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While, in [3], Boţ et al. presented a new closed constraint qualification, which
completely characterizes the strong duality between the problem (P2) and its dual
problem (D2). Recently, Zhou et al. considered in [18] the following composite
optimization problem:

(P3) inf
x∈Ω

{(f1 ◦ f2)(x) + (h ◦A)(x)− g1(x)},

where E is a locally convex Hausdorff topological vector space, Ω := {x ∈ X :
p(x) ∈ −S}, S ⊆ Z is a closed convex cone and p : X → Z• is a proper, S-convex
and S-epi-closed mapping, h : E → R̄ is a proper convex function, g1 : X → R̄ is a
proper convex function, and A : X → E is a linear continuous mapping, and they
established the strong duality between the problem (P3) and its dual problem (D3)
via a closedness-type constraint qualification

(D3) inf
x∗∈X∗

sup
λ∈S⊕,µ∈K⊕,e∗∈E∗

{g∗1(x∗)−f∗
1 (µ)−h∗(e∗)−(λ◦p+µ◦f2)∗(x∗−A∗e∗)}.

Inspired by the works mentioned above, we consider the following optimization
problem

(1.1) (P ) inf
x∈X

{(f1 ◦ f2)(x)− (g1 ◦ g2)(x)},

and define its dual problem by

(1.2) (D) inf
λ∈S⊕,u∗∈X∗

sup
µ∈K⊕

{g∗1(λ)− f∗
1 (µ)− (µf2)

∗(u∗) + (λg2)
∗(u∗)},

where S ⊆ Z is a closed convex cone, f1 : Y → R̄ is a proper, convex and K-
increasing function (not necessary lower semicontinuous (lsc in brief)), g1 : Z → R̄
is a proper, convex, S-increasing function (not necessary lower semicontinuous), f2 :
X → Y • is a proper, K-convex function (not necessary K-epi-closed), g2 : X → Z•

is a proper, S-convex function (not necessary S-epi-closed), and S⊕,K⊕ is the dual
cone of S and K, respectively. Here and throughout the whole paper, following [17,
Page 39], we adapt the convention that (+∞) + (−∞) = (+∞) − (+∞) = +∞,
0 · +∞ = +∞ and 0 · (−∞) = 0. Then, for any two proper convex functions
h1, h2 : X → R, we have that

(1.3) h1(x)− h2(x)

 ∈ R, x ∈ domh1 ∩ domh2,
= −∞, x ∈ domh1 \ domh2,
= +∞, x /∈ domh1;

hence,

(1.4) h1 − h2 is proper ⇐⇒ domh1 ⊆ domh2.

Note that, in the case when g2 is an identity operator on X and g1 ∈ X∗, then the
problem (P ) is the same as the problem (P2); and in the case when g1 ◦ g2 ≡ 0,
then the problem (P ) is reduced into the problem (P1).

Let v(P ) and v(D) denote the optimal values of problem (P ) and (D), respec-
tively. Different from the convex case, the weak duality between (P ) and (D) does
not necessary hold as shown in Example 3.1 in Section 3, that is, we may have
v(P ) < v(D). Our main aim in the present paper is to use multiply functions to
give some new regularity conditions, which completely characterize the weak dual-
ity, the zero duality and the strong duality between (P ) and (D). In general, the
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functions f1, f2, g1, g2 are not necessarily lsc. Most results obtained in this paper
seem new and are proper extensions of the known results in [3, 18]. In particular,
our Theorem 4.10 improves the corresponding result in [3, Theorem 5.1].

The paper is organized as follows. The next section contains some necessary
notations and preliminary results. In section 3, some new constraint qualifications
are introduced to study the weak duality, the zero duality and the strong duality
between (P ) and (D). In section 4, we give some special cases of our main results,
which improve several known results.

2. Notations and preliminary results

The notations used in the present paper are standard (cf. [17]). In particular, we
assume throughout the whole paper that X and Y are real locally convex Hausdorff
topological vector spaces, and let X∗ denote the dual space of X, endowed with the
weak∗-topology w∗(X∗, X). By ⟨x∗, x⟩, we shall denote the value of the functional
x∗ ∈ X∗ at x ∈ X; i.e., ⟨x∗, x⟩ = x∗(x). For a set Z in X, the interior, closure,
convex hull, and the convex cone hull of Z are denoted by intZ, clZ, coZ, and
coneZ, respectively. If W ⊆ X∗, then clW denotes the weak∗-closure of W . For
the whole paper, we endow X∗ × R with the product topology of w∗(X∗, X) and
the usual Euclidean topology.

Let f : X → R be a extended real-valued function. The classical conjugate
function of f (the Fenchel-Moreau conjugate) is

f∗(x∗) := sup
x∈X

{⟨x∗, x⟩ − f(x)} for each x∗ ∈ X∗.

By definition, the Young-Fenchel inequality below holds:

(2.1) f(x) + f∗(x∗) ≥ ⟨x, x∗⟩ for each pair (x, x∗) ∈ X ×X∗.

Let x ∈ dom f . The subdifferential of f at x is the convex set defined by

∂f(x) := {x∗ ∈ X∗ : f(x) + ⟨x∗, y − x⟩ ≤ f(y) for all y ∈ X}.
Then, by definition,

(2.2) 0 ∈ ∂f(x) ⇔ x is a minimizer of f.

