemmas
below.

Lemma 2.6. Let X be a real inner product space. Then there holds the following
inequality

lz +ylI* < llzl* + 20y, @ + ), Va,y € X.

Lemma 2.7. Let H be a real Hilbert space. Then the following hold:
(@) [lz = yl* = llzl* = [y* = 2{z — y,y) for all z,y € H;
(b) Az + pyll* = M|* + pllyll* = Aullz = yl|? for all z,y € H and A\, p € [0, 1]
with A\ +p=1;
(¢) If {zn} is a sequence in H such that x, — x, it follows that

limsup ||z, — y|* = limsup |z, — z|* + ||z — y||*, Vy e H.
n—oo n—0o0

Lemma 2.8 (see [48]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {T},}5° | be a sequence of nonexpansive self-mappings on C such that
N> Fix(T,,) # 0 and let {\,}52, be a sequence in (0,b] for some b € (0,1). Then,
for every x € C and k > 1 the limit lim, .o U, yx exists where Uy, . is defined as
in (1.6).

Remark 2.9 (see [56, Remark 3.1]). It can be known from Lemma 2.8 that if D
is a nonempty bounded subset of C, then for ¢ > 0 there exists ng > k such that
for all n > nyg

sup |Up gz — Upz|| <.
zeD
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Remark 2.10 (see [56, Remark 3.2]). Utilizing Lemma 2.8, we define a mapping
W :C — C as follows:

Wz = lim Wyx = lim Uy 1z, Vo ecC.

n—oo n—oo

Such a W is called the W-mapping generated by 11,75, ... and A1, Ao, . ... Since W,
is nonexpansive, W : C' — C' is also nonexpansive. If {z,} is a bounded sequence
in C, then we put D = {z,, : n > 1}. Hence, it is clear from Remark 2.9 that for
an arbitrary € > 0 there exists Ny > 1 such that for all n > Ny

|Whan — Way|| = |Upazn — Urzy|| < Sug |Uniz — Urz|| <e.
xe

This implies that
lim ||[Wyz, — Wa,| = 0.
n—o0

Lemma 2.11 (see [48]). Let C be a nonempty closed convez subset of a real Hilbert
space H. Let {T,,}°2, be a sequence of nonexpansive self-mappings on C such that
N> Fix(T,) # 0, and let {\,}22 be a sequence in (0,b] for some b € (0,1). Then,
Fix(W) = N2, Fix(T},).

Lemma 2.12 (see [30, Demiclosedness principle]). Let C' be a nonempty closed
convex subset of a real Hilbert space H. Let S be a nonexpansive self-mapping on C
with Fix(S) # 0. Then I —S is demiclosed. That is, whenever {x,} is a sequence in
C weakly converging to some x € C' and the sequence {(I —S)xz,} strongly converges
to some y, it follows that (I — S)x =vy. Here I is the identity operator of H.

Lemma 2.13. Let A : C — H be a monotone mapping. In the context of the
variational inequality problem the characterization of the projection (see Proposition
2.1 (i)) implies

ueVI(C,A) & u=PFPo(u—Nu), VA>0.

Lemma 2.14 (see [41]). Let V be a 7-strongly positive bounded linear operator on
H and assume 0 < p < ||[V||7L. Then ||I — pV || < 1 — p7.

Lemma 2.15 (see [53]). Let {an} be a sequence of nonnegative real numbers satis-
fying
an+1 < (1= sp)an + spbp +tn, Yn > 1,

where {sp},{tn} and {b,} satisfy the following conditions:

(i) {sn} C[0,1] and Y o7 sp = 00;

(ii) either limsup,, o by <0 or Y 7 [spby| < 00;

(iii) tn >0 for alln > 1, and Y o7 | t, < 0.
Then, lim,_, a, = 0.

In the sequel, we will indicate with GMEP (O, h) the solution set of GMEP (1.2).

Lemma 2.16 (see [25]). Let C' be a nonempty closed convex subset of a real Hilbert
space H. Let © : C x C — R be a bifunction satisfying conditions (01)-(03) and
h:CxC — R is a bi-function with restrictions (h1)-(h3). Moreover, let us suppose
that

(H) for fized r > 0 and x € C, there ezist a bounded K C C and & € K such that
forallz€ C\ K, —O(#,2) +h(2,2) + 23 — 2,2 —x) < 0.

T
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Forr >0 and x € H, the mapping T, : H — 2 (i.c., the resolvent of © and h)
has the following properties:
(i) Trx 7& @;
(ii) Tz is a singleton;
(iii) T} s firmly nonexpansive;

(iv) GMEP(6O,h) = Fix(T,) and it is closed and convez.

Lemma 2.17 (see [25]). Let us suppose that (01)-(03), (h1)-(h3) and (H) hold. Let
x,y € H, ri,70 > 0. Then

— 7

(Tyy = Tl < lly = 2l + |2 Ty — .

Lemma 2.18 (see [40]). Suppose that the hypotheses of Lemma 2.16 are satisfied.
Let {r,} be a sequence in (0,00) with liminf, .o r, > 0. Suppose that {x,} is a
bounded sequence. Then the following statements are equivalent and true:
(a) if ||xn — Ty, xn|l = 0 as n — o0, each weak cluster point of {xn} satisfies
the problem
O(z,y) + h(z,y) =20, VyeC,
i.e., wy(rn) € GMEP(6O,h).
(b) the demiclosedness principle holds in the sense that, if x, — z* and
lzn — Ty, xn|| = 0 as n — oo, then (I — T, )x* =0 for all k > 1.

Finally, recall that a set-valued mapping T : H — 2 is called monotone if for
all z,y € H, f € Tz and g € Ty imply (x —y,f —g) > 0. A monotone mapping
T : H — 2" is maximal if its graph G(T ) is not properly contained in the graph of
any other monotone mapping. It is known that a monotone mapping T is maximal if
and only if for (z, f) € Hx H, (z—y, f—g) > 0 for all (y,g) € G(T) implies f € Tz.
Let A: C — H be a monotone, L-Lipschitz continuous mapping and let Nov be
the normal cone to C at v € C, i.e., Nov = {w € H : (v —u,w) > 0, Yu € C}.

Define
fv:{ Av+ Neov, ifveC(,

0, if veC.
It is known in [46] that in this case T is maximal monotone, and
(2.2) 0eTv & veVIC,A).

3. MAIN RESULTS

We now propose the following Mann-type viscosity iterative scheme:

Q(umy)+h(unay)+%<y_unaun_$n> >0, Vyed,
Yn,1 = Bn,lslun + (1 - /Bn,l)unv
(3.1) Yn,i = BniSiun + (1 = Bni)yni-1, =2,..., N,
Yn = aan(yn,N) + (I - anNV)WnPC’(yn,N - VnAyn,N)a
Tn4+1 = /Bnyn + ’YnPC(yn - VnAyn> + 5nTPC(yn - VnAyn)a
for all n > 1, where
A: C — H is an a-inverse-strongly monotone mapping;
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V is a #-strongly positive bounded linear operator on H and f : H — H is an
[-Lipschitz continuous mapping with 0 < vl < p7;

T : H — H is a &-strict pseudocontraction and S; : C — C is a nonexpansive
mapping for each i =1,..., N;

O,h: CxC — R are two bi-functions satisfying the hypotheses of Lemma 2.16;

{vn} is a sequence in (0,2a) with 0 < liminf,,_, vy, < limsup,,_, . Vn < 2a;

{an}, {Bn} are sequences in (0,1) with 0 < liminf,,_,o 8, < limsup,,_,. Bn < 1;

{n},{0n} are sequences in [0, 1] with £, + v, + dp =1,Vn > 1,

{Bni}Y, are sequences in (0,1) and (v, + 6,)€ <y, V0 > 1;

{rn} is a sequence in (0, 00) with liminf, ,~ r, > 0 and liminf,_,~, &, > 0.

We start our main result from the following series of propositions.

Proposition 3.1. Let us suppose that 2 = N Fix(T,) N N, Fix(S;)N
GMEP(O,h)NVI(C,A)NFix(T) # 0. Then the sequences {xn}, {yn}, {yni} for all

i, {un} are bounded.

