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the linear space is replaced by a Riemannian manifold and the line segment by a
geodesic. They also studied the monotonicity of the gradient of the geodesic convex
functions. The concept of monotone vector field on Riemannian manifolds which was
a generalization of monotone operator was introduced by Németh [27]. This notion
has been extended by Da Cruz Neto et al. and Li et al. to the cases of set-valued
mappings ([10, 20]). The concept of invex function on Riemannian manifolds was
introduced by Pini [29], while Mititelu [25] investigated its generalization. Recently,
Barani and Pouryayevali [6] introduced several notions of invexities for functions on
Riemannian manifolds, and studied their relations with various concepts of invariant
monotone vector fields defined on Riemannian manifolds. Besides, it is worth to
mentioning that some concepts of nonsmooth analysis ([9]) have been extended from
Euclidean spaces to Riemannian manifolds, in order to study optimization problems
and related topics ([14, 19, 8, 5, 4, 21, 22, 34, 35, 36]). Very recently, Barani [5]
proposed some notions of generalized convexity for locally Lipschitz functions and
some concepts of generalized monotonicity for set-valued mappings on Hadamard
manifolds, and studied the connections between of them.

In this paper, we introduce several kinds of generalized invexity for locally Lip-
schitz functions and generalized invariant monotonicity of set-valued vector field
on Riemannian manifolds. By using the techniques of Barani [5], some necessary
and sufficient conditions of being a locally Lipschitz function invex, or pseudoinvex
are given in terms of invariant monotonicity, or pseudomonotonicity of its Clarke’s
subdifferential, respectively. As applications, we establish some relationships be-
tween a solution of generalized vector variational-like inequalities and an efficient
or a weakly efficient solution to the nonsmooth vector optimization problem under
the assumptions of pseudoinvexity or invariant pseudomonotonicity. The results
presented in this paper extend some known results in [5, 6].

2. Preliminaries

In this section, we recall some definitions and known results about Riemannian
manifolds which will be used throughout the paper. It can be found in many
introductory books on Riemannian geometry, such as in [7, 18, 19, 33, 37].

Let M be a C∞ smooth manifold modelled on a Hilbert space H, either finite
dimensional or infinite dimensional, endowed with a Riemannian metric ⟨·, ·⟩p on
the tangent space TpM ∼= H. The corresponding norm is denoted by ∥ · ∥p and the
length of a piecewise C1 curve γ : [a, b] → M is defined by

L(γ) :=

∫ b

a
∥γ′(t)∥γ(t)dt.

For any two points p, q ∈ M , we define

d(p, q) = inf{L(γ) : γ is a piecewise C1 curve joining p to q}.

Then d is a distance which induces the original topology on M . On every Rie-
mannian manifold there exists exactly one covariant derivation called Levi-Civita
connection denoted by ∇XY for any vector fields X,Y on M . We also recall that a
geodesic is a C∞ smooth path γ whose tangent is parallel along the path γ, that is,
γ satisfies the equation ∇dγ(t)/dtdγ(t)/dt = 0. Any path γ joining p and q in M such
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that L(γ) = d(p, q) is a geodesic and is called a minimal geodesic. The existence
theorem for ordinary differential equation implies that for every v ∈ TM , there
exists an open interval J(v) containing 0 and exactly one geodesic γ(v) : J(v) → M

with dγv(0)/dt = v. This implies that there is an open neighborhood T̃M of the

submanifold M of TM such that for every v ∈ T̃M , the geodesic γv(t) is defined for

|t| < 2. The exponential mapping exp : T̃M → M is then defined as exp(v) = Jv(1)

and the restriction of exp to a fiber TpM in T̃M is denoted by expp for every p ∈ M .
We use parallel transport of vectors along geodesic. Recall that for a given curve
γ : I → M , a number t0 ∈ I and a vector v0 ∈ Tγ(t0)M , there exists exactly one
parallel vector field V (t) along γ(t) such that V (t0) = v0. Moreover, the mapping
defined by v0 → V (t) is a linear isometry between the tangent spaces Tγ(t0)M and

Tγ(t)M for each t ∈ I. We denote this mapping by P t
t0,γ and we call it the parallel

translation from Tγ(t0)M to Tγ(t)M along the curve γ.
We recall that a finite dimensional Riemannian manifold is complete if its

geodesic are defined for any values of t. The Hopf-Rinow’s theorem asserts that if
the Riemannian manifold M is complete, then any pair of points in M can be joined
by a minimal geodesic segment.

Recall that a real-valued function f defined on a Riemannian manifold M
is said to satisfy a Lipschitz condition of rank K on a given subset S of M if
|f(x) − f(y)| ≤ Kd(x, y) for every x, y ∈ S, where d is the Riemannian distance
on M . A function f is said to be Lipschitz near x ∈ M if it satisfies the Lipschitz
condition of some rank on an open neighborhood of x. A function f is said to be
locally Lipschitz on M if f is Lipschitz near x for every x ∈ M .