Moreover, by [17, Theorem 2.4.2(iii)], the Young equality holds:

(2.3) f(x) + f∗(x∗) = ⟨x∗, x⟩ ⇔ x∗ ∈ ∂f(x).

The indicator function δD : X → R of the nonempty set D ⊆ X is defined by

δD(x) :=

{
0, x ∈ D,

+∞, otherwise.

For the sake of convenience, we write µf2 instead of µ ◦ f2 for any µ ∈ K⊕,

(µf2)(x) :=

{
⟨µ, f2(x)⟩, if x ∈ domf2,

+∞, otherwise.

Let K ⊆ Y be a closed convex cone. Its dual cone K⊕ is defined by

K⊕ = {y∗ ∈ Y ∗ : y∗(y) ≥ 0 for each y ∈ K}.
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Denote by ≤K the partial order on Y induced by K,

y1 ≤K y2 ⇔ y2 − y1 ∈ K for each y1, y2 ∈ Y.

There are notions given for functions with extended real values.
For a function f : Y → R̄, one has
• the effective domain:

dom f = {y ∈ Y : f(y) < +∞},
• the epigraph:

epi f = {(y, r) ∈ Y × R : f(y) ≤ r},
• f is proper: dom f ̸= ∅ and f(y) ̸= −∞, ∀y ∈ Y .
• f is K-increasing: for any y1, y2 ∈ Y such that y1 ≤K y2 one has f(y1) ≤ f(y2).
For a function h : X → Y • one has
• the effective domain:

domh = {x ∈ X : h(x) ∈ Y },
• h is proper: domh ̸= ∅,
• the K-epigraph:

epiK h = {(x, y) ∈ X × Y : y ∈ h(x) +K},
• h is K-epi-closed: if epiK h is closed,
• h is K-convex: for any x1, x2 ∈ X and any t ∈ [0, 1],

h(tx1 + (1− t)x2) ≤K th(x1) + (1− t)h(x2).

Furthermore, if f, h : X → R̄ are proper convex functions, and f is convex and
lsc on domh, then, by [13, Lemma 2.3],

(2.4) epi(h− f)∗ =
∩

x∗∈dom f∗

(epih∗ − (x∗, f∗(x∗))).

The following lemma is known in [12,17].

Lemma 2.1. Let f, h : X → R̄ be proper convex functions satisfying dom f ∩
domh ̸= ∅.

(i) If f, h are lsc, then

epi(f + h)∗ = cl(epi f∗ + epih∗).

(ii) If either f or h is continuous at some point of dom f ∩ domh, then

epi(f + h)∗ = epi f∗ + epih∗.

3. The strong duality

Let X, Y and Z be locally convex Hausdorff topological vector spaces with the
dual spaces X∗ , Y ∗ and Z∗, respectively. Let Y and Z be partially ordered by
closed convex cones K ⊆ Y and S ⊆ Z, respectively. Denote Y • := Y ∪ {∞Y }
and Z• := Z ∪ {∞Z}, where ∞Y and ∞Z are the greatest elements with respect
to the partial orders ≤K and ≤S , respectively. Let f1 : Y → R̄ be a proper,
convex and K-increasing function, g1 : Z → R̄ be a proper, convex, S-increasing
function, f2 : X → Y • be a proper, K-convex function, and g2 : X → Z• be
a proper, S-convex function such that f1 ◦ f2 − g1 ◦ g2 is a proper function and
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dom(f1 ◦ f2) ∩ dom(g1 ◦ g2) ̸= ∅. Then, by (1.4), we have that ∅ ̸= dom(f1 ◦ f2) ⊆
dom(g1 ◦ g2). Consider the following problem defined by (1.1), that is,

(3.1) (P ) inf
x∈X

{(f1 ◦ f2)(x)− (g1 ◦ g2)(x)},

and its dual problem

(3.2) (D) inf
λ∈S⊕,u∗∈X∗

sup
µ∈K⊕

{g∗1(λ)− f∗
1 (µ)− (µf2)

∗(u∗) + (λg2)
∗(u∗)}.

For each λ ∈ S⊕ and u∗ ∈ X∗, we define the subproblem of (D) by

(D(λ,u∗)) sup
µ∈K⊕

{g∗1(λ)− f∗
1 (µ)− (µf2)

∗(u∗) + (λg2)
∗(u∗)}.

Let λ ∈ S⊕ and u∗ ∈ X∗. We use v(P ), v(D) and v(D(λ,u∗)) to devote the optimal

values of the problem (P ), (D) and (D(λ,u∗)), respectively, that is,

(3.3) v(P ) := inf
x∈X

{(f1 ◦ f2)(x)− (g1 ◦ g2)(x)},

(3.4) v(D) := inf
λ∈S⊕,u∗∈X∗

sup
µ∈K⊕

{g∗1(λ)− f∗
1 (µ)− (µf2)

∗(u∗) + (λg2)
∗(u∗)}

and

(3.5) v(D(λ,u∗)) := sup
µ∈K⊕

{g∗1(λ)− f∗
1 (µ)− (µf2)

∗(u∗) + (λg2)
∗(u∗)}.

