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In 2010, Moudafi [30] introduced a class of bilevel equilibrium problem (shortly,
(BEP)) which is to find x ∈ Sf such that

g(x, y) ≥ 0, ∀ y ∈ Sf ,

where Sf is the solution set of the following equilibrium problem: find u ∈ K such
that

f(u, y) ≥ 0, ∀ y ∈ K,

where K is a nonempty, closed and convex subset of a Hilbert space and f, g :
K × K → R are two functions. He pointed out that this class is absorbing since
it includes hierarchical optimization problems, optimization with equilibrium, vari-
ational inequalities, complementarity constraints as special cases. Also, by using
the proximal method, an iterative algorithm to compute approximate solution of
BEP and the weak convergence of the iterative sequence generated by the algorithm
were suggested and derived, respectively. Since then, Ding[12, 13, 14, 15] and Ding,
Liou and Yao[16] generalized the BEP to the bilevel generalized mixed equilibrium
problems in reflexive Banach space, established the existence results of solutions
for the mixed equilibrium problems and the bilevel mixed equilibrium problems by
using minimax inequality. By using auxiliary principle technique, they also con-
structed some iterative algorithms for solving the mixed equilibrium problems and
bilevel mixed equilibrium problems, and derived the strong convergence of the pro-
posed algorithms under suitable assumptions. Chen et al.[8, 9] further explored
the existence, well-posedness and algorithms for BEP by using fixed point method.
Dinh and Muu [17] studied a class of bilevel pseudomonotone equilibrium problems
by penalty function method, and proved that under the pseudo-∇-monotonicity,
any stationary point of a regularized gap function is a solution of the penalized
equilibrium problem. Chadli et al. [7] also discussed the existence and algorith-
mic aspects of a class of bilevel mixed equilibrium problems in Banach spaces, and
then constructed an iterative algorithm by the auxiliary problem. They also proved
that a sequence generated by the proposed algorithm is strongly convergent to a
solution of the bilevel mixed equilibrium problem. Very recently, Anh, Kim and
Muu[1] analyzed the convergence of an extragradient algorithm for a class of bilevel
pseudomonotone variational inequality which is a special model of the BEP in [30].
In [2], Anh, Khanh and Van gave some sufficient conditions for the well-posedness
and unique well-posedness to the bilevel equilibrium and optimization problems
with equilibrium constraints under the assumptions of existence of solutions and
the relaxed level closedness and pseudocontinuity. Very recently, Facchinei et al.
[18, Math. Program. 145(2014):59–96] suggested some iterative algorithms for
hemivariational inequalities with variational inequality constraints, which is also
a special case of BEP in [30], by inexact Prox-Tikhonov method and distributed
method, and applied to power control in ad-hoc networks. It is worth noting that
many authors studied the existence of solutions and iterative algorithms for bilevel
equilibrium problems and bilevel variational inequalities involving the information
about the solution set of the lower-level problem. Moreover, there are little results
concerning the duality and existence of solution for bilevel vector equilibrium prob-
lems.
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Motivated and inspired by the ongoing research in this direction, the aim of this
paper is devoted to investigate the duality and existence of solution for a class
of bilevel vector pseudomonotone equilibrium problems without involving the in-
formation about the solution set of the lower-level equilibrium problem. Firstly,
we propose the dual formulations of bilevel vector equilibrium problems (BVEP).
Secondly, the primal-dual relationships are derived under cone-convexity and weak
pseudo-monotonicity assumptions. Finally, existence of solutions of BVEP are es-
tablished without involving the information about the solution set of the lower-level
problem.

Throughout this paper, let E,H and Z be finite dimensional Euclidean spaces, K
be a nonempty, closed and convex subset of E, Φ : K×K → H and Ψ : K×K → Z
be vector-valued mappings, and let C ⊆ H and Q ⊆ Z be closed, convex and
pointed cones with nonempty interior intC ̸= ∅ and intQ ̸= ∅. Recall that a subset
B of H is said to be a convex and pointed cone if B +B = B,B ∩ (−B) = {0} and
µb ∈ B for all µ > 0 and b ∈ B. The dual cone of B is denoted by

B∗ = {u ∈ H : xTu ≥ 0, ∀ x ∈ B}.