Throughout this article, unless stated otherwise, we always suppose that M is
a Riemannian manifold and f : M → R is a given function.

Definition 2.1 ([36]). Let f be a locally Lipschitz on M . The generalized direc-
tional derivative f◦(y; v) of f at x ∈ M in the direction v ∈ TxM , denoted by
f◦(x; v), is defined as

f◦(x; v) = lim sup
y→x,t↓0

f ◦ φ−1(φ(y) + tdφ(x)(v))− f ◦ φ−1(φ(y))

t
,

where (φ,U) is a chart at x.

Definition 2.2 ([36]). Let f be a locally Lipschitz on M . The generalized gradient
(or Clarke subdifferential) of f at y ∈ M is the subset ∂cf(y) of TyM

∗ defined by

∂cf(y) = {ζ ∈ TyM
∗|f◦(y; v) ≥ ⟨ζ, v⟩, ∀v ∈ TyM},

It is worth mentioning that the Clarke subdifferential set ∂cf(y) is a nonempty
subset of TyM

∗ (see [14]).

Lemma 2.3 ([14, Lebourg’s Mean Value Theorem]). Let M be a finite dimensional
Riemannian manifold, x, y ∈ M and γ : [0, 1] → M be a smooth path joining x and
y. Let f be a Lipschitz function around γ[0, 1]. Then there exist 0 < t0 < 1 and
ξ ∈ ∂f(γ(t0)) such that

f(y)− f(x) = ⟨ξ, γ′(t0)⟩.
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Definition 2.4 ([29]). Let M be a Riemannian manifold and γ : [0, 1] → M be a
smooth curve on M such that γ(0) = y and γ(1) = x. Then γ is said to possess the
property (P) with respect to x, y ∈ M if

γ′(s)(t− s) = η(γ(t), γ(s)), ∀s, t ∈ [0, 1],

where η : M ×M → TM is a function satisfying η(x, y) ∈ TyM for every x, y ∈ M .

Definition 2.5. Let M be a Riemannian manifold and η : M × M → TM be
a mapping such that η(x, y) ∈ TyM for every x, y ∈ M . Then η is said to be
integrable if, for any x, y ∈ M , there exists a geodesic γ possessing the property (P)
with respect to x, y ∈ M .

Remark 2.6 ([6]). Let M be a Riemannian manifold and η : M × M → TM be
integrable. Then,

η(x, y) = η(γ(1), γ(0)) = γ′(0).

Moreover, one has

η(y, γ(s)) = −sγ′(s) = −sP s
0,γ [γ

′(0)] = −sP s
0,γ [η(x, y)]

and
η(γ(1), γ(s)) = (1− s)γ′(s) = (1− s)P s

0,γ [η(x, y)].

Now we present the following definitions.

Definition 2.7. Let f be locally Lipschitz on M and η : M × M → TM be a
mapping such that η(x, y) ∈ TyM for any x, y ∈ M . Then f is said to be

(i) invex (IX) with respect to η on M if, for any x, y ∈ K and ξ ∈ ∂cf(y),

f(x)− f(y) ≥ ⟨ξ, η(x, y)⟩y.(2.1)

(ii) strictly invex (SIX) on M w.r.t. η if inequality (2.1) is strict for all x, y ∈ M
with x ̸= y;

(iii) strongly invex (SGIX) w.r.t. η on M if there exists a constant α > 0 such
that, for any x, y ∈ M and ξ ∈ ∂cf(y),

f(x)− f(y) ≥ ⟨ξ, η(x, y)⟩y + α∥η(x, y)∥2y.
(iv) pseudoinvex (PIX) w.r.t. η on M if, for any x, y ∈ M and ξ ∈ ∂cf(y),

⟨ξ, η(x, y)⟩y ≥ 0 ⇒ f(x) ≥ f(y).

(v) strictly pseudoinvex (SPIX) w.r.t. η on M if, for all x, y ∈ M with x ̸= y
and ξ ∈ ∂cf(y),

⟨ξ, η(x, y)⟩y ≥ 0 ⇒ f(x) > f(y).

(vi) strongly pseudoinvex (SGPIX) w.r.t. η on M if there exists a constant α > 0
such that, for any x, y ∈ M and ξ ∈ ∂cf(y),

⟨ξ, η(x, y)⟩y ≥ 0 ⇒ f(x) ≥ f(y) + α∥η(x, y)∥2y.

Remark 2.8. (i) The notions of various types of invexity and pseudoinvexity
for differentiable functions on Riemannian manifolds were introduced by
Barani et al. [6].