Definition 3.1. It is said that
(i) the weak duality holds between (P ) and (D) if v(P ) ≥ v(D);
(ii) the zero duality holds between (P ) and (D) if v(P ) = v(D);
(iii) the strong duality holds between (P ) and (D) if v(P ) = v(D) and for each

λ ∈ S⊕ and u∗ ∈ X∗ satisfying v(D) = v(D(λ,u∗)), the problem (D(λ,u∗)) has an
optimal solution.

The following example shows that the weak duality does not hold in general.

Example 3.2. Let X = Y = Z := R and S := R−. Define f1 = f2 := 0, g1 := IdR
and g2 := δR+ , where IdR denotes the identity operator on R. Then, S⊕ = R− and
dom(f1 ◦ f2) ∩ dom(g1 ◦ g2) = R+. Hence, v(P ) = infx∈X{−(g1 ◦ g2)(x)} = −∞.
While, for each x∗ ∈ R,

g∗1(x
∗) =

{
0, if x∗ = 1,

+∞, otherwise,

and (λg2)
∗(x∗) = +∞ for each λ ∈ R−. Thus,

v(D) = inf
λ∈R−,u∗∈X∗

{g∗1(λ) + (λg2)
∗(u∗)} = +∞.

Consequently, v(D) > v(P ) and the weak duality does not hold.

To consider the dualities between (P ) and (D), we introduce some auxiliary
functions. Let F,G1, G2 : X × Y × Z → R̄ be defined by

(3.6) F (x, y, z) := f1(y),

(3.7) G1(x, y, z) := g1(z),
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and

(3.8) G2(x, y, z) := δ{(x,y)∈X×Y :f2(x)−y∈−K}(x, y) + δ{(x,z)∈X×Z:g2(x)−z∈S}(x, z).

Then the following lemma holds.

Lemma 3.3. Let r ∈ R. The following statements are equivalent:
(i) v(P ) ≥ −r.
(ii) (0, r) ∈ epi(f1 ◦ f2 − g1 ◦ g2)∗.
(iii) (0, 0, 0, r) ∈ epi(F −G1 +G2)

∗.

Proof. (i) ⇔ (ii) By the definition of the conjugate function, one has

v(P ) = −(f1 ◦ f2 − g1 ◦ g2)∗(0).
Thus, the result is clear.

(ii) ⇔ (iii) Since f1 is K-increasing and g1 is S-increasing, it follows that for each
x∗ ∈ X∗,

(f1 ◦ f2 − g1 ◦ g2)∗(0) = sup
x∈X

{⟨0, x⟩ − (f1 ◦ f2)(x) + (g1 ◦ g2)(x)}

= sup
x∈X,y∈Y,z∈Z,f2(x)−y∈−K,g2(x)−z∈S

{−f1(y) + g1(z)}

= sup
x∈X,y∈Y,z∈Z

{−f1(y) + g1(z)

− δ{(x,y)∈X×Y :f2(x)−y∈−K}(x, y)

− δ{(x,z)∈X×Z:g2(x)−z∈S}(x, z)}.
This implies that

(f1 ◦ f2 − g1 ◦ g2)∗(0) = (F −G1 +G2)
∗(0, 0, 0).

Thus, the result is clear and the proof is complete. □
Let r ∈ R. For simplicity, we denote

(3.9)
K0 :=

∩
λ∈S⊕,u∗∈X∗

(∪
µ∈K⊕

(
{(u∗,−µ, 0, r) : (u∗, r) ∈ epi(µf2)

∗}

+{(0, µ, 0, r) : (µ, r) ∈ epi f∗
1 }

)
− (u∗, 0, 0, g∗1(λ) + (λg2)

∗(u∗))

)
,

where we adapt the convention ∩t∈∅St = X. Obviously,

(3.10) K0 ⊆ {0} × {0} × {0} × R.

Lemma 3.4. Let r ∈ R. Then, (0, 0, 0, r) ∈ K0 if and only if v(D) ≥ −r and for
each λ ∈ S⊕ and u∗ ∈ X∗, there exists µ0 ∈ K⊕ such that

(3.11) g∗1(λ)− f∗
1 (µ0)− (µ0f2)

∗(u∗) + (λg2)
∗(u∗) ≥ −r.

Proof. Let (0, 0, 0, r) ∈ K0 and λ ∈ S⊕, u∗ ∈ X∗ be arbitrary. Then, there exist
µ0 ∈ K⊕ and r1, r2 ∈ R such that

(3.12) (0, 0, 0, r) = (u∗,−µ0, 0, r1) + (0, µ0, 0, r2)− (u∗, 0, 0, g∗1(λ) + (λg2)
∗(u∗)),

where

(u∗, r1) ∈ epi(µ0f2)
∗, (µ0, r2) ∈ epi f∗

1 and r = r1 + r2 − g∗1(λ)− (λg2)
∗(u∗).
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Thus,
(3.13)
−r = −r1 − r2 + g∗1(λ) + (λg2)

∗(u∗) ≤ −(µ0f2)
∗(u∗)− f∗

1 (µ0) + g∗1(λ) + (λg2)
∗(u∗),

and (3.11) is proven. Moreover, by (3.13), we see that

−r ≤ sup
µ∈K⊕

{g∗1(λ)− f∗
1 (µ)− (µf2)

∗(u∗) + (λg2)
∗(u∗)}

and by the arbitrariness of λ and u∗,

−r ≤ inf
λ∈S⊕,u∗∈X∗

sup
µ∈K⊕

{g∗1(λ)− f∗
1 (µ)− (µf2)

∗(u∗) + (λg2)
∗(u∗)}.

