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WEAK AND STRONG CONVERGENCE OF ALGORITHMS FOR
THE SUM OF TWO ACCRETIVE OPERATORS WITH
APPLICATIONS

BUTHINAH A. BIN DEHAISH, XIAOLONG QIN*, ABDUL LATIF,
AND HUDA O. BAKODAH

ABSTRACT. Zeros of sums of two accretive operators are investigated. Weak and
strong convergence theorems are established in real uniformly smooth Banach
spaces. An application is also considered in the framework of Banach spaces.

1. INTRODUCTION

Given a nonempty closed and convex subset C' of a Hilbert space H and a maximal
monotone operator T : C' — 29 the corresponding zero problem of the operator
T is to find £ € C such that 0 € Tz. A classical method for solving the problem
is the proximal point algorithm, proposed by Martinet [20,21] and generalized by
Rockafellar [30,31]. In the case of T = A + B, where A and B are monotone
operators, the problem is reduced to as follows:

(1.1) find € C such that 0 € (A + B)z.

The solution set of (1.1) is denoted by (A + B)~1(0). In this paper, we will focus
our attention on problem (1.1), which is very general in the sense that it includes,
as special cases, convexly constrained linear inverse problems, split feasibility prob-
lem, convexly constrained minimization problems, fixed point problems, variational
inequalities, Nash equilibrium problem in noncooperative games and others; see, for
instance, [3,8,11,25,34,36] and the references therein. Because of their importance,
forward-backward splitting methods, which were proposed by Lions and Mercier
[17], by Passty [24], and, in a dual form for convex programming, by Han and
Lou [14], for solving (1.1) have been studied extensively recently; see, for instance,
[10,19,23,26,27,33] and the references therein. There is, however, little work in the
existing literature in the setting of Banach spaces.

The aim of this paper is to present two forward-backward splitting methods for
solving (1.1) in the framework of Banach spaces. Our ideas are mainly inspired by
[1,15], where the methods for finding solutions of variational inequalities are con-
structed in the framework of Banach spaces. In contrast with [1], where only weak
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convergence is obtained, in our results here we give weak and strong convergence of
the two algorithms.

The paper is organized in the following way. In Section 2, we present the pre-
liminaries that are needed in our work. In Section 3, we present two algorithms
for solving (1.1). Convergence analysis of the algorithms are investigated. As an
application of the main results, a fixed point problem of strictly pseudocontractive
mappings is investigated in the framework of Banach spaces.

2. PRELIMINARIES

Let E be a real Banach space with the dual E*. Given of continuous strictly
increasing function: ¢ : R* — R*, where R™ denotes the set of nonnegative real
numbers, such that ¢(0) = 0 and lim,_,o, ¢(r) = oo, we associate with it a (possibly
mutivalued) generalized duality map J, : E — 2F7, defined as J,(z) : {z* € E* :
z*(z) = ||lzlle(||z]), [|z*]| = ¢(]|z|])}, V& € E. In this paper, we use the generalized
duality map associated with the gauge function ¢(t) = t4~! for ¢ > 1,

Jg:{z" € B* (o, 2) = |||, ||l=*|| = |||}, Va e E.

Let Ug = {x € E: ||z|| = 1}. The norm of F is said to be Gateaux differentiable
if the limit lim;_q w exists for each x,y € Ug. In this case, F is said to be
smooth. The norm of F is said to be uniformly Gateaux differentiable if for each
y € Ug, the limit is attained uniformly for all x € Ug. The norm of FE is said to
be Fréchet differentiable if for each z € Ug, the limit is attained uniformly for all
y € Ug. The norm of F is said to be uniformly Fréchet differentiable if the limit is
attained uniformly for all z,y € Ug.

Let pg : [0,00) — [0,00) be the modulus of smoothness of E by
[z +yll = ll=z = yll

pE(t) = sup{ 5

A Banach space FE is said to be uniformly smooth if pET(t) —0ast— 0. Let ¢ > 1.
E is said to be g-uniformly smooth if there exists a fixed constant ¢ > 0 such that
pe(t) < ct?. Tt is known that E is uniformly smooth if and only if the norm of E is
uniformly Fréchet differentiable. If E is g-uniformly smooth, then ¢ < 2 and F is
uniformly smooth, and hence the norm of E is uniformly Fréchet differentiable, in
particular, the norm of F is Fréchet differentiable.