Consider the following bilevel vector equilibrium problem (shortly, (BVEP)):
Find x∗ ∈ SΨ such that

Φ(x∗, y) ̸∈ −intC, ∀ y ∈ SΨ,(1.1)

where SΨ is the solution set of the lower-level equilibrium problem:
Find y∗ ∈ K such that

Ψ(y∗, z) ̸∈ −intQ, ∀ z ∈ K.(1.2)

Denote the solution set of the BVEP (1.1) with (1.2) by S.

Special cases:
(I) If Φ(x, y) = f(y)− f(x), where f : K → H is vector-valued, then the BVEP

(1.1) with (1.2) reduces to the following multiobjective programming with equilib-
rium constraints (MPEC):

“C −min ” f(y) subject to y ∈ SΨ.(1.3)

where SΨ is the solution set of the lower-level equilibrium problem (1.2).
The MPEC (1.3) cover various types of optimization with equilibrium, variational

inequality, complementarity and inclusions as constraints (see [2, 11, 31, 27, 29] and
the references therein).

(II) If H = (−∞,+∞) and C = Q = [0,+∞), then the BVEP (1.1) with (1.2)
reduces to the following bilevel equilibrium problem:

Find x∗ ∈ SΨ such that

Φ(x∗, y) ≥ 0, ∀ y ∈ SΨ,(1.4)

where SΨ = {y ∈ K : Ψ(y, z) ≥ 0, ∀ z ∈ K}.
For a suitable choice of Φ and Ψ, this class, which was firstly introduced by

Moudafi [30], includes many types of bilevel equilibrium problems such as bilevel
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generalized mixed (quasi) equilibrium problem, bilevel generalized mixed quasi-
variational-like inequality problem, bilevel mixed equilibrium problem, bilevel pseu-
domonotone equilibrium problem and variational inequality with variational in-
equality constraints (see [9, 12, 13, 14, 15, 16, 17] and the references therein), and
has been greatly applied to economics and management sciences, decision-making
disciplines, engineering, power control systems and so on (see [4, 18] and the refer-
ences therein).

2. Notions and facts

The following notions and results, which are mostly well known, are recalled here
for the reader’s convenience.

Definition 2.1. Let ψ : K ×K → Z be a vector-valued mapping. ψ is called:
(1) Q-convex with respect to the second argument if, for any given x ∈ K,

tψ(x, y) + (1− t)ψ(x,w)− ψ(x, ty + (1− t)w) ∈ Q, ∀ y, w ∈ K, t ∈ (0, 1);

(2) affine with respect to the second argument if, for any given x ∈ K,

ψ(x, ty + (1− t)w) = tψ(x, y) + (1− t)ψ(x,w), ∀ y, w ∈ K, t ∈ (−∞,+∞);

(3) hemicontinuous with respect to the first argument if, for any given x ∈ K,

lim
t↘0

ψ(ty + (1− t)w, x) = ψ(w, x), ∀ y, w ∈ K.

It is easy to see that if ψ : K × K → Z is affine with respect to the second
argument, then it is Q-convex with respect to the second argument.

Definition 2.2 ([22]). Let ψ : K×K → Z be a vector-valued mapping. ψ is called:
(1) weakly Q-pseudomonotone if, for any x, y ∈ K,

ψ(x, y) ̸∈ −intQ ⇒ ψ(y, x) ̸∈ intQ;

(2) Q-pseudomonotone if, for any x, y ∈ K,

ψ(x, y) ̸∈ −intQ ⇒ ψ(y, x) ∈ −Q;

(3) strictly Q-pseudomonotone if, for any x, y ∈ K,x ̸= y,

ψ(x, y) ̸∈ −intQ ⇒ ψ(y, x) ∈ −intQ.

It is easy to see that
the strict C-pseudomonotonicity ⇒ C-pseudomonotonicity ⇒ the weak C-

pseudomonotonicity.

Fact 2.3 ([10]). Let ∆ be a convex cone of Z with int∆ ̸= ∅ and its dual cone ∆∗.
The following hold:

(1) If u ∈ int∆, then xTu > 0 for all x ∈ ∆∗ \ {0}, where the superscript T
denotes the transpose;

(2) If x ∈ int∆∗, then xTu > 0 for all u ∈ ∆ \ {0}.

Fact 2.4 ([19]). Let D be a nonempty, convex subset of a finite dimensional Eu-
clidean space E, F : D → 2E be a KKM mapping, i.e., for every finite subset
{x1, x2, . . . , xm} of D, co {x1, x2, . . . , xm} is contained in

∪m
i=1 F (xi) where co de-

notes the convex hull, such that for any x ∈ D,F (x) is closed and F (x∗) is bounded
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for some x∗ ∈ D. Then there exists y∗ ∈ D such that y∗ ∈ F (x) for all x ∈ D, i.e.,∩
x∈D F (x) ̸= ∅.