This together with the the definition of v(D) implies that v(D) ≥ −r.
Conversely, suppose that v(D) ≥ −r and for each λ ∈ S⊕ and u∗ ∈ X∗, there

exists µ0 ∈ K⊕ satisfying (3.11). Let λ ∈ S⊕ and u∗ ∈ X∗. Then, there exists
µ0 ∈ K⊕ such that (3.11) holds. Denote r1 := (µ0f2)

∗(u∗) and r2 := r + g∗1(λ) +
(λg2)

∗(u∗)− r1. Then, (u
∗, r1) ∈ epi(µ0f2)

∗ and (µ0, r2) ∈ epi f∗
1 . This implies that

(0, 0, 0, r) ∈ {(u∗,−µ0, 0, r1) : (u
∗, r1) ∈ epi(µ0f2)

∗}+ {(0, µ0, 0, r2) : (µ0, r2) ∈ epi f∗
1 }

− (u∗, 0, 0, g∗1(λ) + (λg2)
∗(u∗)),

and

(0, 0, 0, r) ∈
∪

µ∈K⊕

(
{(u∗,−µ, 0, r1) : (u

∗, r1) ∈ epi(µf2)
∗}

+ {(0, µ, 0, r2) : (µ, r2) ∈ epi f∗
1 }

− (u∗, 0, 0, g∗1(λ) + (λg2)
∗(u∗))

)
.

Therefore, by the arbitrariness of λ and u∗, we see that (0, 0, 0, r) ∈ K0, which
completes the proof. □

The following theorem characterizes completely the weak duality between (P )
and (D).

Theorem 3.5. The weak duality holds between (P ) and (D) if and only if the family
(F,G1, G2) satisfies

(3.14) K0 ⊆ epi(F −G1 +G2)
∗.

Proof. Suppose that the weak duality holds between (P ) and (D), that is, v(P ) ≥
v(D). Let r ∈ R and (0, 0, 0, r) ∈ K0. Then, by Lemma 3.4, v(D) ≥ −r and
v(P ) ≥ −r by the weak duality between (P ) and (D). Thus, by Lemma 3.3, one
sees that (0, 0, 0, r) ∈ epi(F −G1 +G2)

∗. Therefore, (3.14) holds.
Conversely, suppose that (3.14) holds. To show v(P ) ≥ v(D), suppose on the

contrary that v(P ) < v(D). Then, there exists r ∈ R such that v(P ) < −r < v(D).
By the definition of v(D), we have that for each λ ∈ S⊕ and u∗ ∈ X∗, there exists
µ0 ∈ K⊕ such that (3.11) holds. Thus, by Lemma 3.4, one sees that (0, 0, 0, r) ∈
K0, and then (0, 0, 0, r) ∈ epi(F − G1 + G2)

∗ (thanks to (3.14)). This together
with Lemma 3.3 implies that −r ≤ v(P ), which contradicts with v(P ) < −r.
Consequently, we have v(P ) ≥ v(D) and the proof is complete. □
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The following theorem provides a characterization for the zero duality to hold
between (P ) and (D).

Theorem 3.6. The zero duality holds between (P ) and (D) if and only if the family
(F,G1, G2) satisfies

(3.15) clK0 = epi(F −G1 +G2)
∗ ∩ ({(0, 0, 0)} × R).

Proof. Suppose that the zero duality holds between (P ) and (D), that is, v(P ) =
v(D). Then, by Theorem 3.5, (3.14) holds and hence

(3.16) clK0 ⊆ epi(F −G1 +G2)
∗,

since epi(F −G1 +G2)
∗ is w∗-closed. This together with (3.10) implies that

(3.17) clK0 ⊆ epi(F −G1 +G2)
∗ ∩ ({(0, 0, 0)} × R).

To show (3.15), it remains to show that the converse inclusion of (3.17) holds. To
do this, let (0, 0, 0, r) ∈ epi(F − G1 + G2)

∗. Then, by Lemma 3.3, v(P ) ≥ −r and
v(D) ≥ −r by the zero duality between (P ) and (D). Let ε > 0. Then, for each
λ ∈ S⊕ and u∗ ∈ X∗, there exists µ0 ∈ K⊕ such that

−r − ε ≤ g∗1(λ)− f∗
1 (µ0)− (µ0f2)

∗(u∗) + (λg2)
∗(u∗),

which implies that (0, 0, 0, r + ε) ∈ K0, thanks to Lemma 3.4. Hence, (0, 0, 0, r) ∈
clK0 and

epi(F −G1 +G2)
∗ ∩ ({(0, 0, 0)} × R) ⊆ clK0.