Proof. Since lim,, o @y, = 0 and 0 < liminf,,_, By, < limsup,,_,., Bn < 1, we may
assume, without loss of generality, that {3,} C [¢,d] C (0,1) and 0 < a,pu < ||V|| 71
for all n > 1. Since V is a F-strongly positive bounded linear operator on H, by
Lemma 2.14 we know that

I —anpuV] <1—apuy, Vn>1.
Let us observe that, if p € {2, then
[yn1 = pll < llun —pll < llzn —pll-
For all from i = 2 to ¢ = N, by induction, one proves that
[yn,i = pll < Brillun = pll + (1 = Bri)llyn,i—1 — pll < lJun —pll < [len —pl|.
Thus we obtain that for every ¢ =1,..., N,
(32) 1Yni =PIl < [lun = pll < |20 —pll.

Let g N = Po(Yn,N — vnAyn n) and 9, = Pc(yn — vnAyy,) for every n > 1. Since
I — v, A is nonexpansive and p = Po(p — v, Ap) (due to Lemma 2.13), we have

1P (Yn,N — vnAyn,N) — Po(p — vn Ap)||

| (Y, N — VnAyn.N) — (p — v Ap) ||

yn.n =2l < [lun = pll < |20 —pl.

Moreover, from p = W,p we get

[y — pll = lleny(f(yn,n) — f(p) + (I — anplV) (Wi, N — p) + an(vf — pV)p|

< an Y[ f(Wn,n) = FO) + [T = anptV[[[WaGn,n — pll + anl|(vf — wV)p|l
< anYlyn,N = pll + (1 = )| Gn,n — pll + anll(Vf — pV)pll
< anYlyn,n = pll + (1 = anpiF)|[yn,n — pll + anll(vf — pV)pll
= (1 = an (7 = YD)y, N — 2l + anl| (v f = V)]

[(vf — pV)pl

pwy =

1.~ = pll

(3.3) <
<

= (1 = an(7 — YO)|lyn,n — Pl + an (7 — 1)
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vf—uVp
Smax{Hyn,N—pH,”( - )H}
wy =l
f=uVp
< max { |, — pl, 1LV
v =l

Since (v, + 0,)€ < 7, for all n > 1, utilizing Proposition 2.5 we obtain from the
last inequality

||/6n(yn - p) + 'Yn(PC(yn - VnAyn) - p)
+60(TPo(yn — vnAyn) — )|

[Znt1 = pll

< Bullyn = pll + 170(Fn — P) + 60 (TG — p)||
< Ballyn — pll + (v + 00)||Fn — Dl
< Ballyn —pll + (v + 0n)llyn — 2l
= |lyn — 7l
< max {Hxn —pll, W}
lalet

By induction, we get

_ Vp
[z — pll < max{||z1 — p], —H(fo uv) H}, Vn > 1.
wy =l

This implies that {x,} is bounded and so are {Ay, n}, {Ayn}, {Un.n}, {Tn}, {un},
{yn} {yn,i} foreachi =1,..., N. Since |Wpgnn—pl| < ||yn,n—pl|| and | Tg, —p| <
%]\yn —pll, {WnGn,n} and {T'y,} are also bounded. O
Proposition 3.2. Let us suppose that 2 # 0. Moreover, let us suppose that the
following hold:

(HO) limp oo, =0 and Y o7 | oy = 00;
. —UVn—

H1) >0 |vn — 1| < 00 or limy, o0 W =0;

|04n—06n71| — 0;

H2) >0, [an — ap—1| < oo or limy, o0 2

(H1)

(H2) -

(H3) >0 o |Bni — Bn—1] < 00 or limy, e Bri=Bn-ril _ for eachi=1,...,N;
(H4)

(H5)

Qn

: Tn—"Tn—
H4 220:2 ’Tn - T'n—1| < 00 or limy, s “‘T:l‘ =0;

H5) >0 o |Bn — Bn-1] < 0o or lim, o W =0;

(H6) >0y 12, — 12| <00 or limy, 0 ﬁ\ll*/;n - 255 =0.
Then limy, o0 || Tnt1 — zn|| = 0, i.e., {xn} is asymptotically regular.

Proof. First, it is known that {8,} C [¢,d] C (0,1) as in the proof of Proposition
3.1. Taking into account liminf, . r, > 0, we may assume, without loss of gen-
erality, that {r,} C [e, 00) for some ¢ > 0. First, we write z, = Bp_1Yn—1 + (1 —
Bp-1)Wn—1, Vn>2, where wy_q = 2=FntUn=1 Tt follows that for all n > 2

l_/Bn—l
W — w _ Tn+1 — BnYn _ In 5n—lyn—1
" et 1- Bn 1- anl

/Yngn + 6nTgn B 7n—1gn—1 + 5n—1Tgn—1
1- /Bn 1- 571—1
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Yo (Un — In—1) + (TG0 — Tn—1) Tn Tn—1 -
4 = _ -
(3 ) 1_671 (1_671 1_Bn—1>yn !
571 57171 ~
+<1 - Bn - 1- Bn71>Tyn_1.

Since (Y, + 0n)§ < vy, for all n > 1, utilizing Proposition 2.5 we have
|9 (G = Jn—1) + 00 (TGn — TGn-1)l| < (Y0 + In)l|Tn — Fn—1l|-
This together with (3.4), implies that

n n— =

1- Bn
Tn Tn—1 .
+ - _
1- ﬁn 1- ﬁn—l Hyn IH
6n 5n71 ~
+ - TYp—
= o 1Tl
B 1- ﬂn
Yn Yn—1 ~ -
— - Ty
i 1| (et 1T )
= ln = Gt #1725 = 725t |+ 15 ).

Next, we estimate ||y, — yn—1]|. From (3.1), we have
Yn = an’Yf(yn,N) + (I - anﬂv)ann,Na
Yn—1 = 1V f(Yn—1.8) + (I — a1 pflV )Wy 1Gn—1.n, Yn>2.
Simple calculations show that
Yn — Yn—-1 = (I - anﬂv)(WnQn,N - Wn—lgnfl,N)
(3.6) +(on = an1)(Vf (Wn—1,8) = pVWh_18n-1,N)
+anY(f(yn,N) = f(Yn—-1,8))-
Utilizing the nonexpansivity of W,,, T}, and U, ;, we have from (1.6)
IWotn-—1,8v = Won—1On—anl| = [[MT1Un20n-1,8 — MT1Un—129n-1,n]||
M| Un20n—1,8 — Un—1,29n—1,N||
M| A2 ToUy 30n—1,8 — A2ToUn—1 39n—1,N]|
MA2||Un 30n—1,8 — Un—13Un—1,N]||

IN

(3.7)

ININ TN

)‘1)‘2 T )‘n—luUn,ngnfl,N - Un—l,ngnfl,NH
n—1

M
=1

where sup,,>1{[|Un+1,nt19n,N + |Unnt10nn |} < M for some M > 0. Moreover,
it is easy to see that

NOnN — In—1nll < | WnN — vnAyn.N) — (Yn—1.N — Vn—1AYn—1.N)||



1270 L.-C. CENG, Y.-C. LIOU, AND M. M. WONG

< [[(YnN — vnAYnN) = (Un-1.8 — VnAYn—1.N)||
(3.8) +vn—1 = V|| Ayn—1,n]|
< Ny N = Yn—1, N F [Vn—1 — vnl | Ayn—1, N,
and similarly,
(3.9) |90 — In-1ll < |yn — Yn—1ll + [Vn—1 — V|| Ayn—1]|.
Combining (3.6)-(3.8), we get from {\,} C (0,b] C (0,1)
lyn = yn—-1ll < [T = anpVI[[Wain,n = Wa-1Gn-1,n|
+ lan — an 1|1V Wn-1,8) = BV Wi 1Gn-1.n|l
+ Y f (Wn,n) = f(Yn-1,3)]]
< (1 = ) (IWabn,n = Wabn—1, 8|+ IWabn—1,8 = Wa—1Gn—1,n])
+ lan — an—1 [V f (Yn—1,8) =tV Wa—1Gn—1,~ |+ Yn,N —Yn—1,N ||

n—1
< (1 = w9 (705 = Go-1v]l + M )
=1

+ ooy — a1 |||V f (Yn—1,8) =V Wi 1Gn—1 N || Fan Y| Yn, N — Yn—1,¥]]
n—1

< (1= 0tt) (g = vn-1 8611+ vt = val [t |+ MTT A
i=1

(3.10) + o —an—1 |17 f (Yn-1,8) =6V Wy 1Gn—1, N ||+ Y| Yn, N — Yn—1,¥]|

n—1
< (T=an (7 =vD)yn.N =Yn-1,N | + [Vn—1—vnll[Ayn-1 N + MH)\i
i=1
+ lanan—1| 17 f (Yn—1,8) — WV Wi_1Gn—1 n||
< (1 - an(/‘ﬁ - 71))”yn,N - yn—l,NH
+ M(|Vn—1 - Vn| + ‘an - an—1| + bnil)’
where sup,,>1 {7 (Un.x) = £V Woin x|l + | Aynn | + M} < M for some M > 0.

