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for the class of this problem have been studied by [9] and [25], respectively. When
g = 0, then (1.1)-(1.4) becomes a problem with mixed pointwise constraints. Un-
der regularity conditions, second-order necessary optimality conditions and second-
order sufficient optimality conditions for this problem have been studied recently
by [24] and [26], respectively. For more information on optimal control problems
governed by elliptic equations which have close connections to the present work, we
refer the readers to [2, 7, 10, 33, 34, 38] and references therein.

Recently, in [4], J. F. Bonnans and A. Hermant have dealt with second-order
necessary and sufficient conditions for optimal control problems governed by or-
dinary differential equations with pure state constraints and mixed control-state
constraints. Particularly, [4] gave second-order sufficient conditions which have no
gap with second-order necessary conditions under assumptions that the control is
continuous and satisfies the strengthened Legendre-Clebsch condition. However, to
our best knowledge, the difficult issue of necessary and sufficient optimality con-
ditions for optimal control problems governed by semilinear elliptic equations with
pure constraints and mixed pointwise constraints has not yet been studied. In this
paper we will address this problem. Namely, we shall derive necessary optimality
conditions for the problem under the so-called regularity condition which generalizes
the Robinson constraint qualification condition.

To tackle the problem we first derive necessary optimality conditions for an ab-
stract optimal control problem and then apply the obtained result to problem (1.1)-
(1.4). For this we assume that Y , U and E are either reflexive Banach spaces or
separable Banach spaces, Π is a Banach space and Z = Y × U . We shall denote
by Y ∗, U∗, E∗ and Π∗ the dual spaces of Y,U,E and Π, respectively. Suppose that
Y ↪→ C(Ω) is continuous. We consider the abstract problem of finding y ∈ Y and
u ∈ U such that

J(y, u) −→ inf(1.5)

subject to

Φ(y, u) = 0(1.6)

F (y, u) ∈ D(1.7)

G(y) ∈ Q,(1.8)

where Φ : Y × U → Π, F : Y × U → E are given mappings, G : Y → C(Ω) is a
mapping which is defined by G(y) = g(·, y(·)) with g : Ω×R → R is a differentiable
function; D is a closed convex set in E and Q is a closed convex set in C(Ω), which
is given by

Q = {φ ∈ C(Ω) | φ(x) ≤ 0 for all x ∈ Ω}.

Obviously, problem (1.1)-(1.4) is a special case of problem (1.5)-(1.8) whenever

Y =W 1,r
0 (Ω), U = Lp(Ω) and

D = {ϕ ∈ Lp(Ω) | α(x) ≤ ϕ(x) ≤ β(x) a.e.}.(1.9)

To deal with first- and second-order necessary optimality conditions for problem
(1.5)-(1.8), we often require that D has a nonempty interior. Hence we need D ⊂
L∞(Ω) and so the control variables u belong to L∞(Ω). For this approach, we refer
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the readers to Páles and Zeidan [30, 31, 32] on the second-order necessary optimality
conditions for optimal control problems governed by ordinary differential equations,
Casas et al [8] and [10] for sufficient second-order optimality conditions, Rösch et
al [35] on regularity of solution for problems with semilinear elliptic equations and
mixed pointwise constraints.

When control variable u ∈ L∞(Ω), then the mixed pointwise constraints (1.7) as
well as (1.3) are easy to deal with. However, in this case, when the constraint set is

unbounded, problem (1.1)-(1.4) may not have solution in W 1,r
0 (Ω) × L∞(Ω). The

reason is that the object function does not satisfy coercivity conditions. Besides,
multipliers belong to dual space L∞(Ω)∗ which are measures rather than functions
in L1(Ω). Therefore we would like to consider the problem when variables (y, u) ∈
W 1,r

0 (Ω) × Lp(Ω) with 1 < p < +∞. But in this setting, we have D ⊂ Lp(Ω) with
1 ≤ p < +∞ and the interior of D is empty (see [24, Example 1.1]). Therefore the
results of [30, 31, 32] fail to apply for problem (1.1)-(1.4) when the control variable
u ∈ Lp(Ω) with 1 < p < +∞. Note that the approach of [30, 31, 32] is based
on a method which is due to Dubovitskii and Milyutin in [15], where the second-
order variation sets of constraint sets are built under assumptions that they have
nonempty interiors.

To overcome this difficulty, Bonnans and Shapiro [3], Cominetti [12] and Jourani
[20] and [21] (see also Zowe et al [27] and [39]) gave necessary optimality conditions
for the problem under regularity conditions which generalize the Robinson con-
straint qualification condition [37]. The results in [3] and [12] are for the problem,
where the sets A, D and Q are required to be convex meanwhile results in [20] and
[21] are proved by using Clarke tangent cones. Recently Kien et al [24]-[26], have
obtained some results on necessary and sufficient optimality conditions for math-
ematical programming problems which extended results in [12, 20, 21] and then
derived optimality conditions for a class of semilinear elliptic optimal control prob-
lems with mixed pointwise constraints and for a class of semilinear elliptic optimal
control problems with pure state constraints, respectively.