The modulus of convexity of E is the function dg(e) : (0,2] — [0, 1] defined by
dp(e) = inf{l — Hx%“' Szl = Jlyll = 1, ||z — y|| > €}. Recall that E is said to be
uniformly convex if dg(e) > 0 for any € € (0,2]. Let p > 1. We say that E is
p-uniformly convex if there exists a constant ¢, > 0 such that g (e) > cpeP for any
e € (0,2].

Typical examples of both uniformly convex and uniformly smooth Banach spaces
are Ly, where p > 1. To be more precise, L, is mini{p, 2}-uniformly smooth for
every p > 1. It is known that F is p-uniformly convex if and only if E* is g-uniformly
smooth, where * + 1 =1.

Let D be a nonempty subset of C. Let Projp : C — D be a mapping. Projp :
C — D is said to be

(1) contraction if Proj% = Projp;

—1:2e€Ug,|ly| <t}



THE SUM OF TWO ACCRETIVE OPERATORS 1323

(2) sunny if for each z € C and t € (0,1), we have Projp (tx+(1—t)Projpz) =
Projpx;

(3) sunny nonexpansive retractction if Projp is sunny, nonexpansive and a con-
traction.

D is said to be a nonexpansive retract of C if there exists a nonexpansive re-
traction from C onto D. The following result, which was established in [6, 13, 29],
describes a characterization of sunny nonexpansive retractions on a smooth Banach
space.

Let E be a smooth Banach space and let C' be a nonempty subset of E. Let
Projc : E — C be a retraction and J be the normalized duality mapping on E.
Then the following are equivalent:

(1) Projc is sunny and nonexpansive;

(2) [|Projox — Projeyl® < (x — y,J(Projcx — Projcy)), Va,y € E;

(3) (x — Projcx,J(y — Projcx)) <0,Vx € E, y € C.

It is well known that if E' is a Hilbert space, then a sunny nonexpansive retraction
Projc is coincident with the metric projection from E onto C'. Let C be a nonempty
closed convex subset of a smooth Banach space F, let x € E and let g € C. Then
we have from the above that g = Projcx if and only if (x — xo, J(y — o)) < 0 for
all y € C, where Projc is a sunny nonexpansive retraction from E onto C.

Let T : C — C be a mapping. The fixed point set of T" is denoted by F(T).
Recall that T is said to be x-contractive if there exists a constant £ € (0,1) such
that

[Tz =Ty < kllz,yll, Va,yeC.
T is said to be nonexpansive if
[Tz =Tyl < llz,yll, Va,yeC.

T is said to be k-strictly pseudocontractive if there exists a constant x € (0, 1) such
that

(Te = Ty,jg(x —y)) < |z =yl = &ll(x = Tx) = (y = Ty, Vo,yeC

for some j,(z — y) € Jq(x — y). It is clear that the above inequality is equivalent to
the following

((z =Tz) = (y = Ty),ig(z —y)) = &ll(x = Tz) = (y = Ty, Vo,ycC

It is known that k-strictly pseudocontractive mappings are Lipschitz continuous.
We also remark here that the class of mapping was first introduced by Browder and
Petryshyn [4] in Hilbert spaces. T is said to be pseudocontractive if

(Tx —Ty,jq(x —y)) < |lz—y|% Vz,yel

for some jo(z —y) € Jq(x — y).

Let I denote the identity operator on E. An operator A C E x E with domain
D(A) = {z € E: Az # (0} and range R(A) = U{Az : z € D(A)} is said to be
accretive if, for ¢ > 0 and =,y € D(A),

[z =yl <llz —y+tu—0o)], YueAr,ve Ay
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It follows from Kato [16] that A is accretive if and only if, for x,y € D(A), there
exists jq(x1 — x2) such that

(1 —v,jg(x — y)) > 0.

An accretive operator A is said to be m-accretive if R(I +rA) = E for all » > 0.
In a real Hilbert space, an operator A is m-accretive if and only if A is maximal
monotone. In this paper, we use A71(0) to denote the set of zeros of A.