Furthermore, observe that x,+1 = Bpyn + (1 — Bn)w, and x,, = Bp_1yn—1 + (1 —
Bn—1)wn—1. Simple calculations show that

(3~11) Tp4+1—Tp = (1_5n)(wn_wn—1)+/8n<yn_yn—l)‘f'(ﬂn_ﬁn—l)(yn—l_wn—1)~
Combining (3.5) and (3.9)-(3.11), we get from {\,} C (0,b] C (0,1)
Hxn—&-l - xn” < (1 - Bn)Hwn - wn—lH + Bn”yn - yn—l”
+ ’Bn - %—1’”%—1 - wn—lH

~ B Yn Tn—1
<(1- = Yn— B
< (U= Ba)lllgn = Gnall + {75~ 75

+ HTgn—ln)] + Bn”yn - yn—l” + ‘Bn - ﬁn—lmyn—l - wn—l”
< (1= 80) |l = g1l + a1 = valll Agas |

n Tn—1 ~ ~
_ 3 Ti. }
+‘1—ﬂn 1_ﬂn_1\(Hyn 1l + 1T ])

[

(3.12)
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+ Bn”yn - ynfl” + |Bn - 5n71|||yn71 - wanH
< ||yn - yn71|| + |Vn71 - Vn|||Ayn71||

Tn Tn—1 ’ - B
- 1+ 1T Yn—
1—-8, 1-PBna 1Fn—1ll + |1 TGn-11l)

+ |Bn - ﬁn—l’”yn—l - wn—lH
< (1 = an(py = YO |Yn,N — Yn—1,¥|
+ M(|vp—1 — vn| + |an — an-1| + bn_l) + vn—1 = vall| Ayn-1|

n Tn—1 - -
- _ T
+‘1—ﬂn 6., (1Fn-1l + 1T Fn-1]))

+ |Bn - /Bn—lwyn—l - wn—lH
< (1= an(¥ = YO))Yn,N — yn—1,N]|

+ MOHVn—l - Vn’ + |an - CYn—1|

Tn Tn—1
1-0n 1—PBna [+ 18n = Bna)

where sup,,>1{M + | Aynl| + |Unll + | TGnll + llyn — wnll} < Mo for some My > 0.
In the meantime, by the definition of y, ; one obtains that, for all ¢ = N,...,2

_l’_

+0"

Hyn,i - yn—Li” < ﬁn,z”un - un—l” + HSiun—l - yn—l,i—lmﬁn,i - Bn—l,i
(3.13) +(1 = Bui) lYni-1 — Yn—1,i-1|l-

In the case i = 1, we have

||yn71 —Yn—-1,1 < /Bn,lHun - un—l” + Hslun—l - Un—l”‘ﬂn,l - /Bn—1,1|
(314) +(1 - ﬁn,l)”un - un71||
= ”U’n - Un—lH + HSlun—l - un—l”’ﬁn,l - 571—1,1‘-

Substituting (3.14) in all (3.13)-type one obtains for i = 2,..., N

%
Hyn,i - ynfl,iH < ||un - unle + ZHSkunfl - yn—l,k—lH |Bn,k - ﬁn—l,k‘
k=2

+H81un—1 - un—lH |/8n,1 - Bn—l,l
This together with (3.12) implies that

||2L‘n+1 - $n|| < (1 - an(:uﬁ - ’Yl))”yn,N - yn—l,NH + MO |:|Vn - Vn71|

_ _ bnfl ’ Tn _ Tn—1 B B }

+‘an (679 1’+ + 1_671 1_671—1 +|ﬁn /Bn 1’
N

< (1= (17 = 1) [ltn = wn 1|+ S (1Skttn1 = g1
k=2

X B = But) + [rtn—1 = w1111 = Bu-1.l]

+ MO |:’Vn - Vn—l’ + |04n - Oén—l‘ + bn_l
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Tn
N
< (1= an (17 = Y lun = o1+ (1Sktin—1 = Y151
k=2

X |ﬁn,k - Bn—l,kD + Hslunfl - un71”|ﬁn,1 - Bn71,1|
+ MO |:|Vn - Vn71| + |an - an71|

o e pn— 1]
=Bl + [ 2 - T2 |
By Lemma 2.17, we know that

Tr—
(3.16) ttn — tn_1] < Hxn—zn_1|y+L]1— L

n

where L = sup,,> [|[un — 2xl|. So, substituting (3.16) in (3.15) we obtain

Tn—1
l#ns1 = 2all £ (1= (7 = 1)l = 2n-a ]| + L[1 = =)

Tn
N

+ ZHSk’unfl - yn—l,k’—lH |ﬁn,k - Bn—l,k‘
k=2

+ [S1un—1 — Un—1||Bn,1 — Brn-1,1] + M, [|Vn — Up—1|

— p— 1j|
Flon = anal + 180 = Bucal + |72~ 2|
< (1= (7 = A)l|en = ool + L1 = 2=
n
N
+ ZHSkun—l - yn—l,k—lH ’/Bn,k - /Bn—l,k‘
k=2
+ 1S1ttn—1 = tnt 1Bt = Buvall + Mo lvn = v
-1 Tr in—
(3.17) + o = -] + [Bn = Bact] + | 720 PR |+ oo
T Tp—
< (1= a7 — ) — o] + 3 [ 2T
n
N
+ Z|ﬁn,k - ﬁn—l,k| + |ﬁn,1 - Bn71,1| + ’Vn - Vn71|
k=2
+ |an — Op— 1| + |ﬁn /Bn 1‘ + ) In—1 H + Mlbn_l
1- Bn 1- anl
T Tpn—
< (1= 0177 = )20 — 0| + B, [ L2 T

N

+ Z|ﬁn,k - /Bn—l,k’ + |Vn - Vn—1| + |an - an—l’
k=1
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Tn—1 H Mbn_l
+ 1B = Bn-1l+ |7 5n T + Mpb"

where v > 0 is a minorant for {rn} and sup,,>1{L + My + SN o 1Sktn — Ynp—1ll +

1Sty — un||} < M for some M; > 0. By hypotheses (H0)-(H6) and Lemma 2.15,
we obtain the claim. g

Proposition 3.3. Let us suppose that 2 # (). Let us suppose that {x,} is asymp-
totically reqular. Then ||xzy — un|| = ||zn — Tr, 20| — 0 as n — oo.

Proof. Take a fixed p € {2 arbitrarily. We recall that, by the firm nonexpansivity of
T, , a standard calculation (see [26]) shows that for p € GMEP(O, h)

(3.18) lun = plI* < 2w =l = |20 — unl®.

Utilizing Lemmas 2.6 and 2.7 (b), we obtain from 0 < 4l < p7, (3.1), (3.2) and
(3.18) that

lyn = 2lI* = lany(f (Yn.n) = F(0) + (I = nptV)(Wogin v — p)

+ an(vf = pV)pl

< Nlany(f(yn.n) = F(0) + (I = anpsV) (Wain.n — p)|?
+ 200 ((vf = V)P, yn — p)

< Jon Y f (ynn) = F@) + [ = anpV[[[|Wagn v — pll]?
+ 200 ((vf = V)P, Yn — p)

< [anyUllyn.n = pll + (1 = anpd) |Gy — pl]?
+ 2an<(7f — UV)P,yn — p)

[anwu [yn.n — Pl + (1 = cnpi) || Gn,n — pII]?