In this paper, we continue to develop the results in [24] and [25] to derive op-
timality conditions for (1.1)-(1.4) under the regularity conditions. It is noted that
the appearance of pure state constraint (1.8) and mixed pointwise constraint (1.7)
causes the problem more complicated because the state does not link to control by
a functional relation. In this case the results in [24] and [25] fail to apply for the
current problem.

To deal with the class of these problems, we shall use tools of variational analysis
and some techniques which were given in [25] and [30, 31] for establishing optimality
conditions of problem (1.5)-(1.8) and then apply the obtained results to derive
the first- and second-order optimality conditions for problem (1.1)-(1.4). Although
the obtained result is modest, the contribution here is the approach which brings
together two areas in which optimal control problems governed by partial differential
equations can be considered as mathematical programming problems and vice versa,
and a unified theory of first- and second-order optimality conditions. With the
results, we hope that, we will be able to derive corresponding second-order sufficient
conditions with no gap in our next study in the near future.
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The paper is organized as follows. In Section 2, we establish first- and second-
order necessary optimality conditions for the abstract optimal control problem.
Section 3 is destined for second-order necessary optimality conditions for problem
(1.1)-(1.4).

2. Necessary optimality conditions for the abstract optimal control
problem

In this section, we derive optimality conditions for problem (1.5)-(1.8).
For convenience, we define the set

A = {z = (y, u) ∈ Z | Φ(z) = 0}
and the mapping

G1 : Y × U → C(Ω), G1(y, u) = G(y).

Then problem (1.5)-(1.8) can be formulated in the following simpler form:

J(z) → inf(2.1)

subject to

z ∈ A ∩ F−1(D),(2.2)

G1(z) ∈ Q.(2.3)

To deal with optimal conditions we need some facts and concepts of variational
analysis which are related to tangent cones. We refer the readers to [3, 13] and [36]
on facts of variational analysis.

Let Z1 be a Banach space and C be a closed set in Z1. Given a point z ∈ C, the
sets

T ♭(C, z) =
{
v ∈ Z1| lim

t→0+

d(z + tv, C)

t
= 0

}
= {v ∈ Z1|∀tn → 0+, ∃vn → v, z + tnvn ∈ C}

and

T (C, z) =
{
v ∈ Z1| lim inf

t→0+

d(z + tv, C)

t
= 0

}
= {v ∈ Z1|∃tn → 0+, ∃vn → v, z + tnvn ∈ C}

are called the adjacent tangent cone and contingent cone to C at z, respectively.
It is noted that these cones are closed and we have T ♭(C, z) ⊂ T (C, z). We shall
denote by N(C, z) the normal cone to C at z, which is defined by

N(C, z) = {z∗ ∈ Z∗
1 | ⟨z∗, z′⟩ ≤ 0,∀z′ ∈ T (C, z)}.

It is well known that when C is convex, then

T ♭(C, z) = T (C, z) = cone(C − z)

and
N(C, z) = {z∗ ∈ Z∗

1 | ⟨z∗, z′ − z⟩ ≤ 0, ∀z′ ∈ C}.
Given a point z ∈ C and v ∈ Z1, the set

T 2♭(C, z, v) =
{
w ∈ Z1| lim

t→0+

d(z + tv + t2w,C)

t2
= 0

}
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= {w ∈ Z1|∀tn → 0+, ∃wn → w, z + tnv + t2nwn ∈ C}

and

T 2(C, z, v) =
{
w ∈ Z1| lim inf

t→0+

d(z + tv + t2w,C)

t2
= 0

}
= {w ∈ Z1|∃tn → 0+, ∃wn → w, z + tnv + t2nwn ∈ C}

are called the inner and outer second order tangent sets, respectively, to C at z in
the direction v ∈ Z1. These sets are closed and we have T 2♭(C, z, v) ⊂ T 2(C, z, v).

When C is convex, then T 2♭(C, z, v) is convex. Furthermore,

T 2♭(C, z, 0) = T ♭(C, z), T 2(C, z, 0) = T (C, z).

Let us denote by Aad the admissible set of problem (2.1)-(2.3). Fixing an element
z = (y, u) ∈ Aad, we suppose the following hypotheses:

(A1) the mappings J,Φ, and F are second-order Fréchet differentiable around z.
(A2) ∇Φ(z) : Z → Π is surjective.
(A3) The function g : Ω × R → R is continuous and second-order differentiable

with respect to second variable. Moreover, g has properties that g(x, 0) < 0
for all x ∈ Γ, and for each M > 0, there exists a number kM > 0 such that∣∣gy(x, y1)− gy(x, y2)

∣∣+ ∣∣gyy(x, y1)− gyy(x, y2)
∣∣ ≤ kM |y1 − y2|

for all x ∈ Ω, y1, y2 ∈ R with |y1|, |y2| ≤M .
(A4) The regularity condition is satisfied at z, that is, there exists δ > 0 such

that

(2.4) 0 ∈ int
∩

z∈BZ(z,δ)∩A

[
∇F (z)(T (A, z) ∩BZ)− (D − F (z)) ∩BE

]
,

where BZ and BE are closed unit balls in Z and E, respectively, and BZ(z, δ)
is an open ball in Z with center z and radius δ > 0.