For an accretive operator A, we can define a nonexpansive single valued mapping
Jr i R(I+rA) — D(A) by J. = (I + rA)~! for each r > 0, which is called the
resolvent of A.

Recall that a single valued operator A : C' — E is said to be a-inverse strongly
accretive if there exists a constant o > 0 and some j,(x — y) € Jq(z — y) such that

(Ax — Ay, jq(z —y)) > af|Az — Ay||4, Vz,y e C.
In order to obtain our main results, we also need the following lemmas.

The following lemmas are trivial.

Lemma 2.1. Let E be a real Banach space and let C' be a nonempty closed and
convex subset of E. Let A: C — E be a single valued operator and let B : E — 2F
be an m-accretive operator. Then

F(Jo(I = ad)) = (A+ B)~(0),
where Jo(I — aA) is the resolvent of B for a > 0.

Lemma 2.2. Let {a,} and {b,} be two nonnegative sequences satisfying the fol-
lowing condition:

ant1 < ap + bp, VN 2> ng,
where ng is some nonnegative integer, 22021 by, < 0o. Then the limit lim,,_oo ap,
exists.

Lemma 2.3 ([35]). Let E be a real q-uniformly smooth Banach space. Then the
following inequality holds:
[l +yl|” < llz[|” + q(y, Jq(z +y))
and
[l +yll* < llzll* + ¢y, Jq(2)) + Kollyll?,  Va,y € E,
where K, is some fized positive constant.
Lemma 2.4 ([35]). Letp > 1 and r > 0 be two fized real numbers. Then a Banach
space E is uniformly convex if and only if there exists a continuous strictly increasing
convez function ¢ : [0,00) — [0,00) with ¢(0) = 0 such that
laz + (1 — a)yll” < allz[P + (1 = a)[y||” — (a"(1 = a) + (1 — a)Pa) ¢(|lz — y])),
for all z,y € B,(0) :=={x € E: ||z|| <r} and a € [0,1].
Lemma 2.5 ([7]). Let E be a real uniformly convex Banach space and let C be a

nonempty closed convexr and bounded subset of E. Then there is a strictly increasing
and continuous convex function v : [0,00) — [0,00) with ©(0) = 0 such that, for
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every Lipschitzian continuous mapping T : C — C and, for all x,y € C and
t € [0, 1], the following inequality holds:

IT(tz + (1= t)y) — (tTz + (1= )Ty)| < Ly~ (= — yl| = L7 Tz — Tyl)),
where L > 1 is the Lipschitz constant of T.

Lemma 2.6 ([5]). Let E be a real uniformly convexr Banach space, C' a nonempty
closed, and convex subset of E and T : C' — C a nonexpansive mapping. Then
I — T is demiclosed at zero.

Lemma 2.7 ([12]). Let E be a real uniformly convex Banach space such that its
dual E* has the Kadec-Klee property. Suppose that {x,} is a bounded sequence such
that im0 ||axy, + (1 — a)p1 — p2|| exists for all a € [0,1] and p1,p2 € ww(zn),
where wy(Ty) : {x : Jx,, — x} denotes the weak w-limit set of {xn} Then wy(zy)
18 a singleton.

Lemma 2.8 ([2]). Let E be a real Banach space, and A an m-accretive operator.
For A >0, u >0, and x € E, we have

(szﬁ(§x+(1—§)5@,

where Jy = (I + AA)™! and J, = (I + pA)~L.

Lemma 2.9 ([32]). Let {z,} and {y,} be bounded sequences in a real Banach space
E and let {B,} be a sequence in (0,1) with 0 < liminf,_,~ £, < limsup,,_ . On < 1.
Let xni1 = (1 = Bp)yn + Bpan and limsup, oo ([[Yn+1 = ynll — lZnse1 — znl]) < 0.
Then limy, o0 ||yn — zn|| = 0.

Lemma 2.10 ([28]). Let E be a real uniformly smooth Banach space and let C' be
a nonempty closed convex subset of E. Let f : C — C be a contractive mapping
and let T : C — C be a nonexpansive mapping with a nonempty fixed point set. For
each t € (0,1), let x; be the unique solution of the equation x = tf(x) + (1 —t)Tx.
Then {x:} converges strongly to a fized point ¥ = Qp(r)f(T), where Qp(ry is the
unique sunny nonexpansive retraction from C onto F(T), ast — 0.