(ii) The concepts given in Definition 2.7 are natural extension of those from
Euclidean spaces to Riemannian manifolds.
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Remark 2.9. By Definition 2.7, it is clear that SIX ⇒ SPIX, and

(SGIX) =⇒ (IX)

⇓ ⇓

(SGPIX)=⇒(PIX)

Definition 2.10. Let A : M → 2TM be a set-valued vector field such that A(x) ⊆
TxM for all x ∈ M . Then A is said to be

(i) invariant monotone (IM) on M w.r.t. η if

⟨u, η(x, y)⟩y + ⟨v, η(y, x)⟩x ≤ 0, ∀u ∈ A(y), ∀v ∈ A(x).(2.2)

(ii) strictly invariant monotone (SIM) w.r.t. η on M if inequality (2.2) is strict
for all x, y ∈ M with x ̸= y.

(iii) strongly invariant monotone (SGIM) w.r.t η on M if there exists a constant
α > 0 such that

⟨u, η(x, y)⟩y + ⟨v, η(y, x)⟩x ≤ −α(∥η(x, y)∥2y + ∥η(y, x)∥2x), ∀x, y ∈ M.

(iv) invariant pseudomonotone (IPM) on M w.r.t. η if, for any x, y ∈ M and
v ∈ A(x),

⟨v, η(y, x)⟩x ≥ 0 ⇒ ⟨u, η(x, y)⟩y ≤ 0, ∀u ∈ A(y).

(v) strictly invariant pseudomonotone on (SIPM)M w.r.t. η if, for any x, y ∈ M
with x ̸= y and any v ∈ A(x),

⟨v, η(y, x)⟩x ≥ 0 ⇒ ⟨u, η(x, y)⟩y < 0, ∀u ∈ A(y).

(vi) strongly invariant pseudomonotone (SGIPM) on M w.r.t. η if, for any
x, y ∈ M and v ∈ A(x),

⟨v, η(y, x)⟩x ≥ 0 ⇒ ⟨u, η(x, y)⟩y ≤ −α∥η(x, y)∥2y, ∀u ∈ A(y).

Remark 2.11. (i) Barani et al. [6] presented the notions of several sorts of
invariant monotonicity and invariant pseudomonotonicity for all univalued
vector fields on Riemannian manifolds.

(ii) The concepts given in Definition 2.10 also extend the corresponding ones in
Euclidean spaces.

Remark 2.12. By Definition 2.10, we have the following implications:

(SGIM) =⇒ (IM)

⇓ ⇓

(SGPIM)=⇒(IPM)

3. Main Results

In this section, we establish some connections between the generalized invexity
for locally Lipschitz functions and the generalized invariant monotonicity for set-
valued vector fields on Riemannian manifolds.
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Theorem 3.1. Let M be a Riemannian manifold and f locally Lipschitz on M . If
f is (strongly, strictly) invex w.r.t. η on M , then ∂cf is (strongly, strictly) invariant
monotone w.r.t. η on M .

Proof. We prove only the assertion strongly and with α = 0 and by replacing ≤ and
≥ by < and >, the other cases can be proved similarly. Suppose that f is strongly
invex w.r.t. η on M with a constant α > 0. For any given x, y ∈ M , it follows from
the strong invexity of f that

f(x)− f(y) ≥ ⟨ξ, η(x, y)⟩y + α∥η(x, y)∥2y, ∀ξ ∈ ∂cf(y)

and
f(y)− f(x) ≥ ⟨γ, η(y, x)⟩x + α∥η(y, x)∥2x, ∀γ ∈ ∂cf(x).

By adding the above two inequalities, we have

⟨ξ, η(x, y)⟩y + ⟨γ, η(y, x)⟩x ≤ −α(∥η(y, x)∥2x + ∥η(x, y)∥2y).
Thus the conclusion follows. □
Theorem 3.2. Let M be a finite dimensional Riemannian manifold and f locally
Lipschitz on M . Suppose that η : M ×M → TM is integrable. If ∂cf is (strongly,
strictly) invariant monotone w.r.t. η on M , then f is (strongly, strictly) invex w.r.t.
η on M .

Proof. We prove only the assertion strongly and with α = 0 and by replacing ≥
and ≤ by > and <, the other cases can be proved similarly. Let ∂cf be strongly
invariant monotone w.r.t. η on M with constant α > 0. For any given x, y ∈ M ,
since η is integrable, there exists a geodesic γ : [0, 1] → M possessing property (P)
such that γ(0) = y and γ(1) = x. Now define a geodesic β : [0, 1] → M as

β(s) = γ(s+ (1− s)t), ∀s ∈ [0, 1].