Problem (1.5)-(1.8) is associated with the following Lagrangian:

L(λ, π∗, e∗, µ, z) = λJ(y, u) + ⟨π∗,Φ(y, u)⟩+ ⟨e∗, F (y, u)⟩+ ⟨µ,G(y)⟩(2.5)

with λ ∈ R, π∗ ∈ Π∗, e∗ ∈ E∗ and µ ∈ M(Ω), where M(Ω) is the dual of C(Ω)
which coincides with the space of finite signed regular Borel measures.

Below we shall formulate optimality conditions in terms of the Lagrangian. Before
formulating the second-order optimality conditions, we need the following notion.

Definition 2.1. The set of critical directions to problem (2.1)-(2.3) at z = (y, u)
is denoted by Θ[(y, u)], which consists of couples z = (y, u) such that the following
conditions are verified:

(i) Jy(z)y + Ju(z)u ≤ 0;
(ii) (the linearized equation) Φy(z)y +Φu(z)u = 0;

(iii) ∇F (z)(y, u) ∈ T ♭(D,F (z));

(iv) ∇G(y)y ∈ T ♭(Q,G(y)).
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From the definition, we see that Θ[(y, u)] is a closed convex cone, which contains
tangent vectors (y, u) to Aad at z such that Jy(z)y + Ju(z)u ≤ 0. By [23, Theorem
3.1], condition (iv) is equivalent to the fact that gy(x, y(x))y(x) ≤ 0 whenever
g(x, y(x)) = 0.

Recall that support of a nonnegative measure µ, written as supp(µ), is the small-
est closed subset of Ω such that µ(Ω \ supp(µ)) = 0. Below, given a set K in Z and
z∗ ∈ Z∗, we define σ(z∗,K) = supz∈K⟨z∗, z⟩.

We are ready to state the main result of this section.

Theorem 2.2. Suppose that hypotheses (A1) − (A4) are fulfilled and z ∈ Z is a
locally optimal solution of problem (1.5)-(1.8). Then for each d = (y, u) ∈ Θ[z],
there exist multipliers λ ≥ 0, π∗ ∈ Π∗, e∗ ∈ E∗ and a nonnegative Borel measure
µ ∈ M(Ω) with |λ|+ ∥µ∥ ̸= 0 such that the following conditions are fulfilled:

(i) (the stationary condition)

DzL(λ, π∗, e∗, µ, z) = λ∇J(z) +∇Φ(z)∗π∗ +∇F (z)∗e∗ +∇G(y)∗µ = 0;

(ii) (the complementary condition in z)

e∗ ∈ N(D,F (z));

(iii) (the complementary condition in y)

supp(µ) ⊂ {x ∈ Ω | g(x, y(x)) = 0};

(iv) (the second-order condition)

D2
zzL(λ, π∗, e∗, µ, z)(d, d)− 2σ(e∗, T 2♭(D,F (z),∇F (z)d))

− 2σ(µ, T 2♭(Q,G(y),∇G(y)y) ≥ 0.

To prove the theorem, we need to establish some auxiliary lemmas.
Let us fix a couple (y, u) ∈ Θ[(y, u)] and define the functions on Ω

a(x) = g(x, y(x)), b(x) = gy(x, y(x))y(x),

(2.6) θa,b(x) =


lim inf s→x

a(s)<0,b(s)>0

b2(s)
4a(s) if x ∈ Ωa=0,b=0 ∩ ∂(Ωa<0,b>0)

0 if x ∈ Ωa=0,b=0 \ ∂(Ωa<0,b>0)

+∞ otherwise.

Here Ωa=0,b=0 = {x ∈ Ω | a(x) = b(x) = 0} and ∂(Ωa<0,b>0) is the boundary

of the set {x ∈ Ω | a(x) < 0 < b(x)}. By Lemma 3.3 in [31], θa,b is a lower

semicontinuous function on Ω. By [23, Theorem 3.2] (see also [31, Corollary 4.2]),

we have w ∈ T 2♭(Q, g(·, y), gy(·, y)y) if and only if w(x) ≤ θa,b(x) for all x ∈ Ω. Let
us define the set

(2.7) T 2♭
0 (Q, g(·, y), gy(·, y)y) = {ψ ∈ C(Ω) | ψ(x) < θa,b(x) ∀x ∈ Ω}.

It is clear that

T 2♭
0 (Q, g(·, y), gy(·, y)y) = T 2♭(Q, g(·, y), gy(·, y)y).(2.8)

We have the following lemma, its proof can be found in the appendix of the paper.
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Lemma 2.3. (C.f. [25, Lemma 2.1]) Suppose that hypotheses (A1) − (A4) are
fulfilled and d = (y, u) ∈ Θ[(y, u)]. If

(ψ, ω) ∈ T 2♭(A, z, d) ∩
[
∇F (z)−1

(
T 2♭(D,F (z),∇F (z)d)− 1

2
∇2F (z)d2

)]
and

∇G(y)ψ +
1

2
∇2G(y)y2 ∈ T 2♭

0 (Q,G(y),∇G(y)y),

then for any sequence tk → 0+, there exist sequences ψk → ψ, ωk → ω and a
number k0 > 0 such that

(y + tky + t2kψk, u+ tku+ t2kωk) ∈ Aad, ∀k ≥ k0.

The following result is a primal form of second-order necessary optimality condi-
tions.