This together with (3.17) implies that the (3.15) holds.
Conversely, suppose that the family (F,G1, G2) satisfies (3.15). Then, the family

(F,G1, G2) satisfies (3.14) and so v(P ) ≥ v(D) by Theorem 3.5. To show the
converse inequality, suppose on the contrary that v(D) < v(P ). Then, there exists
r ∈ R such that v(D) < −r < v(P ). Thus, by Lemma 3.3, (0, 0, 0, r) ∈ epi(F −
G1 + G2)

∗. This together with (3.15) implies that (0, 0, 0, r) ∈ clK0. Therefore,
there exists a net {(0, 0, 0, rn)} ⊆ K0 such that rn → r. Hence, by Lemma 3.4, for
each λ ∈ S⊕ and u∗ ∈ X∗, there exists µ0 ∈ K⊕ such that

g∗1(λ)− f∗
1 (µ0)− (µ0f2)

∗(u∗) + (λg2)
∗(u∗) ≥ −rn → −r.

This together with the definition of v(D) implies that v(D) ≥ −r, which contradicts
with v(D) < −r. Hence, v(P ) = v(D) and the proof is complete. □

Theorem 3.7. The following statements are equivalent:
(i) The strong duality holds between (P ) and (D).
(ii) v(P ) = v(D) and for each λ ∈ S⊕ and u∗ ∈ X∗, there exists µ0 ∈ K⊕

satisfying

(3.18) g∗1(λ)− f∗
1 (µ0)− (µ0f2)

∗(u∗)− (λg2)
∗(u∗) ≥ v(D).

(iii) The family (F,G1, G2) satisfies

(3.19) K0 = epi(F −G1 +G2)
∗ ∩ ({(0, 0, 0)} × R).
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Proof. (i) ⇒ (ii) It follows from the definition of the strong duality.
(ii) ⇒ (iii) Suppose that (ii) holds. Let λ ∈ S⊕ and u∗ ∈ X∗. Then, v(D) = v(P )

and there exists µ0 ∈ K⊕ satisfying (3.18). Thus, by Theorem 3.5, (3.14) holds.
Therefore, by (3.10), we only need to show that the set on the right-hand side of
(3.19) is contained in the set on the left-hand side. To do this, let (0, 0, 0, r) ∈
epi(F − G1 + G2)

∗. Then, by Lemma 3.3, we have −r ≤ v(P ). Therefore, −r ≤
v(D) and µ0 ∈ K⊕ satisfies (3.18). This together with Lemma 3.4 implies that
(0, 0, 0, r) ∈ K0 as λ ∈ S⊕ and u∗ ∈ X∗ are arbitrary. Thus, epi(F − G1 + G2)

∗ ∩
({(0, 0, 0)} × R) ⊆ K0, and this completes the proof of the implication (ii) ⇒ (iii).

(iii) ⇒ (i) Suppose that the family (F,G1, G2) satisfies (3.19). Then, the family
(F,G1, G2) satisfies the (3.14), and so v(P ) ≥ v(D) by Theorem 3.5. Thus, to
prove the strong duality, by Definition 3.1(iii), it suffices to show that v(D) ≥ v(P )

and for any λ ∈ S⊕ and u∗ ∈ X∗ satisfying v(D) = v(D(λ,u∗)), there exists µ0 ∈
K⊕ such that µ0 is the optimal solution of the problem (D(λ,u∗)). Note that the
conclusion holds trivially if v(P ) = −∞. Below we consider only in the case when
−r := v(P ) ∈ R. By Lemma 3.3, (0, 0, 0, r) ∈ epi(F − G1 + G2)

∗, and hence
(0, 0, 0, r) ∈ K0 thanks to (3.19). Thus, by Lemma 3.4, we have that v(D) ≥ −r
and for each λ ∈ S⊕ and u∗ ∈ X∗, there exists µ0 ∈ K⊕ satisfying (3.11). Hence,

v(P ) = v(D) and for any λ ∈ S⊕ and u∗ ∈ X∗ satisfying v(D) = v(D(λ,u∗)), µ0 is

the optimal solution of the problem (D(λ,u∗)). The proof is complete. □

The remainder of this section is devoted to study the total duality between (P )
and (D). For this purpose, let S(P ) denote the optimal solution set of (P ). It is
said that the total duality holds between (P ) and (D) if the strong duality holds
between (P ) and (D) provided that S(P ) ̸= ∅.

Theorem 3.8. Let x0 ∈ S(P ). Suppose that the weak duality holds, and for each
u∗ ∈ X∗, there exists µ0 ∈ ∂f1(f2(x0))∩K⊕ such that u∗ ∈ ∂(µ0f2)(x0). Then, the
strong duality holds between (P ) and (D).

Proof. Let u∗ ∈ X∗ be arbitrary. Then, there exists µ0 ∈ ∂f1(f2(x0)) ∩ K⊕ such
that u∗ ∈ ∂(µ0f2)(x0). By Young equality (2.3), we have that

(3.20) (µ0f2)(x0) + (µ0f2)
∗(u∗) = ⟨u∗, x0⟩,

and

(3.21) f1(f2(x0)) + f∗
1 (µ0) = ⟨µ0, f2(x0)⟩.