It follows from Lemma 2.3 that there exist l ∈ (t, 1) and ξ ∈ ∂cf(β(l)) such that

f(x)− f(γ(t)) = ⟨ξ, β′(l)⟩β(l) = (1− t)⟨ξ, γ′(a)⟩z1 ,(3.1)

where a = l + (1− l)t > t and z1 = β(l) = γ(a).
Similarly, if we consider the geodesic θ : [0, 1] → M defined by

θ(s) = γ(st), ∀s ∈ [0, 1],

then Lemma 2.3 implies that there exist h ∈ (0, t) and ζ ∈ ∂cf(θ(h)) such that

f(γ(t))− f(y) = ⟨ζ, θ′(h)⟩θ(h) = t⟨ζ, γ′(b)⟩z2 ,(3.2)

where b = ht < t and z2 = γ(b) = θ(h).
Since ∂cf is strongly invariant monotone, we know that, for ξ ∈ ∂cf(z1) and

any ϑ ∈ ∂cf(y),

⟨ξ, η(y, z1)⟩z1 + ⟨ϑ, η(z1, y)⟩y ≤ −α(∥η(y, z1)∥2z1 + ∥η(z1, y)∥2y).(3.3)

By property (P), Remark 2.6 and the parallel translation, one has

η(y, z1) = η(γ(0), γ(a)) = −aγ′(a) = −aP a
0,γ [η(x, y)](3.4)

and

η(z1, y) = aη(x, y).(3.5)
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It follows from (3.3)-(3.5) that

⟨ξ,−P a
0,γ [η(x, y)]⟩z1 + ⟨ϑ, η(x, y)⟩y ≤ −αa(∥P a

0,γ [η(x, y)]∥2z1 + ∥η(x, y)∥2y)
and so

−⟨ξ, P a
0,γ [η(x, y)]⟩z1 + ⟨ϑ, η(x, y)⟩y ≤ −2aα∥η(x, y)∥2y.

Since P a
0,γ [η(x, y)] = γ′(a), we get

⟨ξ, γ′(a)⟩z1 ≥ ⟨ϑ, η(x, y)⟩y + 2aα∥η(x, y)∥2y.(3.6)

Similarly, we can show that

⟨ζ, γ′(b)⟩z2 ≥ ⟨ϑ, η(x, y)⟩y + 2bα∥η(x, y)∥2y.(3.7)

It follows from (3.1), (3.2), (3.6) and (3.7) that

f(x)− f(γ(t)) ≥ (1− t)⟨ϑ, η(x, y)⟩y + 2(1− t)aα∥η(x, y)∥2y
and

f(γ(t))− f(y) ≥ t⟨ϑ, η(x, y)⟩y + 2tbα∥η(x, y)∥2y.
By adding the above two inequalities, for any ϑ ∈ ∂cf(y),

f(x)− f(y) ≥ ⟨ϑ, η(x, y)⟩y + 2α[(1− t)a+ tb]∥η(x, y)∥2y
≥ ⟨ϑ, η(x, y)⟩y + 2αb∥η(x, y)∥2y
= ⟨ϑ, η(x, y)⟩y + 2αht∥η(x, y)∥2y
> ⟨ϑ, η(x, y)⟩y + 2αh2∥η(x, y)∥2y.

Thus, f is strongly invex. This completes the proof. □
Theorem 3.3. Let M be a finite dimensional Riemannian manifold and f locally
Lipschitz w.r.t. η on M . Suppose that η is integrable. Then ∂cf is strictly invariant
pseudomonotone w.r.t. η on M if and only if f is strictly pseudoinvex w.r.t. η.

Proof. Suppose that f is strictly pseudoinvex w.r.t. η on M . Let x, y ∈ M with
x ̸= y and ξ ∈ ∂cf(y) such that

⟨ξ, η(x, y)⟩y ≥ 0.

Then the strict pseudoinvexity of f implies that

f(x) > f(y).(3.8)

We need to show that ⟨ζ, η(y, x)⟩x < 0 for all ζ ∈ ∂cf(x). Assume that
⟨ζ0, η(y, x)⟩x ≥ 0 for some ζ0 ∈ ∂cf(x). Then the strict pseudoinvexity of f yields
that f(y) > f(x), which contradicts (3.8).

Conversely, suppose that ∂cf is strictly invariant pseudomonotone w.r.t. η on
M . Let x, y ∈ M with x ̸= y and ξ ∈ ∂cf(y) such that

⟨ξ, η(x, y)⟩y ≥ 0.(3.9)

Since η is integrable, there exists a geodesic γ : [0, 1] → M possessing property (P)
such that γ(0) = y and γ(1) = x. We need to show that f(x) > f(y). Assume
that f(x) ≤ f(y). Then it follows from Lemma 2.3 that there exists t0 ∈ (0, 1) and
ζ ∈ ∂cf(γ(t0)) such that

f(x)− f(y) = ⟨ζ, γ′(t0)⟩γ(t0) ≤ 0.
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This together with property (P) implies that

⟨ζ, γ′(t0)⟩γ(t0) = − 1

t0
⟨ζ, η(y, γ(t0)⟩γ(t0) ≤ 0

and so

⟨ζ, η(y, γ(t0))⟩γ(t0) ≥ 0, ζ ∈ ∂cf(γ(t0)).(3.10)

Since ∂cf is strictly invariant pseudomonotone, from (3.10), one has

⟨ξ, η(γ(t0), y)⟩y < 0, ∀ ξ ∈ ∂cf(y).