Lemma 2.4. Suppose that assumptions (A1)−(A4) are satisfied and z = (y, u) is a
locally optimal solution of problem (2.1)-(2.3). Then for each d = (y, u) ∈ Θ[(y, u)]
and (ψ, ω) ∈ Z satisfying

(ψ, ω) ∈ T 2♭(A, z, d) ∩
[
∇F (z)−1

(
T 2♭(D,F (z),∇F (z)d)− 1

2
∇2F (z)d2

)]
,

∇G(y)ψ +
1

2
∇2G(y)y2 ∈ T 2♭

0 (Q,G(y),∇G(y)y),

one has

⟨∇J(z), (ψ, ω)⟩+ 1

2
∇2J(z)(d, d) ≥ 0.

Proof. The proof is similar to the proof of [25, Lemma 2.2]. However, for convenience
of the readers, we provide a short proof here.

By Lemma 2.3, for any sequence tk → 0+, there exist sequences ψk → ψ, ωk → ω
and a number k0 > 0 such that

(y + tky + t2kψk, u+ tku+ t2kωk) ∈ Aad, ∀k ≥ k0.

Since (y, u) is an optimal solution, we have

J(y + tky + t2kψk, u+ tku+ t2kωk) ≥ J(y, u).

Using a Taylor expansion, we get

0 ≤ ⟨∇J(z), tk(y, u) + t2k(ψk, ωk)⟩+
1

2
∇2J(z)(tk(y, u) + t2k(ψk, ωk))

2 + o(t2k)

= tk⟨∇J(z), (y, u)⟩+ t2k⟨∇J(z), (ψk, ωk)⟩

+
t2k
2
∇2J(z)((y, u) + tk(ψk, ωk))

2 + o(t2k).

Since ⟨∇J(z), (y, u)⟩ ≤ 0,

0 ≤ t2k⟨∇J(z), (ψk, ωk)⟩+
1

2
t2k∇2J(z)((y, u) + tk(ψk, ωk))

2 + o(t2k).

Dividing both sides by t2k and letting k → ∞, we obtain the desired conclusion. □
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Proof of Theorem 2.2. Fixing d = (y, u) ∈ Θ[(y, u)], we consider two cases:

Case 1. T 2♭(D,F (z),∇F (z)d) and T 2♭(Q,G(y),∇G(y)y) are nonempty.

In this case we consider in the product space R× E × C(Ω) the set

K =
{(1

2
∇2J(z)d2 +∇J(z)z + r,

1

2
∇2F (z)d2 +∇F (z)z − v,

1

2
∇2G1(z)d

2 +∇G1(z)z − e
) ∣∣∣ z ∈ T 2♭(A, z, d), v ∈ T 2♭(D,F (z),∇F (z)d),

e ∈ T 2♭
0 (Q,G1(z),∇G1(z)d), r ≥ 0

}
.

Note that
T 2♭
0 (Q,G1(z),∇G1(z)d) = T 2♭

0 (Q,G(y),∇G(y)y).
We now show that K has the following properties:

• K is convex. This property follows from convexity of T 2♭(A, z, d),

T 2♭(D,F (z),∇F (z)d) and T 2♭
0 (Q,G1(z),∇G1(z)d).

• intK ̸= Ø. In fact, by (2.4), there exists ρ > 0 such that

BE(0, ρ) ⊂ ∇F (z)(T (A, z) ∩BZ)− T (D,F (z)) ∩BE

= ∇F (z)(T ♭(A, z) ∩BZ)− T ♭(D,F (z)) ∩BE .(2.9)

Here BE(0, ρ) is an open ball in E. From (A2) and [24, Lemma 2.2] (see also [30,
Theorem 5]), we have

(2.10) T ♭(A, z) = T (A, z) = {d′ ∈ Z | ∇Φ(z)d′ = 0}
and

(2.11) T 2♭(A, z, d) =
{
w ∈ Z | ∇Φ(z)w +

1

2
∇2Φ(z)(d, d) = 0

}
.

From this, we can show that

T ♭(A, z)± T ♭(A, z) ⊂ T ♭(A, z)(2.12)

and

T ♭(A, z) + w ⊂ T 2♭(A, z, d)(2.13)

for any w ∈ T 2♭(A, z, d). Also, since D is convex, [12, Proposition 3.1] implies that

ϕ+ T ♭(T ♭(D,F (z)),∇F (z)d) ⊂ T 2♭(D,F (z),∇F (z)d), ∀ϕ ∈ T 2♭(D,F (z),∇F (z)d).
(2.14)

Since ∇Φ(z) is surjective, T 2♭(A, z, d) ̸= Ø. Take

ẑ ∈ T 2♭(A, z, d), ϕ̂ ∈ T 2♭(D,F (z),∇F (z)d)
and define the open set

V = ∇F (z)ẑ − ϕ̂+∇F (z)d+BE(0, ρ).