Lemma 2.11 ([22, Lemma 2.11]). Let ¢ > 1. Then the following inequality holds:

q _
ab< 4y
q q

for arbitrary positive real numbers a and b.

Lemma 2.12 ([18]). Let {a,} be a sequence of nonnegative real numbers such that
ant1 < (1 —ty)an + by, + cn, Yn > 0, where {c,} is a sequence of nonnegative real
numbers, {t,} C (0,1) and {b,} is a sequence of real numbers. Assume that

(a) D02 gtn = 00 and limsup,,_, ., %T: <0;

(b) D02y en < 0.
Then lim,, oo an, = 0.
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3. MAIN RESULTS

First, we give the weak convergence theorem.

Theorem 3.1. Let E be a real uniformly conver and g-uniformly smooth Banach
space with the constant K, and let C be a nonempty closed and convex subset of
E. Let A: C — E be an a-inverse strongly accretive operator and let B : E — 2F
be an m-accretive operator such that D(B) C C. Assume that (A + B)~1(0) # 0.
Let {r,} be a positive number sequence and let {a,} be a real number sequence in
(0,1). Let {xn} be a sequence generated in the following manner: xo € C' and

Tpt1 = anZy + (1 — an)Jy, (T — rnAz, +€,), Yn >0,
where J,, = (I +r,B)~" and {e,} is sequence in E. Assume that the sequence
{an}, {en} and {r,} satisfy the following restrictions:
(1) limsup,,_,o an < 1;

1
(2) 0 < liminf, o0, < limsup,, o ™ < (%O;)qj;

(3) ZZO:O ||enH < 00.
Then {x,} converges weakly to a zero of A+ B.

Proof. First, we show that the sequence {x,} is bounded. In view of Lemma 2.3,
we find that

1T = rA)e = (I = 1 AYyll? < Il — yll* — grafAs — Ay, y(z — )
+ Kqrij|[ Az — Ay||*
< lz =yl — graa| Az — Ay||* + Kqrij[[ Az — Ay||*
= llz = yl? = (aq — K~ )ral Az — Ay]|".
From the restriction (2), we find that I — r,A is nonexpansive. Fixing p € (A +
B)~1(0), we have
|1 = pll < anllzn = pll + (1 = )| Jr, (20 — rpAzn + en) — p
< apllzn —pll + (1 — an)[[(zn — redzy, + €,) — (p — rnA)p||
< [lzn — pll + llenl]-
In view of Lemma 2.2, we obtain that lim,,_,« ||z, — p|| exists, in particular, {x,}
is bounded. Using Lemma 2.3, we find that
(I —rpA)zy, — (I —rpA)p+enl|?  +qlen, Jg((I —rpA)ay, — (I —rpA)p+ey))
< ||$n _qu - qrn<Axn - Ap73q(xn _p)>
+ Kqry || Az, — Ap|?
(3.1) +allenlllI = rnA)zn — (I = rnA)p + el
<l = pll? = (ag = Kgri™)rall Az, — Ap]|®
+dllenlll(I = rad)zn — (I = raA)p + en]| 7.
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Putting vy, = J,, (zp, — rnAx, + €5,), we find from Lemma 2.4 that

ngn—p>+§<<f—mA>wn+en— = radp) [
< 2 llm =Bl + S~ )z + 0 — (1 = ra A)p|”
(3.2) _%SO(H(yn_p)_((I—rnA)xn—l-en—( — 7 ))II)

<N = rnA)zn + e — (I —rnA)pl|?
1
= 572 (Ium = p) = (T = ra)an + en — (1 =2 A)p) ).
Substituting (3.1) into (3.2), we arrive at

1 1 q
|50 = p) + 50 = rad)en + e = (1 = rad)p)
< lzn = pll? = (aq — Kgrd ™ )ra| Az, — Apl|

+allenlll(I = rnA)en — (I —rnA)p + ean_l

—i<p<!\(yn— P) = (I = rad)zn +en = (I —rn ))H>'

In view of the acctiveness of B, we find that

(3.3)

”Z/ _ —p+ (ﬁn rnAx, + en “Yn (I_TnA)p_p>H
" 2

Tn Tn

(3.4) '
= Hi(y —p)+§((I—rnA):vn—|—en—(I—rnA)p)H.
Combining (3.3) with (3.4), we see that

lyn = pll? < llzn = pll? = (aq = Kqrd™")rall Azy — Ap]?