Let λ ∈ S⊕ be arbitrary. By the Young-Fenchel inequality (2.1), one has that

(3.22) g∗1(λ) + g1(g2(x0)) ≥ ⟨λ, g2(x0)⟩ and (λg2)
∗(u∗) + ⟨λ, g2(x0)⟩ ≥ ⟨u∗, x0⟩.

Combing this with (3.20), (3.21) and (3.22), we have that

g∗1(λ)− f∗
1 (µ0)− (µ0f2)

∗(u∗) + (λg2)
∗(u∗)

= g∗1(λ)− f∗
1 (µ0) + (µ0f2)(x0)− ⟨u∗, x0⟩+ (λg2)

∗(u∗)
= g∗1(λ) + (f1 ◦ f2)(x0)− ⟨u∗, x0⟩+ (λg2)

∗(u∗)
≥ ⟨λ, g2(x0)⟩ − g1(g2(x0)) + f1(f2(x0))− ⟨u∗, x0⟩+ (λg2)

∗(u∗)
≥ f1(f2(x0))− g1(g2(x0))
= v(P ),
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where the last equality holds because of x0 ∈ S(P ). Thus, by the definition of v(D),
we see that v(D) ≥ v(P ). This together with the weak duality between (P ) and (D)
implies that v(D) = v(P ) and for each λ ∈ S⊕ and u∗ ∈ X∗, there exists µ0 ∈ K⊕

such that (3.18) holds. It follows from Theorem 3.7 that the strong duality holds
and the proof is complete. □

4. The special cases

In this section, we will give some special cases of our general results. Recall that
IdX denotes the identity operator onX. As before, we assume that f1, f2,K, S, g1, g2
are the same as in Section 3, that is, K ⊆ Y is a closed convex cone, f1 : Y → R̄
is a proper, convex and K-increasing function, f2 : X → Y • is a proper, K-convex
function, S ⊆ Z is a closed convex cone, g1 : Z → R̄ is a proper, convex, S-increasing
function, and g2 : X → Z• is a proper, S-convex function such that f1 ◦ f2 − g1 ◦ g2
is proper.

4.1. The case g2 = IdX . Let X = Z and g2 = IdX . Then, the problem defined by
(3.1) reduced into the following optimization problem:

(P1) inf
x∈X

{(f1 ◦ f2)(x)− g1(x)}.

Note that for each u∗ ∈ X∗ and λ ∈ S⊕,

(λg2)
∗(u∗) =

{
0, λ = u∗,

+∞, otherwise.

Then, the dual problem defined by (3.2) becomes

(D1) inf
u∗∈X∗

sup
µ∈K⊕

{−f∗
1 (µ)− (µf2)

∗(u∗) + g∗1(u
∗)}.

Moreover, the corresponding set defined by (3.9) can be expressed as

K1 :=
∩

u∗∈X∗

∪
µ∈K⊕

(
{(u∗,−µ, r) : (u∗, r) ∈ epi(µf2)

∗}

+{(0, µ, r) : (µ, r) ∈ epi f∗
1 } − (u∗, 0, g∗1(u

∗))
)
.

Let F̃ , G̃1, G̃2 : X × Y → R̄ be defined by

(4.1) F̃ (x, y) := f1(y),

(4.2) G̃1(x, y) := g1(x),

and

(4.3) G̃2(x, y) := δ{(x,y)∈X×Y :f2(x)−y∈−K}(x, y).

Then, by Theorems 3.5,3.6 and 3.7, we can get the following theorems straightfor-
wardly.

Theorem 4.1. The weak duality holds between (P1) and (D1) if and only if the

family (F̃ , G̃1, G̃2) satisfies

(4.4) K1 ⊆ epi(F̃ − G̃1 + G̃2)
∗.
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Theorem 4.2. The zero duality holds between (P1) and (D1) if and only if the

family (F̃ , G̃1, G̃2) satisfies

clK1 = epi(F̃ − G̃1 + G̃2)
∗ ∩ ({(0, 0)} × R).

Theorem 4.3. The strong duality holds between (P1) and (D1) if and only if the

family (F̃ , G̃1, G̃2) satisfies

(4.5) K1 = epi(F̃ − G̃1 + G̃2)
∗ ∩ ({(0, 0)} × R).

Furthermore, we consider the following composite optimization problem:

(P2) inf
x∈X

{(f1 ◦ f2)(x) + (h ◦A)(x)− g1(x)},

where E is a locally convex Hausdorff topological vector space with E∗ is its dual
space, h : E → R̄ is a proper convex function and A : X → E is a linear continuous
mapping. Assume that A(dom(f1 ◦ f2) ∩ dom g1) ∩ domh ̸= ∅. Following [18], we
define the dual problem of (P2) by

(D2) inf
u∗∈X∗

sup
e∗∈E∗,µ∈K⊕

{g∗1(u∗)− f∗
1 (µ)− (µf2)

∗(u∗ −A∗e∗)− h∗(e∗)}.

To discuss the dualities between (P2) and its dual problem (D2), we need to intro-
duce some new regularity conditions. To this end, we shall consider the identify
operator IdR on R, and the image set (A∗ × IdR)(Z) of a set Z ⊆ E∗ × R through
the map A∗ × IdR : E∗ × R → X∗ × R, that is,

(x∗, r) ∈ (A∗ × IdR)(Z) ⇔

{
∃ e∗ ∈ E∗ such that (e∗, r) ∈ Z

and A∗e∗ = x∗.