From this and (2.9)-(2.14), we have

V ⊂ ∇F (z)[(T ♭(A, z) ∩BZ) + ẑ]− ϕ̂− [T ♭(D,F (z)) ∩BE −∇F (z)d]

⊂ ∇F (z)[(ẑ + T ♭(A, z)) ∩BZ(0, ϱ1)]− ϕ̂− [(T ♭(D,F (z))−∇F (z)d) ∩BE(0, ϱ2)]



NECESSARY OPTIMALITY CONDITIONS FOR ELLIPTIC OPTIMAL CONTROL 1371

⊂ ∇F (z)[T 2♭(A, z, d) ∩BZ(0, ϱ1)]− (ϕ̂+ T ♭(T ♭(D,F (z)),∇F (z)d)) ∩BE(0, ϱ3)

⊂ ∇F (z)[T 2♭(A, z, d) ∩BZ(0, ϱ1)]− T 2♭(D,F (z),∇F (z)d) ∩BE(0, ϱ3),

where ϱ1 = 1 + ∥ẑ∥, ϱ2 = 1 + ∥∇F (z)d∥ and ϱ3 = ϱ2 + ∥ϕ̂∥. Note that from [24,
Theorem 2.5], we have

E = ∇F (z)(T ♭(A, z))− cone(D − F (z)).

Here cone(V ) denotes the cone hull of a set V . By the similar arguments as above,
it follows from this and (2.12)-(2.14) that

E = ∇F (z)T 2♭(A, z, d)− T 2♭(D,F (z),∇F (z)d).(2.15)

Put V̂ := 1
2∇

2F (z)d2 + V ,

γ =
1

2
∇2J(z)d2 + sup{∇J(z)z | z ∈ T 2♭(A, z, d) ∩BZ(0, ϱ1)}

and

M =
1

2
∥∇2G1(z)d

2∥0 + sup{∥∇G1(z)z∥0 | z ∈ T 2♭(A, z, d) ∩BZ(0, ϱ1)} − θ̂,

where θ̂ = minx∈Ω θa,b(x) and ∥ · ∥0 denotes the norm of C(Ω). By [31, Lemma

3.3], θa,b is lower semicontinuous on Ω. Since T 2♭(Q,G(y),∇G(y)y) is nonempty,

θa,b(x) > −∞ for all x ∈ Ω (see [23, Lemma 3.1]). On the other hand, Ω is a

compact set. Hence θ̂ is finite and so is M . Define

W = {φ ∈ C(Ω) | φ > M}.
Then W is an open set. We now claim that

(γ,+∞)× V̂ ×W ⊂ K.

Indeed, take any (ξ, v, w) ∈ (γ,+∞)× V̂ ×W . Since v ∈ V̂ , there exist

z0 ∈ T 2♭(A, z, d) ∩BZ(0, ϱ1), v0 ∈ T 2♭(D,F (z),∇F (z)d) ∩BE(0, ϱ3)

such that v = 1
2∇

2F (z)d2 +∇F (z)z0 − v0. Since ξ > γ, we get ξ > 1
2∇

2J(z)d2 +

∇J(z)z0. Hence there exists r ≥ 0 such that ξ = 1
2∇

2J(z)d2 +∇J(z)z0 + r. Since
w ∈W , we have

w >
1

2
∇2G1(z)d

2 + ∥∇G1(z)z0∥0 − θ̂.

Hence

θa,b ≥ θ̂ >
1

2
∇2G1(z)d

2 +∇G1(z)z0 − w.

Defining e0 =
1
2∇

2G1(z)d
2 +∇G1(z)z0 − w, we get

e0 ∈ T 2♭
0 (Q,G1(z),∇G1(z)d)

and

w =
1

2
∇2G1(z)d

2 +∇G1(z)z0 − e0.

Thus we have shown that (ξ, v, w) ∈ K. Consequently, intK ̸= Ø.
• (0, 0, 0) /∈ intK. Otherwise, there exists ϵ > 0 such that

(−ϵ, ϵ)× {0} × {0} ⊂ K.



1372 B. T. KIEN, V. H. NHU, AND M. M. WONG

This implies that there exist z ∈ T 2♭(A, z, d), v ∈ T 2♭(D,F (z),∇F (z)d), r ≥ 0 and

e ∈ T 2♭
0 (Q,G1(z),∇G1(z)d) such that the following relations hold:

(2.16)


1
2∇

2J(z)d2 +∇J(z)z + r < 0
1
2∇

2F (z)d2 +∇F (z)z − v = 0
1
2∇

2G1(z)d
2 +∇G1(z)z − e = 0.

Let z = (ψ, ω). The second relation of (2.16) implies that

z ∈ T 2♭(A, z, d) ∩∇F (z)−1
[
T 2♭(D,F (z),∇F (z)d)− 1

2
∇2F (z)d2

]
.

Meanwhile from the third relation we have
1

2
∇2G(y)y2 +∇G(y)ψ ∈ T 2♭

0 (Q,G(y),∇G(y)y).

Combining these with Lemma 2.4, we obtain 1
2∇

2J(z)d2 + ∇J(z)z ≥ 0, which
contradicts the first relation of (2.16). Our claim is justified.