(35) +lleal (7 = ruA)ea — (I = rud)p + e[
1
— 570 (1 =) = (I = rad)an + en = (I =1 A)p) ).
Since || - [|9 is convex, we find that

[Zn1 =Pl < anllen —pl|7 + (1 = an)llyn = p|*

< lzn —pl|* = (ag - qu%_l)rn(l — ap)|| Az, — Ap||®
+allenl (I = rnA)en — (I = rpA)p+eq| 77
1
— (1= )50 (| = ) = (I = raA)an + e = (L= A)p) ).
It follows from the restrictions (1), (2) and (3) that
(3.6) lim ||Az, — Ap|| =0
n—o0
and

(3.7) lim Hyn — Ty + rn Az, — 1y Ap — en” =0.
n—00
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Since

lvn — 2ol < lyn — 20 + rnAxy — roAp — el + ||rndx, — rnAp — e, ||

<y — @0 + raAzn — raAp — e || + rul|Azn — Apll + lenl,

we find from (3.6) and (3.7) that
(3.8) dim ||y, (20 — rnAzy + ) = 2ol = 0.
Notice that

| Ty, (X, — T Axyn) — Zp|| < || Jp, (X0 — rrAzy) — Jr, (T — T Az, + €4) ||

+ || Jr, (T — PR ATy + €r) — xp]|
<lleall + | Jr, (X — TnAZn + €n) — Ty |-

This implies from (3.8) that
(3.9) nhﬁr{.lo | T, (2, — T Ay,) — zp]] = 0.

In view of restriction (2), without loss of generality, let us assume that there exists
a real number a such that r, > a > 0 for all n > 1. Notice that

<xn —Jo(I —aA)x, o — Ip, (I —rpA)zy,
a T'n
3g(Ja(I = aA)zy — Jy, (I — rnA)a:n)> > 0.
Hence, we find that
|Jo(I — aA)zy — Jp, (I —1pA)zy||?

<7“n—a

Y

(Tn — Jry(I = 1A, I (Jo(I — ad)zy — Jp, (I — 1 A)y))

T'n
< Nan = Jr, (I = 1 A)zp|| | Ja(I — aA)zy — Jp, (I — 1 Az, || 971
This implies that ||Jo(I — aA)zy, — Jp,(I — rnA)ynl| < |2n — I, (I — rpA)xy||. It
follows that
Wa(I = @)z — all < IJall = aA)tn — Jp, (I = 1 A)]
+ [T, (I = rnA)an — |
<2\, (I = rnA) Ty — |-
From (3.9), we arrive at
(3.10) nlgrolo | Ja(xn — aAxy) — x| = 0.
Define mappings T}, : C' — C by
Thx =onz+ (1 — o)y, (I —rpA)x +e,), Vrel.
Set
Snm = Tnem—1Them—2---Tp, Yn,m > 1.
Then S, ,, is nonexpansive and Sy, pTpn = Tpim. For all t € [0,1] and n,m > 1, put
an(t) = [tzn + (1 — t)p1 — p2,

and
bn,m = ||Sn,m(txn + (I —=t)p1) — (txngm + (1 —1)p1)],
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where p; and py are zeros of A + B. Since || T,p — p|| < |len||, we find that

HSn,mp - p” < ||Tn+m71Tn+m72 < Tnp — Toym—1Thym—2 'Tn+1p|| + -
+ ”Tnerflp*pH
(3.11) < || Top = pll + | Tos1p — pll + -+ - + [[Tnpm—1p — Pl

m—1
< Z Cnti-
i=0

Using Lemma 2.5, we find that

bpm < Tl)_l(”xn —p1f| — ||Sn,mxn - Sn,mPlH)
(3.12) = ¢ ([on — pill = |Zngm — P2 + 1 — Snmpr )
<O (lon = pill = (lznsm = pill = o1 = Snmpr])-
In view of (3.11), we find that {b,, ,,} converges uniformly to zero as n — oo for all
m > 1. It also follows from (3.11) that
() = [t + (1= )py
< bn,m + HSn,m(txn + (1 - t)pl) _pQH
< bpm + HSn,m(txn + (1 —t)p1) — Sn,mP2” + ||Sn,mp2 — pa|