By property (P), we conclude that

⟨ξ, t0γ′(0)⟩y = t0⟨ξ, η(x, y)⟩y < 0, ∀ ξ ∈ ∂cf(y),

which contradicts (3.9). This completes the proof. □

Theorem 3.4. Let M be a finite dimensional Riemannian manifold and f locally
Lipschitz on M . Suppose that η is integrable. If ∂cf is strongly invariant pseu-
domonotone w.r.t. η on M , then f is strongly pseudoinvex w.r.t. η on M .

Proof. Let x, y ∈ M and ξ ∈ ∂cf(y) such that

⟨ξ, η(x, y)⟩y ≥ 0.(3.11)

Then exists a geodesic γ : [0, 1] → M possessing property (P) such that γ(0) = y,
γ(1) = x. Let β : [0, 1] → M be defined as

β(s) = γ(st+ (1− s)t), ∀s ∈ [0, 1].

Then Lemma 2.3 shows that there exist l ∈ (t, 1) and ζ1 ∈ ∂cf(β(l)) such that

f(x)− f(γ(t)) = ⟨ζ1, β′(l)⟩β(l) = (1− t)⟨ζ1, γ′(a)⟩z1 ,(3.12)

where a = l + (1 − l)t > t and z1 = β(l) = γ(a). Moreover, let θ : [0, 1] → M be
defined as

θ(s) = γ(st), ∀s ∈ [0, 1].

Then it follows from Lemma 2.3 that there exist h ∈ (0, t) and ζ2 ∈ ∂cf(θ(h)) such
that

f(γ(t))− f(y) = ⟨ζ2, θ′(h)⟩θ(h) = t⟨ζ2, γ′(b)⟩z2 ,(3.13)

where b = ht < t and z2 = γ(ht) = θ(h).
Now from (3.12), (3.13) and the property (P), one has

f(x)− f(γ(t)) = −1− t

a
⟨ζ1, η(y, z1)⟩z1 , ζ1 ∈ ∂cf(z1)(3.14)

and

f(γ(t))− f(y) = − t

b
⟨ζ2, η(y, z2)⟩z2 , ζ2 ∈ ∂cf(z2).(3.15)

Again, the property (P) together with (3.11) yields that

0 ≤ ⟨ξ, η(x, y)⟩y =
1

a
⟨ξ, η(z1, y)⟩y =

1

b
⟨ξ, η(z2, y)⟩y.(3.16)
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Since ∂cf is strongly invariant monotone on M w.r.t. η, it follows from (3.16) and
property (P) that

⟨ζ1, η(y, z1)⟩z1 ≤ −α∥η(y, z1)∥2z1
= −α

∥∥−aP a
0,γ [η(x, y)]

∥∥2
z1

= −αa2∥η(x, y)∥2y(3.17)

and

⟨ζ2, η(y, z2)⟩z2 ≤ −α∥η(y, z2)∥2z2

= −α
∥∥∥−bP b

0,γ [η(x, y)]
∥∥∥2
z2

= −αb2∥η(x, y)∥2y.(3.18)

By (3.14), (3.15), (3.17) and (3.18), one has

f(x)− f(y) ≥ [(1− t)αa+ tαb]∥η(x, y)∥2y
> αb∥η(x, y)∥2y
= αht∥η(x, y)∥2y
> αh2∥η(x, y)∥2y.

This completes proof. □
Theorem 3.5. Let M be a finite dimensional Riemannian manifold and f locally
Lipschitz on M . Suppose that η is integrable. If ∂cf is invariant pseudomonotone,
then for any x, y ∈ M ,

f(x) ≤ f(y) =⇒ f(γ(t)) ≤ f(y), ∀t ∈ [0, 1](3.19)

and

f(x) < f(y) =⇒ f(γ(t)) < f(y), ∀t ∈ [0, 1],(3.20)

where γ : [0, 1] → M is a smooth path joining y and x.

Proof. For any given x, y ∈ M , since η is integrable, there exists a geodesic γ :
[0, 1] → M possessing property (P) such that γ(0) = y and γ(1) = x. If (3.19) does
not hold, then there exists t̄ ∈ (0, 1) such that

f(γ(t̄)) > f(y) ≥ f(x).(3.21)

Define β : [0, 1] → M as

β(s) = γ(st̄), ∀s ∈ [0, 1].

Then by Lemma 2.3, there exist l ∈ (0, t̄) and ξ ∈ ∂cf(β(l)) such that

f(γ(t̄))− f(y) = t̄⟨ξ, γ′(a)⟩z1 ,(3.22)

where a = lt̄ < t̄ and z1 = γ(a) = β(l). Similarly, define θ : [0, 1] → M as

θ(s) = γ((1− s)t̄+ s), ∀s ∈ [0, 1].