(3.19) + 20, (v f — 1V)p, Yn — D)
anm(( ))znynN Pl + (1 = )Gy — ol

+ 200 ((vf — V)P, yn — p)

< ot |yn,n = plI* + G5 — PI* + 200 {(v.f = V)P, Y — p)

< anAllyn,n = pI* + llyn.v =PI + vn(vn — 20) || Ayn,n — Ap|?
+ 200 ((vf — V)P, Yn — p)

< antFlyn,n = plI* + lun — I + vn(va — 20)|| Ayn n — Ap||?
+ 2an((vf = V)P, yn — D)

< antFllyn,n = plI* + llzn — plI* = |20 — un®
+ V(v — 20) | Ayn, v — Ap|* + 20| (vf — 1V )pllyn — plI-

Since (Y, + )€ < 7y, for all n > 1, utilizing Proposition 2.5 we have from (3.1) and
(3.19) that

| @ns1 = 2lI? = 180(yn — p) + Y (Gn — D) + 60T — p) |2
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- Hﬁn(yn—p)‘i‘@n“‘&%) [')’n(?jn_p)‘i'én(Tgn_p)]H2

7n+5n
1 2
< nijlyn — 2 n n~n_ nT~n_
< Bl =2l + G+ 0) | 5~ bnin = p) + 60(Ti — )
< Bullyn = plI* + (v + 6u) 190 — p1?
+

= Bullyn — plI”> + (1 = Bu)|Gin — pII>
(3.20) < Bullyn = pI* + (1 = Ba)lllyn — pI* + vn(vn — 200) || Ayn — Ap||?]
= [lyn — pII* + (1 = Bu)vn(vn — 20)|| Ay, — Apl|®
< anllynn = pI? + lzn = pI* = 120 — unll?
+ v (v — 20) | Ayn, v — Apl|* + 20| (vf — V)Pl [lyn — pll
+ (1 = Bu)vn(vn — 20)|| Ay, — Apl*.
So, we deduce that
|zn — UnH2 + vn (20 — Vn)”Ayn,N - APH2
+ (1 = Bn)vn (20 — v || Ayp — ApH2
< lan = plI* = 2041 — Pl + cntiFllyn,n — plI?
+ 20, [|(vf = uV)pllllyn — Dl
<lzn — zns1ll(lzn — pll + 2041 = plI)
+ @ty n = plIP + 200 (vf = 1V)pll[lyn — .

By Propositions 3.1 and 3.2 we know that the sequences {z,}, {y,} and {y, n} are
bounded, and that {z,} is asymptotically regular. Therefore, from a,, — 0, {8,} C
[e,d] € (0,1) and 0 < liminf,, o v, < limsup,,_,. Vn < 2c, we obtain that

(3.21) lim ||z, — u,|| = lim ||Ay, n — Ap|| = lim ||Ay, — Ap| = 0.
n—oo n—oo n—oo

Remark 3.4. By the last proposition we have wy,(x,) = wy(uy) and wg(x,) =
ws(up), i.e., the sets of strong/weak cluster points of {z,} and {u,} coincide.

Of course, if B,; — B; # 0 as n — oo, for all indices ¢, the assumptions of
Proposition 3.2 are enough to assure that

Tt — 2l .
lim ——— = 1,...,N}L
Jim B 0, Vie{l,...,N}
In the next proposition, we examine the case in which at least one sequence {3, i, }
is a null sequence.

Proposition 3.5. Let us suppose that 2 # (). Let us suppose that (HO) holds.
Moreover, for an index ko € {1,..., N}, limy, o0 Bnk, = 0 and the following hold:
(H7) for each i € {1,...,N},

’/an 571 17,| — lim | — Op— 1’ — lim | Bn 1| — lim ’ — T'n— 1|

”_“X’ o ko n—oo By ko n—oo oy fy, ko n—oo ko
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= lim ! | L | = lim o
n—oo O‘nﬁn,k‘o 1 -8y 1—Bn n—o0 anﬁn,ko
. Unp — Vn—1
T e | 0;
n—00 O‘nﬁn,ko
(HS8) there exists a constant T > 0 such that = 3 1k -3 11 —| < foralln>1.
n n, kg n—1,kq
Then
. enyr —
lim NZnsr = aall =0.
n—o0 /Bn,ko

Proof. We start by (3.17). Dividing both the terms by 3, , we have

N L=
n,ko ﬁn,ko
N
‘ ’ Z‘ﬁn,k - 671—1,16‘
T Tn —Tn-1 k=1
(3.22) + M +
’Yﬁn,ko IBTIJCO
+ |Vn_Vn—1| + |an_an—1’ + |6n_/6n—1‘
/Bn,ko ﬁn,ko Bn,ko
n Yn— _
|1113n o lfﬁnill bn !
ﬁn,ko ﬁn,ko

So, by (H8) we have

Tpil — T _ Ty — L1 _
Pt = nll < 4 g =y lEn =l (4~ 7 = A1) 2 = 201
Bn,ko Bn—l,k()
N
1 1 | | Z|/Bn,k - /Bn—l,k’
> | ITn — Thn—1 k=1

X — + My

’/Bn,ko 6n—1,k0 ‘ 'Y/Bn,ko ﬁn,ko
+ |Vn - Vn71| |an - an71| + ’/Bn - Bn71|

ﬁn,ko /Bn,ko Bn,ko
’11%n B lz%:zil‘ bt
ﬁn,ko /Bn,k’o
_ |xn — Tp—1]] 1 1
<1 —ap(py—91 + | — Tr-1 —
( n( )) anl,ko H " " H Bn,ko /anl,ko
N
| ‘ Z|ﬁn,k‘ - Bn—l,k’ | |

=~ [ ITn — Th—1 k=1 Vn —Vn—1

+ 0, n
7671,160 Bn,ko 5n,]€0
In In— _

’an - an—1| ‘Bn - Bn—1| |m B 1—5711—1’ b" !

+ +
571,]60 Bn,ko Bn,ko Bn,ko
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_ Ln — Tp—1
(1 = a7 — )=ty — 2
anl,ko
N
| ‘ Z|Bn,k - 6n—1,k | ‘
=~ [ ITn — Th—1 k=1 Vn —Vn—1
+ M, n
’Yﬁn,k‘o /Bn,ko 671,]60
In Yn— _
’an - an—l‘ ‘ﬁn - 671—1’ |m B 1—5711—1’ b" !
+ + +
671,]60 Bn,ko Bn,ko Bn,ko
_ [ — Tp—| _
(1= an(py — ) + an (7 — 71)x
anl,ko
1 ~ | |rp — 1]
X — llan =z || + My [ Lo Tnmtl
py = Yn B, ko
N
Z|Bn,k - 5n—1,k| ‘ ’ |
k=1 Vp — Vn—1 Qp — Op—1
+ +
anﬁn,k‘o anﬁn,ko anﬁn,ko
In In— _
|Bn — Bn-1| ‘l—ﬁn - 1_5n1_1| pn—1
+ + + :
anﬂn,ko anﬁn,ko anﬂn,ko

Therefore, utilizing Lemma 2.15, from (HO), (H7) and the asymptotical regularity

of {z,} (due to

Proposition 3

Proposition 3.2), we deduce that

iy Mt =zl _
n—oo 'rl,kto

g

.6. Let us suppose that 2 # 0. Let us suppose that (H0)-(H6) hold.

Then, ||Gn,N — Yn,N| = 0 and ||gn — yn|| = 0 as n — oo.

Proof. Let p € {2. Taking into account the firm nonexpansivity of Pc, we have

15, = pII* =
<

IN

<

|1 Pc(Yn,n — vnAyn,N) — Po(p — va Ap)|?

<(yn,N - VnAyn,N) - (p - VnAp), gn,N - P>

1 i
SUYnN =P = va(Aynn — Ap)|? + ||gn,n — p|I?
~yn,n — P = vn(Ayn.n — Ap) = (in,n — P)II]

1 i i

5l — pI? + Gny = PI? = ynN — Gnn — vn(Aynn — Ap)|I°]
1 i i

5l — pI* + 1iny — oI = yn,n — Gnn 1P

+ 2Vn<yn,N - gn,Na Ayn,N - Ap) - ZHAyn,N - ApH2]

1 N -
S llyn.v — pI? + G5 = 2l = lyn, 5 = Fn, v |12
+ 2Vn<yn,N - gn,Nv Ayn,N - Ap)],
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which hence leads to

|Gn.x = 2I? < Nyny = 2lI* = lyn.n = Gnn ]
(3.23) +20p||Yn, N — Gn, N ||| Ayn,n — Apl|-
Similarly, we get
(3.24) |5 _pH2 < lyn _pH2 — [Jyn — gnHZ + 2vp ||yn — nll||Ayn — Ap]].
So, it follows from (3.2), (3.19)-(3.20) and (3.23)-(3.24) that

[Zns1 =2l < Bullyn — 21> + (1 = Ba) |G — pII>

< Bullyn — 2l + (1 = Bu)llyn — pII* = [lyn — Gl
+ 2vn||yn — Gnlll| Ayn — Ap|(]