3. Duality for (BVEP)

In this section, we propose the dual of bilevel vector equilibrium problem (shortly,
(DBVEP)), and establish the equivalence between DBVEP and BVEP under some
suitable conditions.

Motivated by Konnov and Schaible [24] and Ansari, Siddiqi and Wu [3], we
propose the following the dual formulation of BVEP:

Find x∗ ∈ Sd
Ψ such that

Φ(y, x∗) ̸∈ intC, ∀ y ∈ Sd
Ψ,(3.1)

where Sd
Ψ is the solution set of the lower-level equilibrium problem:

Find y∗ ∈ K such that

Ψ(z, y∗) ̸∈ intQ, ∀ z ∈ K.(3.2)

Denote the solution set of the DBVEP (3.1) with (3.2) by Sd.
We now establish the equivalence between DBVEP and BVEP.

Theorem 3.1. Let K be a nonempty, closed and convex subset of E, Φ : K×K →
H and Ψ : K × K → Z be vector-valued mappings. Assume that the following
conditions hold:

(1) Ψ(x, x) ∈ Q and Φ(x, x) ∈ C for all x ∈ K;
(2) Ψ and Φ are hemicontinuous with respect to the first argument;
(3) Ψ and Φ are Q-convex and C-convex with respect to the second argument,

respectively;
(4) Ψ and Φ are weakly Q-pseudomonotone and weakly C-pseudomonotone, re-

spectively.

If SΨ is nonempty closed and convex, then BVEP and DBVEP are equivalent, i.e.,
S = Sd.

Proof. Let x∗ ∈ S. Then Φ(x∗, y) ̸∈ −intC for all y ∈ SΨ and Ψ(x∗, z) ̸∈ −intQ
for all z ∈ K. This together with condition (4) yields that

Φ(y, x∗) ̸∈ intC, ∀ y ∈ SΨ,

and

Ψ(z, x∗) ̸∈ intQ, ∀ z ∈ K.

If SΨ = Sd
Ψ, then x

∗ ∈ Sd.

To this end, we prove that SΨ = Sd
Ψ. Then SΨ ⊆ Sd

Ψ follows from the condition

(4). On the other hand, let ȳ ∈ Sd
Ψ. For any z ∈ K, set zλ = λz + (1 − λ)ȳ for all

λ ∈ (0, 1). Then zλ ∈ K for all λ ∈ (0, 1) and, Ψ(zλ, zλ) ∈ Q. Since Ψ is Q-convex
with respect to the second argument, one has

λΨ(zλ, z) + (1− λ)Ψ(zλ, ȳ)−Ψ(zλ, zλ) ∈ Q.

Taking into account Ψ(zλ, zλ) ∈ Q, we obtain

λΨ(zλ, z) + (1− λ)Ψ(zλ, ȳ) ∈ Q+Ψ(zλ, zλ) ⊆ Q.(3.3)
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Claim that Ψ(zλ, z) ̸∈ −intQ. Suppose that Ψ(zλ, z) ∈ −intQ. Then

−λΨ(zλ, z) ∈ intQ.(3.4)

It follows from (3.3) and (3.4) that

(1− λ)Ψ(zλ, ȳ) ∈ Q− λΨ(zλ, z) ⊆ Q+ intQ ⊆ intQ.

This combine with 1 − λ > 0 that Ψ(zλ, ȳ) ∈ intQ, which contradicts ȳ ∈ Sd
Ψ.

Therefore

Ψ(zλ, z) ∈ Z \ (−intQ).(3.5)

Since Ψ is hemicontinuous with respect to the first argument, and from (3.5), one
has

lim
λ↘0

Ψ(zλ, z) = Ψ(ȳ, z) ∈ Z \ (−intQ), ∀ z ∈ K.

This shows that Ψ(ȳ, z) ̸∈ −intQ for all z ∈ K. Then ȳ ∈ SΨ and so, Sd
Ψ ⊆ SΨ.

Therefore, Sd
Ψ = SΨ.

Conversely, let x∗ ∈ Sd. Then x∗ ∈ Sd
Ψ and

Φ(y, x∗) ̸∈ intC, ∀ y ∈ Sd
Ψ.