Then it follows from Lemma 2.3 that there exist h ∈ (t̄, 1) and ζ ∈ ∂cf(θ(h)) such
that

f(x)− f(γ(t̄) = (1− t̄)⟨ζ, γ′(b)⟩z2 ,(3.23)
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where b = (1− h)t̄+ h > t̄ and z2 = γ(b) = θ(h).
On the other hand, property (P) implies that

⟨ξ, η(γ(b), γ(a))⟩γ(a) = (b− a)⟨ξ, γ′(a)⟩γ(a)
and

⟨ζ, η(γ(a), γ(b))⟩γ(b) = (a− b)⟨ζ, γ′(b)⟩γ(b).
This together with (3.21)-(3.23) yields

⟨ξ, η(γ(b), γ(a))⟩γ(a) > 0, ξ ∈ ∂cf(γ(a))

and

⟨ζ, η(γ(a), γ(b))⟩γ(b) > 0, ζ ∈ ∂cf(γ(b)),

which contradicts the invariant pseudomonotonicity of ∂cf w.r.t. η on M , and so
(3.19) holds. Similarly, we can show that (3.20) holds. This completes the proof. □

Remark 3.6. (i) Theorems 3.1-3.4 generalize and improve Theorems 4.1, 4.2,
5.1 and 5.2 of Barani [6] from smooth cases to nonsmooth ones.

(ii) Theorems 3.1 and 3.2 also generalize Theorem 4.3 in [5], in which the con-
vexity of f was replaced by invexity of f .

4. Applications to the vector variational-like inequality and vector
optimization

In this section, we give some relationships between vector variational-like in-
equalites involving Clarke subdifferential and nonsmooth vector optimization on
Riemannian manifolds.

Let M be a Riemannian manifold, f : M → Rp be a vector-valued function,
and η : M × M → TM be a given mapping. We consider the following vector
optimization problem:

(VOP) min f(x) = (f1(x), · · · , fp(x)),

s.t. x ∈ M.

Definition 4.1. [2] A point x̄ ∈ M is said to be an efficient (or Pareto) solution
(respectively, weak efficient solution) of (VOP) if

f(y)− f(x̄) = (f1(y)− f1(x̄), . . . , fp(y)− fp(x̄)) /∈ −Rp
+\{0}, ∀y ∈ M

(respectively, f(y)− f(x̄) = (f1(y)− f1(x̄), . . . , fp(y)− fp(x̄)) /∈ −intRp
+, ∀y ∈ M),

where Rp
+ is the nonnegative orthant of Rp.

It is clear that every efficient solution is a weakly efficient solution. For further
details on vector optimization theory, we refer to [2, 17, 23, 32] and the references
therein.

We now consider the following two types of generalized VVLI problems:

(I) generalized Minty vector variational-like inequality problem (GMVVLIP):
find x ∈ M such that for any y ∈ M , there exist ξi ∈ ∂cfi(y) with i ∈ J =
{1, . . . , p} satisfying

(⟨ξ1, η(x, y)⟩y, . . . , ⟨ξp, η(x, y)⟩y) /∈ Rp
+\{0}.
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(II) generalized Stampacchia vector variational-like inequality problem
(GSVVLIP): find x ∈ M and ξi ∈ ∂cfi(x) with i ∈ J = {1, . . . , p} such that,
for all y ∈ M ,

(⟨ξ1, η(y, x)⟩x, . . . , ⟨ξp, η(y, x)⟩x) /∈ −Rp
+\{0}.

Theorem 4.2. Let M be a finite dimensional Riemannian manifold. For each
i ∈ J , let fi be locally Lipschitz on M . Suppose that η is integrable and ∂cfi is
invariant pseudomonotone w.r.t. η on M for all i ∈ J . If x ∈ M is a solution of
(GMVVLIP), then it is an efficient solution for (VOP). Moreover, if ∂cfi is strictly
invariant pseudomonotone with respect to η on M for all i ∈ J , and x is a weakly
efficient solution of (VOP), then it is also a solution of (GMVVLIP).

Proof. We show taht x is an efficient solution of (VOP). Suppose not. Then there
exists y ∈ M such that

f(y)− f(x) = (f1(y)− f1(x), . . . , fp(y)− fp(x)) ∈ −Rp
+ \ {0},

that is,
fi(x) ≥ fi(y), ∀i ∈ J

with strict inequality holding for some k ∈ J . Since η is integrable, there exists a
geodesic γ possessing property (P) such that γ(0) = x and γ(1) = y . It follows
from Theorem 3.5 that

fi(γ(t)) ≤ fi(x), ∀t ∈ [0, 1](4.1)

with strict inequality holding for some k ∈ J . For any given t ∈ [0, 1], define
β : [0, 1] → M as

β(s) = γ(st), ∀ s ∈ [0, 1].