<y = pIP = (1= Bu)llyn = Gnll* + 20nllyn — Gulll| Ayn — Apl|

< antJllyn.n = plI* + lin,n — pII* + 200 (v — 1V)p, yn — p)
— (1= B)llyn = Gnll® + 2vnllyn — Gulll Ayn — Ap|

< ¥l ynn = pIP + lyny — 21 = lynn — Gnn P
+ 20 ||yn,N = Gn N[ Ayn, N — Apll + 200 (v f — V)P, yn — p)
— (1= B)llyn = Gnll® + 2vnllyn — Gulll Ayn — Ap|

< anFllyn,n = plI° + 120 — 2l = [[Yn. 5 — Gn.n ]|
+2vn YN — G, N[ Ayn.n — Apl + 200 ]| (vf — V)Pl lyn — pl|
— (1= B)llyn — Gnll* + 20nllyn — Gnllll Ayn — Apl,

which together with {8,} C [c,d] C (0, 1), implies that

Hyn,N - gn,NHZ + (1 - d)Hyn - gn”2 < Hyn,N - ﬂn,NHQ + (1 - /Bn)Hyn - ﬂnHZ

< ln = plI* = llzns1 — plI* + ot yn.n — pl?
+ 20 ||(vf = V)Pl |y — Dl
+ 20|y, N = In N ||| Ayn.n — Ap||
+ 20 ||yn — nlll| Ayn — Ap||

< lzn — zog1ll(lzn — 2l + 2041 — pl)
+ antF|yn.n — Pl
+ 20 |(vf = V)Pl [y — Dl
+ 2un||Yn,N — Un,N||[[AYn,n — Ap||
+ 2vn|yn — Gnllll Ayn — Apl.

As a, — 0, ||[zpt1 — znl] — 0 (due to Proposition 3.2), and {z,},{yn}, {ynn},
{Un.n}, {Un} are bounded, we conclude from (3.21) that

(3.25) i [[yn,n = gonll = Hm {ly, —gal = 0.
n— 00 n—00
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Proposition 3.7. Let us suppose that 2 # (. Let us suppose that 0 <
liminf, o0 Bni < limsup,_,., Bni < 1 for each i = 1,...,N. Moreover, suppose
that (H0)-(H6) are satisfied. Then, lim,_ o ||Sitn — up| =0 for eachi=1,...,N
provided || Tyn — yn| — as n — oo.

Proof. First of all, observe that
Tnt1 = Tn = Bn(Yn — Tn) + Yn(Un — Tn) + 0n(TGn — Tn)
= Bn(Yn — ) + (Un — Yn) + (Yn — n) + 00(TGn — Tyn)
+ 60 (TYn — Yn) + n(yn — Tn)
=Yn — T+ Vn(Tn — Yn) + 60 (TTn — Tyn) + 0n(TYn — Yn)-

In terms of (3.25) and Proposition 3.2 we know that ||y, — 9n|| — 0 and ||zp41 —
Zn|| = 0 as n — oo. Since (Y, + 0,)§ < 7y, for all n > 1, by Propositions 2.5 we
have

|y — Znll = |Znt+1 — 20 — Y0 (Un — Yn) = n(Tn — Tyn) — 6n(Tyn — yu)l
< [ @nt1 = 2all + 1 (G0 = yn) + 60 (Thn — Tyn) [l + 1160 (Tyn — yn)|
< |[@nt1 — znll + (v + 60) 190 — Ynll + 60 TYn — yall
< znt1 — zall + 190 = yull + 1 Tyn — ynll,
which together with || Ty, — yn| — 0, implies that

(3.26) |zn, — ynl| = 0.

lim
n—o0
Let us show that for each ¢ € {1,..., N}, one has ||Sju, — yni—1| — 0 as n — oo.
Let p € 2. When i = N, by Lemma 2.7 (b) we have from (3.2), (3.3) and (3.19)

yn — 2l < antdlyn,n =PI + G0 — pII” + 200 ((vf = 1V)p, yn — D)

< antFlyn,n — plI* + 200 (v f = 1V)plllgm — 2l + ynv — pI?

= ontAllyn,n — pII” + 200 |(vf = 1V)plllyn — Il + Bu || Sntin — pl?
+ (1= Bun)ynn-1 = plI* = Bun (1 = Bu. ) 1SN Un — Yn N1 ||

< antFllyn,n = pI* + 200l (vF = V)Pl Iyn — Pl + Buv un — pII
+ (1= Bun)lun = plI? = Bun (1 = B n) 1SNt — yn.n—1?

= an | yn,n — plI* + 200 [(vf — V)l llyn — oIl + un — p?
— BN (1 = B ) 1SNtin = yn.n—1?

< antFlyn,n — plI* + 200 (vf = 1V)plllyn — pll + 20 — p?
— BN (1 = BN SNt — yn.n—1*.

So, we have
BN (1= Bu i) ISNUn = Yo N1[* < antFllyn v — plI* + 20|l (vf — 1V)pll[lyn — pll
+ |20 = plI* = [lyn — pII>
< anpAllyn,n = plI* + 2anll(vf = 1V)plllyn — Pl
+ |z — yull (|2 — Pl + [lyn — pII)-
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As oy, — 0, 0 < liminf,, o Bpny < limsup,,_,o, Bn.y < 1 and lim, o0 ||2n — ynl|
=0 (due to (3.26)), it is known that {||Snun — yn n—1]|} is a null sequence.
Let i € {1,...,N — 1}. Then one has
yn — pII* < anpAllyn,n — pII* + 200ll(vf = 1V)pllllyn — Pl + l[Yn.n — I
< ot llynn = plI* + 200 |(Vf = V)Pl llyn — Pl + Bu.n || Sntin — pl?
+ (1= Bun)lygn,n—1 — plI?
< anfAllyn,n — plI* + 200l (vf = 1V)Dl Y0 — Pl + Bun |20 — pI>
+ (1 - ﬁmN)”Z/n,N—l —pH2
< antFlyn,n — plI* + 200l (vF — 1V)pll[yn — Pl + Bu,nllzn — pl?
+ (1 = Bun) BaNn-1l1SN=1un — |I> + (1 = Bo.n—1) |Yn.n—2 — D|I*]
< a7 yn,n — plI* + 200l (vf — 1V)pllyn — pll
+ (Bun + (1= Bn)Bun—1) |20 — pl?
N
+ I (= Bam) ez — ol
k=N—1

and so, after (N — i+ 1)-iterations,

yn — 21> < QntT||yn,n — sz + 20 || (vf = V)Pl lyn — Dl

BnN‘i‘ Z H Bnl )Bn,] 1)H~75n p||2

J=i+2 l=j

N
+ ] @ = Bur)llyn: — pl?

k=i+1
< an Al Yn,N — pH2 + 20, | (vf = 1V)pll[yn — Pl

(327) ﬂnN"’ Z H 1 _Bnl )Bn,] 1)||$n p||2
Jj=i+2 l=j
N
+ H (1= Bup)l —plI” + (1 = Bni)lyni—1 — Il

k=i+1
- /Bnﬂ(l - /BWZ)HSlUn - yn,i—1||2]

< antJl[yn.n — Pl + 200l (Vf = wV)pI||yn — pll + |20 — 2|2
N

- /Bn,zH(l - ﬁn,k)HSiun - yn,i—1||2'

k=i
Again we obtain that

N

Bui| (1 = B 1Sitin — yni—11* < ani@llyn, v = pII* + 20l (v f = 1V )plllyn — pll
k=i
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+ lzn — plI* = llyn — pI?
< a7 |yn.n — plI* + 20| (vf — 1V)p| lyn — b
+ ||xn - yn”(”xn _pH + Hyn _pH)'

As o, = 0, 0 < liminf, o Bn; < limsup,,_, Bns < 1foreachi=1,..., N —1,
and limy, oo ||2n — ynl| = 0 (due to (3.26)), it is known that

||Szun - yn,ifIH = 0.

lim
n—oo
Obviously for i = 1, we have ||S1u, — uy,|| — 0.
To conclude, we have that
[S2un — un || < [[Soun — Ynall + [Yn,1 — unll = [[S2un — yn,1ll + B[l S1un — unl
from which || Sauy, —uy, || — 0. Thus by induction ||S;u, —uy,|| — Oforalli =2,..., N
since it is enough to observe that
|Sitn —unll < ||Situn — Yni-1ll + |¥ni—1 — Si—1unl| + |[Sic1un — un||
< |[Siun — ynji—1ll + (1 = Bri—1) | Si—1un — Yn,i—2||
+||Siflun - Un”

A

Remark 3.8. As an example, we consider N = 2 and the sequences:
(a) l/n:Oé—%, Vn > L.