(3.13) < bpm + an(t) + [|Snmp2 — p2||

m—1
< bn,m + an<t) + Z Cn+i-
=0

Taking limsup as m — oo and then the liminf as n — oo, we find that
limsup,,_,o an(t) < liminf,,, a,(t). This proves that lim, . a,(t) for any t €
[0, 1]. In view of Lemma 2.6, we see that wy,(z,) C (A+ B)~1(0). This implies from
Lemma 2.7 that wy,(zy,) is singleton. This proves the proof. O

If & = 0, then Theorem 3.1 is reduced to the following.

Corollary 3.2. Let E be a real uniformly convex and q-uniformly smooth Banach
space with the constant K, and let C be a nonempty closed and convex subset of
E. Let A: C — E be an a-inverse strongly accretive operator and let B : E — 2F
be an m-accretive operator such that D(B) C C. Assume that (A + B)~(0) # 0.

Let {r,} be a positive number sequence. Let {x,} be a sequence generated in the
following manner: xog € C and

Tnt1 = Iy, (Tn — rpAx, +e,), Vn >0,

where J., = (I +r,B)~! and {e,} is sequence in E. Assume that the sequence
{an}, {en} and {r,} satisfy the following restrictions:

1
(1) 0 < liminf, o, < limsup,, o ™ < (%q)ﬁ;
(2) 2onzo llenll < oo
Then {xn} converges weakly to a zero of A+ B.
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Next, we give the strong convergence theorem.

Theorem 3.3. Let E be a real g-uniformly smooth Banach space with the constant
K, and let C' be a nonempty closed and convex subset of E. Let A: C — E be an
a-inverse strongly accretive operator and let B : E — 2F be an m-accretive operator
such that D(B) C C. Assume that (A + B)71(0) # 0. Let f : C — C be a fized
k-contraction. Let {r,} be a positive number sequence. Let {ay}, {Bn} and {y,} be
real number sequences in (0,1). Let {x,} be a sequence generated in the following
manner: rg € C and

Tn+l = anf(xn) + ﬁnxn + ’YnJrn (xn - TnAxn + en)a Vn > O,
where J,, = (I +r,B)~! and {e,} is sequence in E. Assume that the sequences
{an}, {Bn}, {m}, {en} and {r,} satisfy the following restrictions:

( ap + Bn + Yn = 1;

( limy, 00 ay = 0, Z?LOZO Qp = 00;
(

(

1)
2)
3) 0 < liminf, s B < limsup,,_,. Bn < 1;
)
)

q

4) liminfy, 00 mn > 0, 7 < (fi)ﬁ7 limp, 00 [rn — rn-1| = 0;

(5) 2 nzo llenll < oo
Then the sequence {xn} converges strongly to T = Projaip)-1(0)f(T), where
Proj aqpy-1(0) 18 the unique sunny nonexpansive retraction of C onto (A+B)~1(0).

Proof. As proved in Theorem 3.1, we see that I — r, A is nonexpansive. It follows
from Lemma 2.1 that (A+ B)~! is closed and convex. Fixing p € (A + B)~1(0), we
find that

[#n41 = pll < anllf(zn) — pll + Bullzn — pll + Wl Jr, (20 — rnAzn +€n) — pl|
< ankillzn = pll + anll f(p) — pll + Bullzs — pl|
+ ll(@n — rnAzn + ) — (I — rnA)p||
< (1= an(l = K))llzn = pll + anll f(p) = ]l + llenll

ol Hf( ) RPH}

< max { |ln - + lleall

o, i WP =PI s+ el

< max { |zn—1 —

< max { g — ) /PRI Zuezu

< maxc{lag - pl, /P21 Z|rez|r<oo

This proves that the sequence {x,} is bounded. Putting z, = x,, — r, Az, + €, and