Then Lemma 2.3 shows that there exist li ∈ (0, t) and ξi ∈ ∂cfi(β(li)) such that

fi(γ(t))− fi(x) = ⟨ξi, β′(li)⟩β(li) = t⟨ξi, γ′(ai)⟩zi ,(4.2)

where ai = lit < t and zi = γ(ai). It follows from (4.1) and (4.2) that

⟨ξi, γ′(ai)⟩zi ≤ 0, i ∈ J, ξi ∈ ∂cfi(zi))(4.3)

with strict inequality holding for some k ∈ J . Choosing t0 ∈ (0, 1) such that t0 < ai
for all i ∈ J . By property (P), one has

η(γ(t0), γ(ai)) = (t0 − ai)γ
′(ai)(4.4)

and

η(γ(ai), γ(t0)) = (ai − t0)γ
′(t0)(4.5)

By (4.3) and (4.4), for all i ∈ J , we deduce that

⟨ξi, η(γ(t0), γ(ai))⟩zi ≥ 0, ξi ∈ ∂cfi(zi), i ∈ J\{k}
and

⟨ξk, η(γ(t0), γ(ak))⟩zk > 0(4.6)

with some ξk ∈ ∂cfk(γ(ak)). Since each ∂cfi (i ∈ J) is invaraint pseudomonotone
with respect to η, we have

⟨ζi, η(γ(ai), γ(t0))⟩γ(t0) ≤ 0, ∀ζi ∈ ∂cfi(γ(t0)), i ∈ J\{k}(4.7)
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and

⟨ζk, η(γ(ak), γ(t0))⟩γ(t0) < 0, ∀ζk ∈ ∂cfk((γ(t0)).(4.8)

If (4.8) does not hold, then there exists ζk0 ∈ ∂cfk((γ(t0)) such that

⟨ζk0 , η(γ(ak), γ(t0))⟩γ(t0) ≥ 0.

By using the invariant pseudomonotonicity of ∂cfk (k ∈ J) again, we get

⟨ξk, η(γ(t0), γ(ak))⟩zk ≤ 0, ∀ξk ∈ ∂cfk((γ(ai)),

which contradicts (4.6). This shows that (4.8) is true. Noting that

η(x, γ(t0)) = (−t0)γ
′(t0),

it follows from (4.5), (4.7) and (4.8) that

⟨ξi, η(x, γ(t0))⟩γ(t0) ≥ 0, ∀ ξi ∈ ∂cfi(γ(t0)), i ∈ J\{k}

with strict inequality holding for some k ∈ J . That is, for all ξi ∈ ∂cfi(γ(t0)), i ∈ J ,

(⟨ξ1, η(x, γ(t0))⟩γ(t0), . . . , ⟨ξp, η(x, γ(t0))⟩γ(t0)) ∈ Rp
+\{0}.

This contradicts the fact that x is a solution of (GMVVLIP).
Moreover, assume that x is a weakly efficient solution of (VOP). We show that

x is also a solution of (GMVVLIP). Suppose not. Then there exists y ∈ K such
that, for any ξi ∈ ∂cfi(y) with i ∈ J ,

⟨ξi, η(x, y)⟩y ≥ 0

with strict inequality holding for some k ∈ J . This shows that x ̸= y. Since ∂cfi is
strictly invariant pseudomonotone, from Theorem 3.3, we know that, fi is strictly
pseudoinvex for all i ∈ J and so

fi(x) > fi(y), ∀i ∈ J,

that is,

f(y)− f(x) = (f1(y)− f1(x), . . . , fp(y)− fp(x)) ∈ −intRp
+,

which contradicts the fact that x is a weakly efficient solution of (VOP). This
completes the proof. □

Since strictly invariant pseudomonotone implies invariant pseudomonotone and
an efficient solution for (VOP) is a weakly efficient solution, from Theorems 3.3 and
4.2, it is easy to have the following result.

Theorem 4.3. Let M be a finite dimensional Riemannian manifold. For each
i ∈ J , assume that fi is locally Lipschitz on M . Suppose that η is integrable and
∂cfi is strictly invariant pseudomonotone (or fi is strictly pseudoinvex) w.r.t. η on
M for each i ∈ J . Then x ∈ M is a solution of (GMVVLIP) if and only if it is a
weakly efficient solution for (VOP).