According to SΨ = Sd
Ψ, x

∗ ∈ SΨ. Hence

Ψ(x∗, z) ̸∈ −intQ, ∀ z ∈ K.(3.6)

Let K̄ = Sd
Ψ. By the same argument, Φ(x∗, y) ̸∈ −intC for all y ∈ K̄. Therefore

x∗ ∈ SΨ such that Φ(x∗, y) ̸∈ −intC for all y ∈ SΨ. This combine with (3.6) implies
that x∗ ∈ S. □
Remark 3.2. The dual formulation of BVEP is distinct from that of Konnov
and Schaible [24], Ansari, Siddiqi and Wu [3] and Huang, Li and Thompson[22].
Generally, the dual of DBVEP is not the primal BVEP unless their lower-level
equilibrium problems are equivalent.

Corollary 3.3. Let K be a nonempty, closed and convex subset of E, Φ : K×K →
H and Ψ : K × K → Z be vector-valued mappings. Assume that the conditions
(1),(2),(4) of Theorem 3.1, and the following hold:

(3)′ Ψ and Φ and affine with respect to the second argument.

If SΨ is nonempty closed and convex, then BVEP and DBVEP are equivalent, i.e.,
S = Sd.

Proof. Follows readily from Theorem 3.1. □
Corollary 3.4. Let K be a nonempty, closed and convex subset of E, Φ : K×K →
H and Ψ : K × K → Z be vector-valued mappings. Assume that the following
conditions hold:

(1) Ψ(x, x) ∈ Q for all x ∈ K;
(2) Ψ is hemicontinuous with respect to the first argument;
(3) Ψ is Q-convex with respect to the second argument;
(4) Ψ is weakly Q-pseudomonotone.

Then SΨ = Sd
Ψ.
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Proof. Inspect the proof of Theorem 3.1. □

4. The existence results for BVEP

In this section, we firstly study the nonemptiness and convexity of the set of
solutions for the lower-level equilibrium problem (1.2) of BVEP under some suitable
conditions, and then provide the existence of solutions for BVEP.

Lemma 4.1. Let K be a nonempty, closed and convex subset of E and Ψ : K×K →
Z be continuous and affine with respect to the first argument such that Ψ(y, z) ∈
Q ∪ (−intQ) for all y, z ∈ K. Then SΨ is closed and conex.

Proof. Let {yn} ⊆ SΨ such that yn → ȳ ∈ K. Then Ψ(yn, z) ̸∈ −intQ for all z ∈ K.
It follows from the continuity of Ψ that Ψ(ȳ, z) ∈ Z \ (−intQ) for all z ∈ K. This
shows that ȳ ∈ SΨ.

Let y1, y2 ∈ SΨ and set yι = ιy1 + (1− ι)y2 for ι ∈ (0, 1). Then

Ψ(yi, z) ̸∈ −intQ, ∀ z ∈ K, i = 1, 2.(4.1)

Since Ψ : K ×K → Z is affine with respect to the first argument, we have

Ψ(yι, z) = ιΨ(y1, z) + (1− ι)Ψ(y2, z), ∀ z ∈ K.(4.2)

Note that Ψ(y, z) ∈ Q ∪ (−intQ) for all y, z ∈ K. So, from (4.1), (4.2), we have
Ψ(yι, z) ∈ Q. Consequently, Ψ(yι, z) ̸∈ −intQ for all z ∈ K. Therefore yι ∈ SΨ for
ι ∈ (0, 1) and so, SΨ is closed and convex. □

We next prove the solvability, convexity and boundedness of the solution set SΨ
of the lower-level equilibrium problem (1.2).

Lemma 4.2. Let K be a nonempty, bounded, closed and convex subset of E. As-
sume that the conditions (1)-(4) of Corollary 3.4 and the following hold:

(5) Ψ is continuous with respect to the second argument such that Ψ(y, z) ∈
(−Q) ∪ (intQ) for all y, z ∈ K.

Then SΨ is nonempty, bounded, closed and convex.

Proof. Let us first show that SΨ is closed and convex. Take {yn} ⊆ SΨ such that
yn → ȳ ∈ K. Then {yn} ⊆ Sd

Ψ by Corollary 3.4. Hence Ψ(z, yn) ̸∈ intQ for all
z ∈ K. Moreover, one has

Ψ(z, yn) ∈ Z \ intQ, ∀ z ∈ K.