We now can separate (0, 0, 0) and K by a hyperplane (see [19, Theorem 1, p.163]).
Hence there exists a nonzero functional (λ, e∗, µ) ∈ R× E∗ ×M(Ω) such that

(2.17) λ
(1
2
∇2J(z)d2 +∇J(z)z + r

)
+

⟨
e∗,

1

2
∇2F (z)d2 +∇F (z)z − v

⟩
+

⟨
µ,

1

2
∇2G1(z)d

2 +∇G1(z)z − e
⟩
≥ 0

for all r ≥ 0, z ∈ T 2♭(A, z, d), v ∈ T 2♭(D,F (z),∇F (z)d) and e ∈
T 2♭
0 (Q,G1(z),∇G1(z)d). If λ = 0 and µ = 0, then we have⟨

e∗,
1

2
∇2F (z)d2 +∇F (z)z − v

⟩
≥ 0

for all z ∈ T 2♭(A, z, d) and v ∈ T 2♭(D,F (z),∇F (z)d) or equivalently,⟨
e∗,

1

2
∇2F (z)d2 + w

⟩
≥ 0

for all w ∈ ∇F (z)(T 2♭(A, z, d)) − T 2♭(D,F (z),∇F (z)d). From this and (2.15), we
get e∗ = 0. Thus we must have |λ|+∥µ∥ ̸= 0. Moreover, we have λ ≥ 0. Otherwise,
fixing z, v, e in (2.17) and letting r → +∞, we obtain a contradiction.

Substituting r = 0 into (2.17), yields

λ
(1
2
∇2J(z)d2 +∇J(z)z

)
+

⟨
e∗,

1

2
∇2F (z)d2 +∇F (z)z

⟩
+

⟨
µ,

1

2
∇2G1(z)d

2 +∇G1(z)z
⟩

≥ σ(e∗, T 2♭(D,F (z),∇F (z)d)) + σ(µ, T 2♭
0 (Q,G(y),∇G(y)y)), ∀z ∈ T 2♭(A, z, d).

Since σ(µ, T 2♭
0 (Q,G(y),∇G(y)y)) = σ(µ, T 2♭(Q,G(y),∇G(y)y)), we get

λ
(1
2
∇2J(z)d2 +∇J(z)z

)
+

⟨
e∗,

1

2
∇2F (z)d2 +∇F (z)z

⟩
+

⟨
µ,

1

2
∇2G1(z)d

2 +∇G1(z)z
⟩
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(2.18) ≥ σ(e∗, T 2♭(D,F (z),∇F (z)d)) + σ(µ, T 2♭(Q,G(y),∇G(y)y))
for all z ∈ T 2♭(A, z, d). From (2.10) and (2.11), we get

T 2♭(A, z, d) = T ♭(A, z) + T 2♭(A, z, d).

Hence we can rewrite (2.18) in the form

λ
(1
2
∇2J(z)d2 +∇J(z)(z1 + z2)

)
+

⟨
e∗,

1

2
∇2F (z)d2 +∇F (z)(z1 + z2)

⟩
+

⟨
µ,

1

2
∇2G1(z)d

2 +∇G1(z)(z1 + z2)
⟩

≥ σ(e∗, T 2♭(D,F (z),∇F (z)d)) + σ(µ, T 2♭(Q,G(y),∇G(y)y))
for all z1 ∈ T ♭(A, z) and z2 ∈ T 2♭(A, z, d). It follows that

(2.19) λJ(z)z1 + ⟨e∗,∇F (z)z1⟩+ ⟨µ,∇G1(z)z1⟩+ λ
(1
2
∇2J(z)d2 +∇J(z)z2

)
+

⟨
e∗,

1

2
∇2F (z)d2 +∇F (z)z2

⟩
+

⟨
µ,

1

2
∇2G1(z)d

2 +∇G1(z)z2

⟩
≥ σ(e∗, T 2♭(D,F (z),∇F (z)d)) + σ(µ, T 2♭(Q,G(y),∇G(y)y))

for all z1 ∈ T ♭(A, z) and z2 ∈ T 2♭(A, z, d). This implies that

⟨λ∇J(z) +∇F (z)∗e∗ +∇G1(z)
∗µ, z1⟩ ≥ 0

for all z1 ∈ T ♭(A, z). Hence

−λ∇J(z)−∇F (z)∗e∗ −∇G1(z)
∗µ ∈ N(A, z).

Since T (A, z) = T ♭(A, z) = {v ∈ Z|∇Φ(z)v = 0}, we have

N(A, z) = {∇Φ(z)∗π∗|π∗ ∈ Π∗}.
Hence we can find some π∗ ∈ Π∗ such that

−λ∇J(z)−∇F (z)∗e∗ −∇G1(z)
∗µ = ∇Φ(z)∗π∗.

This is equivalent to DzL(λ, π∗, e∗, µ, z) = 0, which is assertion (i) of the theorem.
Substituting this expression and z1 = 0 into (2.19) we get

⟨−∇Φ(z)∗π∗, z2⟩+
1

2
∇2J(z)d2 +

1

2
⟨e∗,∇2F (z)d2⟩+ 1

2
⟨µ,∇G1(z)d

2⟩

≥ σ(e∗, T 2♭(D,F (z),∇F (z)d)) + σ(µ, T 2♭(Q,G(y),∇G(y)y))

for all z2 ∈ T 2♭(A, z, d). By (2.11), we have ∇Φ(z)z2 +
1
2∇

2Φ(z)d2 = 0. Hence we
get

1

2
D2

zzL(λ, π∗, e∗, µ, z)

=
1

2

[
⟨π∗,∇2Φ(z)d2⟩+ λ∇2J(z)d2 + ⟨e∗,∇2F (z)d2⟩+ ⟨µ,∇2G1(z)d

2⟩
]

≥ σ(e∗, T 2♭(D,F (z),∇F (z)d)) + σ(µ, T 2♭(Q,G(y),∇G(y)y)).
We obtain assertion (iv) of Theorem 2.2. From the above inequality we get

σ(e∗, T 2♭(D,F (z),∇F (z)d)) < +∞, σ(µ, T 2♭(Q,G(y),∇G(y)y)) < +∞.
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Lemma 4 in [12] implies that

e∗ ∈ N(D,F (z)) and µ ∈ N(Q,G(y)).