!

(b) ap = %7 Tn = —%, Vn > 1,
(c) Bny = % - %7 B2 = % #, n > 2;

d) Bn=13+2, Wm=d0=1-1 wvn>4
Then they satisfy the hypotheses on the parameter sequences in Proposition 3.7.

Proposition 3.9. Let us suppose that 2 # 0 and B,,; — B for all i as n — co.
Suppose there exists k € {1,...,N} such that B, — 0 as n — oo. Let kg €
{1,..., N} the largest index such that B, — 0 as n — oco. Suppose that

(1) 53”;0 — 0 as n — oo;

i) if 1 < kg andﬂm—>0then'8”—’9—>0 as n — 0o,
’ 6711

(iii) if Bni — Bi # 0 then f; lies in (0,1).
Moreover, suppose that (HO), (H7) and (H8) hold. Then, lim,,_, || Sit, — uy| = 0
for each i =1,..., N provided |Ty, — yn| — 0 as n — oo.

Proof. First of all we note that if (H7) holds then also (H1)-(H6) are satisfied. So
{z,} is asymptotically regular.

Let ko be as in the hypotheses. As in Proposition 3.7, for every indexi € {1, ..., N}
such that 3, ; — f; # 0 (which leads to 0 < liminf,, o0 Bn; < limsup,,_,, fni < 1),
one has ||Siup — Yn,i—1]| = 0 as n — oo.

For all the other indices ¢ < ko, we can prove that ||Sju, —yn,i—1]| = 0 as n — oo
in a similar manner. By the relation (due to (3.20) and (3.27))

[Zn41 = 2lI* < Ballyn — plI* + (1 = Bu)lFn — plI?
< Bullyn — pII> + (1 = Bn)llyn — pI?
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= |lyn — p|I?
< antiF|ynn — plI? + 200 (vf — 1V)p||lyn — D
N
+ll2n = plI” = Bua | [(1 = Bri)1Sittn — ymial?,
k=1

we immediately obtain that

N
(&% _
O e e s G [CH R P [
k=i o
Tn — Tn+1|
+”"B." (zn = ol + s — pl)-
n,t

By Proposition 3.5 or by hypothesis (ii) on the sequences, we have

[#n — Zni1] _ [z — Zn1]] ) Brko 0.

Bn,i /Bn,ko ﬂn,i

So, the conclusion follows. O

Remark 3.10. Let us consider N = 3 and the following sequences:

(a)l/n:a—n%, Vn > 1,

al/2?
(b) an = oim, T=2— Yn>1;
1 2 1 1
(C)Bn:§+ﬁa '7n:6n21_ﬁ, Vn > 2;

(d) Bn,l = n11/4’ /8n72 = % - 7%2; Bn,?) = 11/37 Vn > 1.
It is easy to see that all hypotheses (i)-(iii), (HO), (H7) and (H8) of Proposition 3.9
are satisfied.

3

Remark 3.11. Under the hypotheses of Proposition 3.9, analogously to Proposition
3.7, one can see that

lim \|Siun—yn7i,1|| =0, Vie {2,,N}
n—00

Corollary 3.12. Let us suppose that the hypotheses of either Proposition 3.7 or
Proposition 3.9 are satisfied. Then wy(2n) = wy(Un) = Wy (Yn1), ws(xn) = ws(un) =
Ws(Yn,1) and wy(xy,) C £2.

Proof. By Remark 3.4, we have wy, () = wy(uy) and ws(x,) = ws(uy,). Note that
by Remark 3.11,

lim ||SNun - yn,Nfl” =0.
n—o00

In the meantime, it is known that

lim ||Syun — up|| = lim [Ju, —z,] = lim ||z, — ys| = 0.
n—00 n—00 n—00

Hence we have

(3.28) limy, 500 ||SNun - ynH = 0.

Furthermore, it follows from (3.1) that

lim ||yn,N - yn,N—IH = lim 5n,N||SNUn - yn,N—IH =0,
n—0o0 n—oo
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which together with lim,, o0 ||SNUn — yn,n—1]|| = 0, yields
(3.29) limy, o0 || SNUR — Yn,N|| = 0.
Combining (3.28) and (3.29), we conclude that

(3.30) limy o0 [|Yn = yn,n [l =0,
which together with lim,,_,« [|zn — yn|| = 0, leads to
(3.31) limy, o0 || 25, — Yn,N| = 0.

Now we observe that

l|lzn — yn,1|| < lzn — unl + ||yn,1 — Ul = [|Tn — unl| + ﬁn,1| S1un, — Uy

By Propositions 3.3 and 3.7, ||z, — u,|| — 0 and [|S1u, — up|| — 0 as n — oo, and
hence
lim [z — 1] = 0.
n—oo
So we get wy (zy) = wy(Yn,1) and ws(y) = ws(Yn,1)-
In addition, it is easy to see from (3.1) and a,, — 0 that

(3-32) limy o0 Hyn - Wn@n,N” = limp oo O‘n“'yf(yn,N) — HVann,NH =0.
Since

Hyn,N - Wnyn,NH < Hyn,N - ynH + ||yn - ann,NH + ||ann,N - Wnyn,NH
< NlYn,n = Ynll + [lyn = Wabn N || + |05 — ynn |,

from (3.25), (3.30) and (3.32), it follows that
(3.33) limy, 00 |[Yn, N — Waynn|| = 0.

Taking into account that ||y, v — Wyn Nl < |Yn,N — Watn N+ |Wayn.N — Wynnlls
from Remark 2.10 and the boundedness of {y, n} we immediately get

(3.34) hmn—)oo Hyn,N - Wyn,NH =0.

Next, let us show that wy,(z,) C 2. Indeed, let p € wy(x,). Then there exists
a subsequence {z,, } of {z,} such that z,, — p. Since p € wy(uy,), by Proposition
3.7 and Lemma 2.12 (demiclosedness principle), we have p € Fix(S;) for each i =
1,...,N, ie., p € NY,Fix(S;). Taking into account p €€ wy,(ynn) (due to (3.31))
and ||yn, v —Wyn n|| — 0 (due to (3.34)), by Lemma 2.12 (demiclosedness principle)
we know that p € Fix(W) = Nt Fix(T;,) (due to Lemma 2.11). Also, since p €
Ww(yn) (due to ||z, — yn|| — 0), in terms of ||Ty, — yn|| — 0 and Proposition 2.4,
we get p € Fix(T'). Moreover, by Lemma 2.18 and Proposition 3.3 we know that
p € GMEP(6O, h). Furthermore, we prove that p € VI(C, A). As a matter of fact,
since p € wy(yn,n) (due to (3.31)), there exists a subsequence {y,, n} of {yn n}
such that y,, v — p. So, from (3.25) we know that g,, v — p. Let

~ Av+ Neov, veCQC,
TU_{ 0, v C.

Let (v,u) € G(T). Since u — Av € Ngv and Un,N € C, we have
(V= Gn.N,u— Av) > 0.
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On the other hand, from g, n = Po(yn,n — VnAyn,n) and v € C, we have

(0 = G, N+ Gn,N = (Y, N — VnAyn,N)) > 0,

and hence

Yn,N — Yn,N

(V= Un,N, + Ayn n) > 0.

Un
Therefore we have
<U - gni,Na u) Z <U - gn,-,N» AU>
~ ~ y "N = Yni N
> <U — Yn; N> A'l)> - <U — Yn;,N, % + Ayn“N>
ng
= <'U - gni,N7 AU - Agnl,N> + ('U - gnhN: Agnl,N - AynZ,N>
< gni,N - ynl,N>
—\V —Yn;,Ny —
Un,
gni,N - ynl,N>
Un, ’

Z <U - gn,-,N» Agm,N - Aym,N) - <U - gni,N7

From (3.25) and since A is Lipschitz continuous, we get lim,, o || AGn.N — Ayn N || =
0. From gy, v — p, 0 < liminf,_ . v, < limsup,,_, . vn < 2a and (3.25), we have

(v—p,u) > 0.

Since 7T is maximal monotone, we have p € T~0 and hence p € VI(C, A). Conse-
quently, it is known that p € N2, Fix(7},,) NN, Fix(S;) N"GMEP(O, h)NVI(C, A)N
Fix(T') =: £2.