My = W, we have

(3'14) Tp4+1 = (1 - Bn)mn + 6n$n
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In light of

an+1f($n+1) + '7n+1jrn+1 Zn+1 Olnf(xn) + 'Ynt]rnzn
Mnp4y1 — My = -

1*/8n+1 1*511

On+1 e
= T () ) = g () = )
+ JTn+1Zn+1 - Jrnzna
we find that
Apt1
||mn+1 - mnH S l_nigﬂ||f(mn+l) - JTn+1Zn+1||
n
(3.15) i

79
1-8, 1 f(zn) = Jr, 20

+ HJrn+1zn+1 — Jrp 20|
Notice that

12n = 2nt1ll < l|l2n — Tntall + 7o — rtall | AZnaa | + llenll + llensal-
It follows from Lemma 2.8 that

HJrnzn - JTnHzn—i-lH

Tn+1 T'n4+1
T (P e+ (1=

n TTL

) Jrnzn) - Jrn+1 Zn+1 H

T'n+41 Tn+41
< ’ Uax (Zn - Zn+1) + (1 — Z+ )(Jrnzn - Zn—&—l)H
n n
(3.16) N
— Tntl
< o — 2l + 22 g
n
Irp2n — 2
< e =zl + I = v | (| A | + 12re2n =2y
n
+ llenll + [lentall-
Substituting (3.16) into (3.15), we arrive at
On41
[mn1 = manll = lon — zpsa |l < 1—n75+1Hf(xn+l) = Jrpr ot
n
«
+ 1 —nﬂn [ f(zn) = Jr, 20|
Jrp2n — 2
i = rall (IAzaa] + ezl
n
+ llenll + [lentall-
In view of conditions (2), (3), (4) and (5), we get that
lim sup([|mn1 = ma| = [[#nt1 = znl)) < 0.
n—oo
Using Lemma 2.9, we find that lim, o |7, — 2, || = 0. In view of (3.14), we find

that

(3.17) lim ||xp41 — zn| = 0.
n—oo



1332 B. A. BIN DEHAISH, X. QIN, A. LATIF, AND H. O. BAKODAH

Notice that
Tpt1 — Tn = an(f(xn) — zn) + (1 — o) (Jr, (Xr, — r Ay, + €4) — p).

In view of (3.17), we find from the restriction (2) that limy, oo ||Jr, (Tn — TnAzy +
en) — Zn|| = 0. As proved in Theorem 3.1, we find that

(3.18) Hm || Jo(zn — aAzy) — zp]| = 0.

n—o0

Let x; be the unique solution to the fixed point equation z; = tf(x) 4+ (1 —t)J, (I —
aA)zt, Vt € (0,1). Putting Z = lim¢,o x+, one has T = Projiaqp)-1(0).f(Z), where
Proj(atp)-1(0) is the unique sunny nonexpansive retraction of C' onto (A+B)~(0).

Now, we are in a position to claim that limsup,,_, . (f(Z) — Z, Jq(zn —Z)) < 0. It
follows that

|2t — znl|? < t(f(21) — 20, Jg(20 — 1))

+ (1 =t)(Jo(I —aA)zy — zp, Jg(xr — 20))

< t(f(xr) — xp, Jg(xr — x0)) + @y — 2y, Jg (24 — 1))
+(1- t)((Ja(I —aA)xy — Jo(I — aA)zp, Jg(xr — )
+ (Jo(I — aA)zy — @y, Jg(@r — 1))

St f (@) — 24, g1t — 20)) + |00 — T [|7
+ [ oI = ad)ay — @[z — 2] 7,

which implies that

1
(F(e) = 20, Jy(wn = 20)) < |l = ad)zn =z lllze — 27

Fixing t and letting n — oo, we find from (3.18) that
(3.19) limsup(f (1) — 21, 3g(@n — 1)) < 0.

n—o0

In view of the fact that the duality map J, is single valued and strong-weak® uni-
formly continuous on bounded sets of a Banach space E with a uniformly Gateaux
differentiable norm, we get that

I f(@) =z = (fxe) = ze)||[lan — el
Hence, Ve > 0, 35 > 0 such that ¢ € (0, ), we have that
(f(2) = 2,3q(xn — T)) < (f(20) — 20, Jg(Tn — 20)) + €.
It follows from (3.19) that
(3.20) limsup(f(Z) — z,Jq(2n — 7)) < 0.