By [31, Theorem 2.1], we have

dµ

d|µ|
(x) ∈ N((−∞, 0], g(x, y(x)) =

{
0 if g(x, y(x)) < 0

≥ 0 if g(x, y(x)) = 0
|µ| − a.e.,

where dµ
d|µ| denotes the Radon-Nikodym derivative of µ with respect to |µ|. It follows

that µ is nonnegative and

supp(µ) ⊂ {x ∈ Ω | g(x, y(x)) = 0}.

Since g(x, 0) < 0 for all x ∈ Γ, we get

supp(µ) ⊂ {x ∈ Ω | g(x, y(x)) = 0}.

We obtain assertion (ii) and (iii) of Theorem 2.2.

Case 2. T 2♭(D,F (z),∇F (z)d) or T 2♭(Q,G(y),∇G(y)y) is empty.
Then assertion (iv) is automatically fulfilled because

σ(e∗, T 2♭(D,F (z),∇F (z)d)) + σ(µ, T 2♭(Q,G(y),∇G(y)y)) = −∞

for all e∗ ∈ E∗ and µ ∈ M(Ω). In this case, instead of considering the set K, we
consider the set

K′ =
{
(∇J(z)z + r,∇F (z)z − v,∇G1(z)z − e)|

z ∈ T ♭(A, z), v ∈ T ♭(D,F (z)), e ∈ T ♭
0(Q,G1(z)), r ≥ 0

}
,

where

T ♭
0(Q,G1(z)) = T ♭

0(Q,G(y)) := {φ ∈ C(Ω) | φ(x) < 0 whenever g(x, y(x)) = 0}.

Separating (0, 0, 0) and K′ by a hyperplane and using the similar arguments as in
Case 1, we obtain assertions (i)-(iii) of Theorem 2.2. The proof is complete. □

Remark 2.5. When A is a closed convex set, by defining the set K = D ×Q and
the mapping

H : Z → E × C(Ω), H(z) = (F (z), G1(z)),

the constraint set of problem (2.1)-(2.3) becomes z ∈ A and H(z) ∈ K. Then under
the Robinson constraint qualification condition

0 ∈ int
{
∇H(z)(A− z)−K +H(z)

}
we can obtain Theorem 2.2 from [3, Theorem 3.45]. Unfortunately, since A is not
convex, we fail to apply [3, Theorem 3.45] for our problem. Moreover, in comparison
with the Robinson constraint qualification condition, in regularity condition (A4)
we do not impose on constraint G1(z) ∈ Q.



NECESSARY OPTIMALITY CONDITIONS FOR ELLIPTIC OPTIMAL CONTROL 1375

3. Necessary optimality conditions for semilinear elliptic optimal
control problems

3.1. Assumptions and statement of main results. Throughout this section,
we assume that the boundary Γ is of class C1,1, 1 < p < +∞ and

(3.1)
1

N
>

1

r
≥ 1

p
− 1

N
.

We shall denote by s and q the conjugate numbers of r and p, respectively. Let
W−1,r(Ω) be the dual space ofW 1,s

0 (Ω). Recall that given an element u ∈W−1,r(Ω),

a function y ∈W 1,r
0 (Ω) is a solution of (1.2) iff∫

Ω
(

N∑
i,j=1

aij(x)DiyDjφ)dx+

∫
Ω
h(x, y)φdx = ⟨u, φ⟩ ∀φ ∈W 1,s

0 (Ω).

Under assumptions (H2) and (H3) below, [8, Theorem 2.4] implies that, for each

u ∈ W−1,r(Ω) with r > N , equation (1.2) has a unique solution y ∈ W 1,r
0 (Ω).

By (3.1) and the Sobolev and Rellich theorem (see [14, Theorem 1.6]), we have
Lp(Ω) ↪→W−1,r(Ω). Hence for each u ∈ Lp(Ω), equation (1.2) has a unique solution

y ∈W 1,r
0 (Ω) ↪→ C(Ω) and so constraint (1.4) is well defined.

A pair (y, u) is said to be an admissible couple of problem (1.1)-(1.4) if it satisfies
the constraints (1.2)-(1.4). The set of such pairs will be denoted by Aad. An
admissible couple (y, u) is called a locally optimal solution of problem (1.1)-(1.4) if
there exists a number ϵ > 0 such that the following implication holds:

∀(y, u) ∈ Aad, ∥y − y∥
W 1,r

0 (Ω)
+ ∥u− u∥Lp(Ω) ≤ ϵ⇒ J(y, u) ≥ J(y, u).