Let r ∈ R, we can also denote a set K2 by

K2 :=
∩

u∗∈X∗

( ∪
µ∈K⊕

({(u∗,−µ, r) : (u∗, r) ∈ epi(µf2)
∗ + (A∗ × IdR)(epih

∗)}

+ {(0, µ, r) : (µ, r) ∈ epi f∗
1 })− (u∗, 0, g∗1(u

∗))
)
,

and let G̃3 : X × Y → R̄ be defined by

G̃3(x, y) := (h ◦A)(x).

Recall that F̃ , G̃1, and G̃2 are the same as (4.1), (4.2) and (4.3), respectively. Then,
for each r ∈ R, we get that

(0, r) ∈ epi(f1 ◦ f2 + h ◦A− g1)
∗ ⇐⇒ (0, 0, r) ∈ epi(F̃ − G̃1 + G̃2 + G̃3)

∗.

Similar to the proof of the Theorems 3.5,3.6 and 3.7, we can obtain the following
theorems.

Theorem 4.4. The weak duality holds between (P2) and (D2) if and only if the

family (F̃ , G̃1, G̃2, G̃3) satisfies

(4.6) K2 ⊆ epi(F̃ − G̃1 + G̃2 + G̃3)
∗.
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Theorem 4.5. The zero duality holds between (P2) and (D2) if and only if the

family (F̃ , G̃1, G̃2, G̃3) satisfies

clK2 = epi(F̃ − G̃1 + G̃2 + G̃3)
∗ ∩ ({(0, 0)} × R).

Theorem 4.6. The strong duality holds between (P2) and (D2) if and only if the

family (F̃ , G̃1, G̃2, G̃3) satisfies

(4.7) K2 = epi(F̃ − G̃1 + G̃2 + G̃3)
∗ ∩ ({(0, 0)} × R).

Remark 4.7. In [18], the authors concerned with the following composite opti-
mization problem:

(P3) inf
x∈Ω

{(f1 ◦ f2) + (h ◦A)(x)− g1(x)},

where Ω := {x ∈ X : p(x) ∈ −S}, S ⊆ Z is a closed convex cone and p : X → Z• is
a proper, S-convex and S-epi-closed mapping. Under the assumption that

(4.8) f1, h, g1 are lsc and f2 is K-epi-closed,

and the following closure condition:

(CQ)
∪

λ∈S⊕,µ∈K⊕

{(u∗,−µ, r) : (λp+ µf2)
∗(u∗) ≤ r}+ {0} × epi(f∗

1 )

+ {(u∗, 0, r) : (u∗, r) ∈ (A∗ × IdR)(epih
∗)} is closed regarding X∗ × {0} × R,

they established in [18, Theorem 4.1] the strong duality between (P3) and its dual
problem

(D3) inf
u∗∈X∗

sup
λ∈S⊕,µ∈K⊕,e∗∈E∗

{g∗1(u∗)−f∗
1 (µ)−(λ◦p+µ◦f2)∗(u∗−A∗e∗)−h∗(e∗)}.

Note that in the case when Ω = X, (P3) is reduced to (P2), (D3) is reduced to (D2)
and (CQ) is reduced to

(CQ1)
∪

µ∈K⊕

{(u∗,−µ, r) : (µf2)
∗(u∗) ≤ r}+ {(u∗, 0, r) : (u∗, r) ∈ (A∗ × IdR)(epih

∗)}

+ {0} × epi(f∗
1 ) is closed regarding X∗ × {0} × R.

For simplicity, we denote

K3 :=
∪

µ∈K⊕

{(u∗,−µ, r) : (µf2)
∗(u∗) ≤ r}

+{(u∗, 0, r) : (u∗, r) ∈ (A∗ × IdR)(epih
∗)}

+{0} × epi(f∗
1 ).

The following proposition shows that our Theorem 4.6 improves the corresponding
result in [18, Theorem 4.1] in the case when Ω = X.

Proposition 4.8. If (4.8) holds, then the following implication holds:

(CQ1) =⇒ (4.7).
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Proof. Suppose that (4.8) and (CQ1) hold. Since f2 is proper convex and

K-epi-closed, f1, h, g1 are proper convex and lsc, it follows that F̃ , G̃1, G̃2, G̃3 are
proper, convex and lsc, and

(4.9) epi F̃ ∗ = {0} × epif∗
1 ,

(4.10) epi G̃∗
2 = cl

∪
µ∈K⊕

{(u∗,−µ, r) : (µf2)
∗(u∗) ≤ r},

epi G̃∗
3 = cl{(u∗, 0, r) : (u∗, r) ∈ (A∗ × IdR)(epih

∗)},
where (4.10) follows from [3, Proposition 3.1] and the last equality holds by [2,
Lemma 1]. Then, by Lemma 2.1(i), we get that

epi(F̃ + G̃2 + G̃3)
∗ = cl(epi F̃ ∗ + epi G̃∗

2 + epi G̃∗
3)

= clK3

= K3,

where the last equality follows from (CQ1). Note that G̃1 is lsc, it follows from (2.4)
that

epi(F̃ − G̃1 + G̃2 + G̃3)
∗
∩

({(0, 0)} × R)

=
∩

u∗∈X∗

(
epi(F̃ + G̃2 + G̃3)

∗ − (u∗, 0, g∗1(u
∗))

)∩
({(0, 0)} × R)

=
∩

u∗∈X∗

(
K3 − (u∗, 0, g∗1(u

∗))
)∩

({(0, 0)} × R)

= K2

∩
({(0, 0)} × R).