n—o0

Finally, we prove that z,, — T as n — oco. In view of Lemma 2.11, we find that

201 = Z[7 < an(f(zn) = F(2), Jg(@nt1 — 2))
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+ (1 — a)l|Jr, (20 — T Az + €5) — Z||[|Tn41 — i‘Hq_l
+ o (f(T) — ja:’q(fL‘nJrl —))
< (1= (1 = ) = 2l nar — 2"

+ an(f(7) — 3_37311(3«%+1 — 7)) + enllTni1 — CEHq_l
1
< (1-an(1—r)) (6\\% — )+

+an(f(Z) = 2, 3g(wn1 — 7)) + enllents — 7|7

a1 - 2117)

It follows that
nss — 717 < (1= an(l = 8)) 20 — ] + qan (F(7) — 7, Fg(@ns1 — 7))
+ gen||Tnsr — 27

In view of (3.20), we find from Lemma 2.12 that {z,,} converges strongly to z. This
proves the proof. O

Remark 3.4. The framework of the spaces in Both Theorem 3.1 and Theorem 3.3
can be applicable to L,, where p > 1.

4. APPLICATIONS

In this section, we consider a fixed point problem of k-strictly pseudocontractive
mappings.

Theorem 4.1. Let E be a real uniformly conver and g-uniformly smooth Banach
space with the constant K, and let C be a nonempty closed and convex subset of
E. Let T : C — C be an a-strictly pseudocontractive mapping such that F(T) # (.
Let {r,} be a positive number sequence and let {ay,} be a real number sequence in
(0,1). Let {x,} be a sequence generated in the following manner: xzo € C' and

Tpil = (1 —rp(l— an))azn +r,(1 —ap)Txy, VYn>0.
Assume that the sequence {ay,} and {r,} satisfy the following restrictions:
(1) imsup,,_,o0 o < 1; )
(2) 0 < liminf, ooy < limsup,,_, o 7 < (%)ﬁ
Then {z,} converges weakly to a fized point of T.

Proof. Putting A = I —T, we find that A is a-inverse strongly accretive and F(T) =
A~1(0). Notice that
Tnp1 = (1= rma(1 — ap))zn + (1l — an) Tz,
= apry + (1 — ozn)((l Tn)Tn + TnTxn)
=apty + (1 —ap)(xn —rn(I = T)axy)
= apty + (1 — ap)(xn — rnAzy).

Using Theorem 3.1, we find the desired conclusion immediately. g
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Theorem 4.2. Let E be a real g-uniformly smooth Banach space with the constant
K, and let C' be a nonempty closed and convex subset of E. Let T : C — C be an
a-strictly pseudocontractive mapping such that F(T) # 0. Let f : C — C be a fived
k-contraction. Let {r,} be a positive number sequence. Let {ay}, {Bn} and {y,} be
real number sequences in (0,1). Let {x,} be a sequence generated in the following
manner: g € C and

Tnt1 = anf(xn) + (1 —apn)(1 —rp)xn + 01 — ap)Tx,, Yn > 0.

Assume that the sequences {an}, {Bn}, {1} and {r,} satisfy the following restric-
tions:

(1) an+ﬁn+7n = 1;
(2) limp—yoo op =0, > 07 g ap = 00;
(3) 0 < liminf, o By < limsup,,_, Bn < 1;

1
(4) liminf, oo 7y >0, 1y < (%)qj, limy, 00 |7 — -1 = 0.

Then the sequence {xn} converges strongly to & = Projpr)f(Z), where Projpry is
the unique sunny nonexpansive retraction of C' onto F(T).

Proof. Putting A = I —T, we find that A is a-inverse strongly accretive and F\(T) =
A71(0). Notice that

Tnt+l = anf Tn

(@n) + ( )
= Oénf(xn) + (1 - an)(
(@n) + ( )

— )Ty + (1 — an) Ty,
1—rp)x, + rnTxn)

Ty — (I —T)axy)
=anf(zn) + (1 — an)(xn — rnAzy).

Using Theorem 3.3, we find the desired conclusion immediately. O
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