By the continuity of Ψ with respect to the second argument, we have

Ψ(z, ȳ) ∈ Z \ intQ, ∀ z ∈ K.

So, Ψ(z, ȳ) ̸∈ intQ for all z ∈ K. This yields that ȳ ∈ Sd
Ψ and so, ȳ ∈ SΨ ⊆ K.

Therefore SΨ is closed and bounded.
Suppose that SΨ is not convex. Then there exist ŷ, ỹ ∈ SΨ and λ ∈ (0, 1) such

that λŷ + (1 − λ)ỹ ̸∈ SΨ. According to Corollary 3.4, there exists ẑ ∈ K such
that Ψ(ẑ, λŷ + (1 − ŷ)ỹ) ∈ intQ. Again, from ŷ, ỹ ∈ SΨ and the condition (5),
Ψ(ẑ, ŷ) ∈ −Q and Ψ(ẑ, ỹ) ∈ −Q. By Fact 2.3, for any u ∈ Q∗ \ {0},

Ψ(ẑ, λŷ + (1− ŷ)ỹ)Tu > 0.(4.3)
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and

(λΨ(ẑ, ŷ) + (1− λ)Ψ(ẑ, ỹ))Tu = λΨ(ẑ, ŷ)Tu+ (1− λ)Ψ(ẑ, ỹ)Tu ≤ 0.(4.4)

Since Ψ is Q-convex with respect to the second argument,

λΨ(ẑ, ŷ) + (1− λ)Ψ(ẑ, ỹ)−Ψ(ẑ, λŷ + (1− ŷ)ỹ) ∈ Q.

This shows that

[λΨ(ẑ, ŷ) + (1− λ)Ψ(ẑ, ỹ)−Ψ(ẑ, λŷ + (1− ŷ)ỹ)]Tu ≥ 0, ∀ u ∈ Q∗ \ {0}.
Further, we have

(λΨ(ẑ, ŷ) + (1− λ)Ψ(ẑ, ỹ))Tu−Ψ(ẑ, λŷ + (1− ŷ)ỹ)Tu ≥ 0, ∀ u ∈ Q∗ \ {0}.
It follows from (4.4) that

Ψ(ẑ, λŷ + (1− ŷ)ỹ)Tu ≤ 0, ∀ u ∈ Q∗ \ {0},
which contradicts (4.3). Therefore SΨ is convex.

Finally, we show that SΨ ̸= ∅. Define the mappings Γ,Υ : K → 2K by

Γ(z) = {y ∈ K : Ψ(y, z) ̸∈ −intQ}, ∀ z ∈ K

and

Υ(z) = {y ∈ K : Ψ(z, y) ̸∈ intQ}, ∀ z ∈ K.

Clearly, SΨ =
∩

z∈K Γ(z) and
∩

z∈K Υ(z) = Sd
Ψ. It follows from the conditions (1)

and (4) that

z ∈ Γ(z) ⊆ Υ(z), ∀ z ∈ K.(4.5)

Therefore Ψ(z, z) ∈ Q∩ (−Q) = {0} by the condition (5) and so, Ψ(z, z) = 0 for all
z ∈ K.

We claim that Γ is a KKM mapping. In fact, if there exists a finite subset
{z1, z2, . . . , zm} of K, co{z1, z2, . . . , zm} ̸⊆

∪m
i=1 Γ(zi). That is, there exists z̃ =∑m

i=1 ιizi, where
∑m

i=1 ιi = 1 and ιi ≥ 0, i = 1, 2, . . . ,m, such that z̃ ̸∈ Γ(zi) for
i = 1, 2, . . . ,m. This implies that Ψ(z̃, zi) ∈ −intQ for i = 1, 2, . . . ,m and so,

m∑
i=1

ιiΨ(z̃, zi) ∈ −intQ.(4.6)

By the Q-convexity of Ψ with respect to the second argument, we have
m∑
i=1

ιiΨ(z̃, zi)−Ψ(z̃, z̃) ∈ Q.