This together with the fact K2 ⊆ {0}× {0}×R implies that (4.7) holds. The proof
is complete. □

4.2. The case g1 ∈ X∗ and g2 = IdX . In the case when g2 = IdX and g1 :=
p ∈ X∗, then, the problem defined by (3.1) is reduced into the following composite
optimization problem:

(P4) inf
x∈X

{(f1 ◦ f2)(x)− ⟨p, x⟩}.

Note that for each u∗ ∈ X∗ and λ ∈ S⊕,

g∗1(λ) =

{
0, λ = p,

+∞, otherwise,
and (λg2)

∗(u∗) =

{
0, u∗ = λ,

+∞, otherwise.

Then, the dual problem defined by (3.2) becomes

(D4) sup
µ∈K⊕

{−f∗
1 (µ)− (µf2)

∗(p)},

and the corresponding set defined by (3.9) can be expressed as

K4 : =
∪

µ∈K⊕

(
{(p,−µ, r) : (p, r) ∈ epi(µf2)

∗}+ {(0, µ, r) : (µ, r) ∈ epi f∗
1 } − (p, 0, 0)

)
.
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Note by (2.1) that for each p ∈ X∗, x ∈ X and µ ∈ K⊕,

−f∗
1 (µ)− (µf2)

∗(p) ≤ f1(f2(x))− ⟨µ, f2(x)⟩+ (µf2)(x)− ⟨p, x⟩ = f1(f2(x))− ⟨p, x⟩.
It follows that v(D4) ≤ v(P4), that is, the weak duality holds between (P4) and

(D4). Define G̃1 : X × Y → R̄ by

G̃1(x, y) = p(x)

and recall that F̃ , G̃2 are defined respectively by (4.1) and (4.3). Then, by Theorems
4.2 and 4.3, we get the following theorems directly.

Theorem 4.9. The zero duality holds between (P4) and (D4) if and only if the

family (F̃ , G̃1, G̃2) satisfies

clK4 = epi(F̃ − G̃1 + G̃2)
∗ ∩ ({(0, 0)} × R).

Theorem 4.10. The strong duality holds between (P4) and (D4) if and only if the

family (F̃ , G̃1, G̃2) satisfies

(4.11) K4 = epi(F̃ − G̃1 + G̃2)
∗ ∩ ({(0, 0)} × R).

Remark 4.11. Under the assumption that

(4.12) f1 is lsc and f2 is K-epi-closed, ,

the authors in [3, Theorem 5.1] established the strong duality between (P4) and
(D4) via the following closure condition

(CQ2)
∪

µ∈K⊕

{(x∗,−µ, r) : (x∗, r) ∈ epi(µf2)
∗}+ {0}

× epi f∗
1 is closed regarding the subspace X∗ × {0} × R.

Then, by the following Proposition 4.12, one sees that our Theorem 4.10 improves
the corresponding result in [3].

Proposition 4.12. If (4.12) holds, then

(CQ2) ⇒ (4.11).

Proof. Suppose that (4.12) and (CQ2) hold. It is easy to see that the equalities

(4.9) and (4.10) are also hold. Since F̃ , G̃2 are proper, convex and lsc functions, it
follows from Lemma 2.1(i) that

epi(F̃ + G̃2)
∗ = cl(epi F̃ ∗ + epi G̃∗

2)

= cl
( ∪

µ∈K⊕

{(u∗,−µ, r) : (µf2)
∗(u∗) ≤ r}+ {0} × epi(f∗

1 )
)

=
∪

µ∈K⊕

{(u∗,−µ, r) : (µf2)
∗(u∗) ≤ r}+ {0} × epi f∗

1 ,

where the last equality follows from (CQ2). Note that G̃1 is lsc and

G̃∗
1(x

∗, y∗) =

{
0, if (x∗, y∗) = (p, 0),

+∞, otherwise.
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Then, by (2.4), we have that

epi(F̃ − G̃1 + G̃2)
∗
∩

({(0, 0)} × R)

=
∩

x∗∈X∗,y∗∈Y ∗

(
epi(F̃ + G̃2)

∗ − (x∗, y∗, G̃∗
1(x

∗, y∗))
)∩

({(0, 0)} × R)

=
( ∪
µ∈K⊕

{(u∗,−µ, r) : (µf2)
∗(u∗) ≤ r}+ {0} × epi(f∗

1 )− (p, 0, 0)
)∩

({(0, 0)} × R)

= K4

∩
({(0, 0)} × R).

This together with the fact K4 ⊆ {0}×{0}×R implies that (4.11) holds. The proof
is complete. □
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