Theorem 3.13. Let us suppose that 2 # 0. Let {an},{Bni},t =1,...,N, be se-
quences in (0,1) such that 0 < liminf,, o By < limsup,,_,.. Bni < 1 for each index
i. Moreover, let us suppose that (H0)-(H6) hold. Then the sequences {zpn},{yn} and
{un}, defined by scheme (3.1), all converge strongly to x* = Po(I — (uV —~f))z*
if and only if ||yn — Tynl| — 0 as n — oo, where o* = Po(l — (uV —~f))z* is the
unique solution of the VIP

(3.35) ((vf—puV)z*,x—2*) <0, Voel,

or, equivalently, the unique solution of the minimization problem
(3.36) mingeo b (Ve,z) — ¥(x),

where ¥ is a potential function for vf.

Proof. First of all, we note that V is a F-strongly positive bounded linear operator
on H and f: H — H is an [-Lipschitz continuous mapping with 0 < vl < u7y. It is
clear that

(WV =y flz— (uV =y )y, z —y) = (wy — )|l — y|*, Va,y € H.

Hence we deduce that pV — ~f is (u7y — 7l)-strongly monotone. In the meantime,
it is easy to see that puV — ~f is (u||V]] + ~I)-Lipschitz continuous with constant
||Vl +~1 > 0. Thus, there exists a unique solution z* in £ to the VIP (3.35).
Equivalently, z* is the unique solution of the minimization problem (3.36).
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Now, observe that there exists a subsequence {zy,} of {z,} such that
(3.37) limsup((vf — pV)z*, x, — ) = Um ((vf — pV)z*, xp, — *).
n—oo 1—00

Since {zy,} is bounded, there exists a subsequence {a;nlj} of {x,, } which converges
weakly to some p € H. Without loss of generality, we may assume that z,, — p.
Then by Corollary 3.12, we get p € wy(zyn) C 2. Hence, from (3.35) and (3.37),
we have

(3.38) lim sup((yf = pV)a”, 2n —27%) = ((v) = pV)a", p —a7) < 0.

Since (H1)-(H6) hold, the sequence {z,} is asymptotically regular (according to
Proposition 3.2). In terms of (3.21) and (3.26), ||z, — u,|| — 0 and ||z, — yn|| — 0
as n — 0o.

Let us show that ||z, — z*|| — 0 as n — oco. Indeed, putting p = z*, we deduce
from (3.3), (3.19) and (3.20) that

lzn+1 = 2*I* < Ballyn — "I + (1 = Ba) [l — 2|
< Bullyn — 21 + (1 = Bu)lyn — 2*[* = llyn — 2|

(’Y) 2 N[~ 2
< a5 lya N — 277 + (1 — anpi¥) |Gn,n — 27|
(py)2 "™ " "

(3.39) an((vf = pV)2*, yn — %)
(7 )?

< ap——|lzn — 2*|* + (1 — anp)||zn — =*||?
1

+ 200 ((vf — pV)z* yn — %)

_ <1 Ca (17)? - (vl)2) T

1A
(17)* = (W)* 24y (o f — )

— x5, yn — ).
1y (1y)? — (1)? )

+ ayp,

WD2=()? _

Since 3,7 oy = 00 and ||z — ya| — 0, we obtain that > 7%, an ==

and

: 2y _ £

BIP Gam — Go F —#V e —

~limsup— 2T _ _
—lnﬁsogp(m)g _(71)2(<(7f V)™, xp — %) + (v f — pV)2", yn — z0))
= limsup 217 ((vf = pV)a*, zy —a*) <O0.

oo (1) = (71)?
(due to (3.38)). Applying Lemma 2.15 to (3.39), we infer that the sequence {z,}
converges strongly to x*. This completes the proof. O

In a similar way, we can conclude another theorem as follows.

Theorem 3.14. Let us suppose that 2 # 0. Let {an},{Bni}t.i = 1,...,N, be
sequences in (0,1) such that B,; — B for each index i as n — oo. Suppose that
there exists k € {1,..., N} for which B, — 0 as n — oco. Let kg € {1,...,N} the
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largest index for which B, , — 0. Moreover, let us suppose that (HO), (H7) and
(H8) hold and

i) 22— — 0 as n — o0;
Bk
n,ko

(i) ifi < ko and Bp; — B then ﬁﬁn’k_‘) =0 asn— oo;

(iii) if Bni — Bi # 0 then p; lies in (0,1).
Then the sequences {z,}, {yn} and {u,} defined by scheme (3.1) all converge strongly
to z* = Po(I — (uV — ~f))x* if and only if ||[yn — Tynl| — 0 as n — oo, where
x* = Po(I — (uV —~f))x* is the unique solution of the VIP

or, equivalently, the unique solution of the minimization problem

in? _
min (Va,x) — ¥(x),

where ¥ is a potential function for vf.

Remark 3.15. According to the above argument process for Theorems 3.13 and
3.14, we can readily see that if in scheme (3.1), the iterative step v, = anYf(yn,n)+
(I — anpuV )Wy Po(yn,N —vnAyn, n) is replaced by the iterative one y, = oy f(zy) +
(I — anpuV )Wy Po(yn,N — VnAyn,N), then Theorems 3.13 and 3.14 remain valid.

Remark 3.16. Theorems 3.13 and 3.14 improve, extend, supplement and develop
[17, Theorems 3.1 and 3.2] and [40, Theorems 3.12 and 3.13] in the following aspects.

(i) The multi-step iterative scheme (3.1) in [17] is extended to develop our Mann-
type viscosity iterative scheme (3.1) by virtue of W-mapping approach to com-
mon fixed points of infinitely many nonexpansive mappings, and strongly positive
bounded linear operator approach. The iterative scheme (3.1) is based on com-
posite viscosity approximation method [31], Mann’s iterative method, W-mapping
approach to common fixed points of infinitely many nonexpansive mappings, and
strongly positive bounded linear operator approach.

(ii) The argument techniques in our Theorems 3.13 and 3.14 are very different
from those techniques in [17, Theorems 3.1 and 3.2] and [40, Theorems 3.12 and 3.13]
because we make use of the properties of strict pseudocontractions (see Propositions
2.4 and 2.5), the ones of W-mappings (see Remarks 2.9 and 2.10 and Lemmas 2.8
and 2.11), the ones of the resolvent operator associated with @ and h (see Lemmas
2.16-2.18), the inclusion problem 0 € Tz* (& z* € VI(C, A)) (see (2.2)), the
ones of strongly positive boundedness linear operators (see Lemma 2.14), and the
convergence criteria for nonnegative real sequences (see Lemma 2.15).

(iii) The problem of finding an element of N2%,Fix(7},) N NX,Fix(S;)N
GMEP(6O,h) N VI(C, A) N Fix(T") (where T is a strict pseudocontraction) in our
Theorems 3.13 and 3.14 is more general and more subtle than the one of finding
an element of Fix(T') NN, Fix(S;) N GMEP(O, k) in [40, Theorems 3.12 and 3.13]
(where T is a nonexpansive mapping) and the one of finding an element of Fix(7") N
NN Fix(S;) N GMEP(O, h) N VI(C, A) in [17, Theorems 3.1 and 3.2] (where T is a
nonexpansive mapping).
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(iv) Our Theorems 3.13 and 3.14 generalizes [17, Theorems 3.1 and 3.2] and [40,
Theorems 3.12 and 3.13] from the nonexpansive mapping 7" to the strict pseudocon-
traction 7" and from the nonexpansive mapping 7' to infinitely many nonexpansive
mappings {7,,}°° ;. In the meantime, these theorems extend not only [40, Theorems
3.12 and 3.13] to the setting of VIP (1.1), hierarchical minimization (3.36) and in-
finitely many nonexpansive mappings {7,,}>° ;, but also [17, Theorems 3.1 and 3.2]
to the setting of hierarchical minimization (3.36) and infinitely many nonexpansive

mappings {75 }5%;.
4. APPLICATIONS

For a given nonlinear mapping A : C' — H, we consider the variational inequality
problem (VIP) of finding € C such that

(4.1) (Az,y — ) >0, VYyedl.

We will indicate with VI(C, A) the set of solutions of the VIP (4.1).
Recall that if u is a point in C, then the following relation holds:

(4.2) uw€ VI(C,A) < u=Po(I—AA)u, VA>0.

An operator A : C' — H is said to be an a-inverse strongly monotone operator if
there exists a constant a > 0 such that

(Az — Ay, —y) > of| Az — Ay|*, Vz,yeC.