This, together with Ψ(z̃, z̃) = 0, yields that
∑m

i=1 ιiΨ(z̃, zi) ∈ Q, which contradicts
(4.6). Therefore Γ and Υ are KKM mappings by (4.5). Similar to the proof of the
closedness of SΨ, for each z ∈ K, Υ(z) is closed. From the boundedness of K, Υ(z)
is bounded for each z ∈ K. By Fact 2.4, Sd

Ψ =
∩

z∈K Υ(z) ̸= ∅. Hence SΨ ̸= ∅. □
Lemma 4.3. Let K be a nonempty, closed and convex subset of E. Assume that
the conditions (1)-(5) of Lemma 4.2 and the following hold:

(6) there exists a nonempty, bounded, closed and convex subset Ω of E such that
for any ỹ ∈ K \ Ω, there is z̃ ∈ Ω satisfying Ψ(ỹ, z̃) ∈ −intQ.
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Then SΨ is nonempty, bounded, closed and convex.

Proof. Set G(z) = {y ∈ Ω : Ψ(z, y) ̸∈ intQ} for all z ∈ K. Similar to the proof
of Lemma 4.2, we have that SΨ is closed and convex, and that G(z) is closed and
bounded for each z ∈ K. The boundedness of SΨ results from the condition (6).
SΨ ̸= ∅ can be proved as the one of [22, Theorem 4.5] and so it is omitted here. □

Remark 4.4. (i) If Ψ is strictly Q-pseudomonotone in Lemma 4.2 and Lemma
4.3, then SΨ is a singleton. Indeed, if there exist y1, y2 ∈ SΨ and y1 ̸= y2,
Ψ(y1, y2) ̸∈ −intQ and Ψ(y2, y1) ̸∈ −intQ. By the strictly Q-pseudomonotonicity
of Ψ, Ψ(y2, y1) ∈ −intQ which is a contradiction.

(ii) In the setting of finite dimensional Euclidean spaces, compared with Theorem
3.1 of [5], the condition (6) is weaker than the coercivity condition (C) in [5]. Lemma
4.3 does not require the condition: “For all c ̸∈ Q and for all x ∈ K, the set {y ∈ K :
c − Ψ(x, y) ∈ intQ} is convex”. Moreover, under the assumptions of Theorem 3.1
and Theorem 3.2 of [5], the solution set SΨ of the lower-level equilibrium problem
(1.2) is not convex in general (see [5, Remark 3.4]). So, Lemma 4.3 is different from
Theorem 3.1 of [5].

We now show the characterizations of solution of BVEP.

Theorem 4.5. Let K be a nonempty, bounded, closed and convex subset of E,
Φ : K ×K → H and Ψ : K ×K → Z be vector-valued mappings. Assume that the
conditions (1)-(4) of Theorem 3.1 and the following hold:

(5) Ψ and Φ are continuous with respect to the second argument such that
Ψ(x, y) ∈ (−Q) ∪ (intQ) and Φ(x, y) ∈ (−C) ∪ (intC) for all x, y ∈ K.

Then the solution set S of BVEP is nonempty, bounded, closed and convex.

Proof. Follows readily from Lemma 4.2. □

Theorem 4.6. Let K be a nonempty, closed and convex subset of E, Φ : K×K → H
and Ψ : K×K → Z be vector-valued mappings. Assume that the conditions (1)-(4)
of Theorem 3.1 and the following hold:

(5) Ψ and Φ are continuous with respect to the second argument such that
Ψ(x, y) ∈ (−Q) ∪ (intQ) and Φ(x, y) ∈ (−C) ∪ (intC) for all x, y ∈ K;

(6) there exists a nonempty, bounded, closed and convex subset Ω of E such that
for any ỹ ∈ K \ Ω, there is z̃ ∈ Ω satisfying Ψ(ỹ, z̃) ∈ −intQ.

Then the solution set S of BVEP is nonempty, bounded, closed and convex.

Proof. Combine Lemma 4.2 with Lemma 4.3. □

The following results deduce directly from Remark 4.4, Theorem 4.5 and Theorem
4.6.

Corollary 4.7. Let K be a nonempty, bounded, closed and convex subset of E,
Φ : K ×K → H and Ψ : K ×K → Z be vector-valued mappings. Assume that Φ is
strictly C-pseudomonotone, and all conditions of Theorem 4.5 hold. Then BVEP
admits a unique solution.
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Corollary 4.8. Let K be a nonempty, closed and convex subset of E, Φ : K×K →
H and Ψ : K × K → Z be vector-valued mappings. Assume that Φ is strictly C-
pseudomonotone, and all conditions of Theorem 4.6 hold. Then BVEP admits a
unique solution.

Remark 4.9. By using dual results of BVEP, the existence of solution of DBVEP
can be derived from Theorems 3.1, 4.5, 4.6 and Corollaries 3.3, 4.7 and 4.8.
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