Theorem 4.4. Let M be a Riemannian manifold. For each i ∈ J , assume that fi
is locally Lipschitz on M . Suppose that ∂cfi is invariant pseudomonotone w.r.t. η
on M for each i ∈ J . If x ∈ M is a solution of (GSVVLIP), then it is a solution
of (GMVVLIP).
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Proof. Let x ∈ M be a solution of (GSVVLIP). We show that x is also a solution of
(GMVVLIP). Suppose not. Then there exists y ∈ M such that, for all ξi ∈ ∂cfi(y)
with i ∈ J ,

(⟨ξ1, η(x, y)⟩y, . . . , ⟨ξp, η(x, y)⟩y) ∈ Rp
+\{0},

or equivalently,

⟨ξi, η(x, y)⟩y ≥ 0, i ∈ J

with strict inequality holds for some k ∈ J . Since ∂cfi is invariant pseudomonotone
w.r.t. η on M for each i ∈ J , we have

⟨ζi, η(y, x)⟩x ≤ 0, ∀ ζi ∈ ∂cfi(x), i ∈ J

with strict inequality holds for some k ∈ J . It follows that

(⟨ζ1, η(y, x)⟩x, . . . , ⟨ζp, η(y, x)⟩x) ∈ −Rp
+\{0},

which contradicts the fact that x is a solution of (GSVVLIP). This completes the
proof. □

Next we consider the following weak forms of (GSVVLIP) and (GMVVLIP).

(I) generalized weak Minty vector variational-like inequality problem
(GWMVVLIP): find x ∈ M such that, for any y ∈ M , there exist ξi ∈
∂cfi(y) with i ∈ J satisfying

(⟨ξ1, η(x, y)⟩y, . . . , ⟨ξp, η(x, y)⟩y) /∈ intRp
+.

(II) generalized weak Stampacchia vector variational-like inequality problem
(GWSVVLIP): find x ∈ M and ξi ∈ ∂cfi(x) with i ∈ J such that, for all
y ∈ M ,

(⟨ξ1, η(y, x)⟩x, . . . , ⟨ξp, η(y, x)⟩x) /∈ −intRp
+.

Theorem 4.5. Let M be a Riemannian manifold. For each i ∈ J , assume that
∂cfi is strictly invariant pseudomonotone w.r.t. η on M . If x ∈ M is a solution of
(GWSVVLIP), then it is a solution of (GWMVVLIP).

Proof. Let x ∈ M be a solution of (GWSVVLIP). If x is not a solution of
(GWMVVLIP), then there exists y ∈ M such that, for any ξi ∈ ∂cfi(y) with i ∈ J ,

(⟨ξ1, η(x, y)⟩y, . . . , ⟨ξp, η(x, y)⟩y) ∈ intRp
+,

or equivalently,

⟨ξi, η(x, y)⟩y > 0, ∀i ∈ J.

Since ∂cfi is strictly invariant pseudomonotone w.r.t. η on M , one has

⟨ζi, η(y, x)⟩x < 0, ∀ζi ∈ ∂cfi(x), i ∈ J,

which contradicts the fact that x is a solution of (GWSVVLIP). This completes the
proof. □

Theorem 4.6. Let M be a Riemannian manifold. For each i ∈ J , assume that
fi is locally Lipschitz and pseudoinvex w.r.t. η on M . If x ∈ M is a solution of
(GWSVVLIP), then it is a weakly solution of (VOP).
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Proof. Suppose that x ∈ M is a solution of (GWSVVLIP). We show that x is a
weakly efficient solution of (VOP). Suppose not. Then there exists y ∈ M such that

(f1(y)− f1(x), . . . , fp(y)− fp(x)) ∈ −intRp
+,

or equivalently,

fi(y) < fi(x), ∀i ∈ J.(4.9)

Now the pseudoinvexity of fi with i ∈ J implies that

⟨ξi, η(y, x)⟩x < 0, ∀ξi ∈ ∂cfi(x).(4.10)

In fact, if there exist i0 ∈ J and ξi0 ∈ ∂cfi0(x) such that ⟨ξi0 , η(y, x)⟩x ≥ 0, then the
pseudoinvexity of fi0 implies that

fi0(y) ≥ fi0(x),

which is a contradiction with (4.9). Thus, we know that (4.10) is true and so

(⟨ξ1, η(y, x)⟩x, . . . , ⟨ξp, η(y, x)⟩x) ∈ −intRp
+,

which contradicts the fact that x is a solution of (GWSVVLIP). This completes the
proof. □

Theorem 4.7. Let M be a Riemannian manifold. For each i ∈ J , assume that fi
is locally Lipschitz and strictly pseudoinvex w.r.t. η on M . If x ∈ M is a weakly
solution of (VOP), then it is a solution of (GWMVVLIP).

Proof. We show that x ∈ M is a solution of (GWMVVLIP). Suppose not. Then
there exists y ∈ M such that, for any ξi ∈ ∂Cfi(y) with i ∈ J ,

(⟨ξi, η(x, y)⟩y, . . . , ⟨ξp, η(x, y)⟩y) ∈ intRp
+,

or equivalently,

⟨ξi, η(x, y)⟩y > 0, ∀i ∈ J.

This shows that x ̸= y. Since fi is strictly pseudoinvex w.r.t. η on M , we know
that fi(x) > fi(y) and so

(f1(y)− f1(x), . . . , fp(y)− fp(x)) ∈ −intRp
+,

which contradicts that x is a weakly efficient solution of (VOP). This completes the
proof. □
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