As an example, we recall that the a-inverse strongly monotone operators are
firmly nonexpansive mappings if & > 1 and that every a-inverse strongly monotone
operator is also 2-Lipschitz continuous (see [49]).

Let us observe also that, if A is a-inverse strongly monotone, the mappings
Po(I — AA) are nonexpansive for all A € (0,2a] since they are compositions of
nonexpansive mappings (see p. 419 in [49]).

Let us consider S, ..., Sy a finite number of nonexpansive self-mappings on C
and Ai,..., Ayx be a finite number of a-inverse strongly monotone operators. Let
T : H — H be a &-strict pseudocontraction on H with fixed points. Let us consider
the following mixed problem of finding z* € N2, Fix(7,,)NGMEP (6, h)NVI(C, A)N
Fix(T') such that

(I - Sy)a*,y —x*) >0,

Yy € N2, Fix(T;,) N GMEP(0, h) N VI(C, A) N Fix(T),
(I — Sp)a*,y —x*) >0,

Yy € N2, Fix(T;,) N GMEP(0, h) N VI(C, A) N Fix(T),

(4.3) (I = Spp)a*,y —z*) >0,

Yy € N2, Fix(T,) N GMEP (8, h) N VI(C, A) N Fix(T),
<A]_.’E*,y - fL'*> > 0) V?/ € Ca
(Agz™,y —x*) >0, VYyel,

(Anz*,y —z*) >0, VYyeC.

Let us call (SVI) the set of solutions of the (M + N)-system. This problem
is equivalent to finding a common fixed point of T, {Pc(I — MA;)}Y, and



APPROXIMATION METHOD FOR GENERAL MIXED EQUILIBRIUM 1287

{Pmoo 1 Fix(T,)NGMEP(6,h)NVI(C,4)NFix(T) Sz}zj\il So we claim that the following holds.

Theorem 4.1. Let us suppose that 2 = N>, Fix(T,,) N (SVI) N GMEP(©, k) N
VI(C, A)NFix(T) # 0. Fiz A > 0. Let {an}, {ﬁm} i=1,...,(M+N), be sequences
m (0,1) such that 0 < liminf,, ;o Br; < limsup,,_,. ﬁn,i < 1 for all indices 1.
Moreover, let us suppose that (H0)-(H6) hold. Then the sequences {x,},{yn} and
{un} explicitly defined by scheme

( O(un,y) + h(un, y) + 2y — up,up — z5) >0, Yy € C,

Tn
Yn,1 = Bn,1 P Fix(T,)NGMEP(6,h)VI(C,A)NFix(T) 91 Un

+(1 - Bn,l)una _
Yn,i = Bn,iPnee  Fix(T,)NGMEP(6,h)NVI(C,A)NFix(T) i Un
(4.4) +(1 = Bui)yni1, (i =2,..., M)
YnM+j = Brm+i Po(I = AAj)un + (1 = Bp vi+5)Yn M4j-1,
(j=1,...,N)

Yn = Y f (Ynm+N) + (I = anptVIWo Po(Yn v+ N — VnAYn M+N),
Tn+1 = Bnyn + 'YnPC(yn - VnAyn) + 5nTPC(yn - VnAyn>a

all converge strongly to x* = Po(I — (uV — ~f))x* if and only if ||y, — Tyn| — 0
as n — oo, where x* = Po(I — (uV — ~f))x* is the unique solution of the VIP

or, equivalently, the unique solution of the minimization problem

rrgg (Vaf x) — ¥(x),

where ¥ is a potential function for vf.

Theorem 4.2. Let us suppose that 2 # (. Fiz X > 0. Let {an},{Bni}t i =

(M + N), be sequences in (0,1) and By — Bi for all i as n — oco. Suppose
that there exists k € {1,...,M + N} such that B, — 0 as n — oo. Let kg €
{1,...,M + N} be the largest index for which By, — 0. Moreover, let us suppose
that (HO), (H7) and (H8) hold and

(i) Bi" — 0 as n — oo,

(i) ifi < ko and Bp; — 0 then 'Bﬁnko — 0 asn — oo;

(iii) if Bni — Bi # 0 then pB; lies in (0,1).

Then the sequences {xy},{yn} and {u,} explicitly defined by scheme (4.4) all con-
verge strongly to x* = Po(I—(uV —~f))x* if and only if ||yn—Tyn|| — 0 asn — oo,
where x* = Po(I — (uWV —~f))x* is the unique solution of the VIP

(vf = uV)a*,a —a*) <0, Vae @,
or, equivalently, the unique solution of the minimization problem

Hgn (V:c x) — ¥(x),

where ¥ is a potential function for vf.

Remark 4.3. If in system (4.3), A=A =---=Ay =0, T, =[,Vn>1,and T
is a nonexpansive mapping, we obtain a system of hierarchical fixed point problems
introduced by Mainge and Moudafi [38,39].
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On the other hand, if S : C' — C is a k-strictly pseudocontractive mapping, that
is, there exists a constant x € [0, 1) such that

1Sz — Syl* < |z — y|* + &l|(I = S)a — (I = Syl*, Vz,yeC,

then A =1 — S is 5% inverse strongly monotone; see [42].

Utilizing Theorems 3.13 and 3.14, we also give two strong convergence theorems
for finding a common element of the solution set GMEP(O,h) of GMEP (1.5)
and the common fixed point set N>, Fix(7T},) N NY, Fix(S;) N Fix(9) of a s-strict
pseudocontraction S : C' — C, one finite family of nonexpansive mappings S; : C' —
C,i = 1,...,N and another infinite family of nonexpansive mappings 7;, : C' —

Cn=12,....

Theorem 4.4. Let o = 155, Let us suppose that 2 = N Fix(T,,) NN, Fix(S;) N
Fix(S) N GMEP(O,h) # 0. Let {an},{Bni},i = 1,...,N, be sequences in (0,1)
such that 0 < liminf,, o Br; < limsup, . Bni < 1 for all indices i. Moreover,

let us suppose that there hold (H0)-(H6) with v, = 0,Yn > 1. Then the sequences
{zn},{yn} and {u,} generated explicitly by

Q(unay)+h(unay)+%<y_unaun_$n> >0, Vyed,
Yn,1 = Bn,lslun + (1 - /Bn,l)unv

(4.5) Yni = Bn,iSiun + (1 = Bni)yni-1, 1=2,...,N,
Yn = aan(yn,N) + (I - anﬂv)Wn((l - Vn)yn,N + VnSyn,N)a
Tn+1 = /Bnyn + (1 - Bn)((l - Vn)yn + VnSyn)7 vn 2 17

all converge strongly to x* = Po(I — (uV — ~f))x*, which is the unique solution of
the VIP

(vf—pV)z*,x—2*) <0, Vxe

or, equivalently, the unique solution of the minimization problem
M
min—(V - v

where ¥ is a potential function for vf.

Proof. In Theorem 3.13, put A=1— S and T = 1. Then A is 1;"‘—inverse strongly
monotone. Hence we deduce that Fix(S) = VI(C, A), and

PC(yn,N - VnAyn,N) = (]- - Vn)yn,N + Vnsyn,Na
Po(yn — vnAyn) = (1 = vn)Yn + vnSyn.

Thus, in terms of Theorem 3.13, we obtain the desired result. Il

Theorem 4.5. Let a = 355, Let us suppose that 2 = N3 Fix(T,,) NN, Fix(S;) N
Fix(S) N GMEP(O,h) # 0. Let {an},{Bni},i = 1,...,N, be sequences in (0,1)
such that B,; — Bi for all i as n — oo. Suppose that there exists k € {1,...,N}
for which B — 0 as n — oco. Let ko € {1,...,N} be the largest index for which
Bnko, — 0. Moreover, let us suppose that there hold (H0), (H7) and (HS8) with
Yo =0,Yn > 1 and

(i) 5377110 — 0 as n — oo
Bn,

(i) if i < ko and Bpn; — 0 then 5 =0 asn — oo;
(iii) if Bni — Bi # 0 then p; lies in (0,1).
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Then the sequences {xy},{yn}, and {u,} generated explicitly by (4.5), all converge
strongly to ©* = Po(I — (uV — ~f))x*, which is the unique solution of the VIP

or,

(vf—pV)z*,x—2*) <0, Vxe
equivalently, the unique solution of the minimization problem

int _
;%182(Vx,$> v(x),

where ¥ is a potential function for vf.
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