Given a couple (y, u) ∈ Aad, the symbols L[x], Ly[x], gy[x], f [x], etc., stand for

L(x, y(x), u(x)), Ly(x, y(x), u(x)), gy(x, y(x)), f(x, y(x)),

etc., respectively. We also assume that ĥ is one of the functions h and f , and D is
defined by (1.9). Fixing a couple (y, u) ∈ Aad, we impose the following hypotheses:

(H1) L : Ω × R × R → R is a Carathéodory function of class C2 with respect to
(y, u), L(x, 0, 0) ∈ L1(Ω) and for any positive number M, there is a constant KL,M

such that

|Ly(x, y, u)|+ |Lu(x, y, u)| ≤ KL,M (|y|a1 + |u|a2),

∣∣Ly(x, y1, u1)− Ly(x, y2, u2)
∣∣+ ∣∣Lu(x, y1, u1)− Lu(x, y2, u2)

∣∣
≤ KL,M (|y1 − y2|b1 + |u1 − u2|b2),

∣∣Lyy(x, y1, u1)− Lyy(x, y2, u2)
∣∣+ ∣∣Lyu(x, y1, u1)− Lyu(x, y2, u2)

∣∣
+

∣∣Luu(x, y1, u1)− Luu(x, y2, u2)
∣∣ ≤ KL,M (|y1 − y2|c1 +m|u1 − u2|c2)

for all u1, u2 ∈ R, |yi| ≤M and a.e. x ∈ Ω with a1, b1, c1 > 0, 0 < a2, b2 ≤ p−1, 0 <
c2 ≤ p− 2,m = 0 whenever 1 < p ≤ 2 and m = 1 whenver p > 2.
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(H2) The functions aij : Ω → R are of class C1(Ω), aij = aji and there is a constant
α > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ α|ξ|2 ∀ξ ∈ RN , x ∈ Ω.

(H3) ĥ : Ω × R → R is a Carathéodory function of class C2 with respect to the
second variable and for all y ∈ R the following condition holds

ĥ(·, 0) ∈ Lp(Ω), ĥy(x, y) ≥ 0 a.e. x ∈ Ω.

Moreover, for each M > 0, there is a constant Kĥ,M > 0 such that∣∣ĥy(x, y)∣∣+ ∣∣ĥyy(x, y)∣∣ ≤ Kĥ,M ,∣∣ĥyy(x, y1)− ĥyy(x, y2)
∣∣ ≤ Kĥ,M |y2 − y1|

for a.e. x ∈ Ω and |y|, |y1|, |y2| ≤M .
(H4) The function g : Ω× R → R satisfies assumption (A3).

Definition 3.1. A pair d = (y, u) ∈W 1,r
0 (Ω)×Lp(Ω) is said to be a critical direction

for problem (1.1)-(1.4) at z = (y, u) if the following conditions hold:

(i) ∇J(z)d =
∫
Ω(Ly[x]y(x) + Lu[x]u(x))dx ≤ 0;

(ii) −
∑N

i,j=1Dj(aij(·)Diy) + hy(·, y)y = u in Ω, y|Γ = 0;

(iii) fy[·]y + u ∈ cone(D − f [·]− u);

(iv) T 2♭(Q, g[·], gy[·]y) ̸= Ø.

We will denote by C[(y, u)] the set of such critical directions. It is clear that
C[(y, u)] is a convex cone containing (0, 0). Note that condition (iv) of Definition
3.1 is equivalent to saying that θa,b(x) > −∞ for all x ∈ Ω. This condition implies

that gy[·]y ∈ T ♭(Q, g[·]). By [23, Theorem 3.1], we have gy[x]y(x) ≤ 0 whenever
g[x] = 0.

We are ready to state our main result of this section.

Theorem 3.2. Suppose that hypotheses (H1) − (H4) are satisfied and (y, u) is a
locally optimal solution of problem (1.1)-(1.4). Then for each (y, u) ∈ C[(y, u)],
there exist functions ϕ ∈ W 1,s

0 (Ω), ψ ∈ Lq(Ω), a number λ ≥ 0 and a nonnegative

Borel measure µ ∈ M(Ω) with |λ|+ ∥µ∥ ̸= 0 such that the following conditions are
fulfilled:

(i) (the adjoint equation)

−
N∑

i,j=1

Di(aij(·)Djϕ) + hy[·]ϕ = −λLy[·]− fy[·]∗ψ − gy[·]∗µ in Ω

ψ|Γ = 0;

(ii) (the stationary condition in u)

λLu[x]− ϕ(x) + ψ(x) = 0 a.e.;
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(iii) (the complementary condition in z)∫
Ω
ψ(x)(v(x)− f [x]− u(x))dx ≤ 0 ∀α ≤ v ≤ β;

(iv) (the complementary condition in y)

supp(µ) ⊂ {x ∈ Ω | g[x] = 0};
(v) (the second order condition)

λ

∫
Ω
(Lyy[x]y

2(x) + 2Lyu[x]y(x)u(x) + Luu[x]u
2(x))dx+

∫
Ω
ϕ(x)hyy[x]y(x)

2dx

+

∫
Ω
ψ(x)fyy[x]y(x)

2dx+

∫
Ω
gyy[x]y

2(x)dµ

≥ 2

∫
Ω
θa,b(x)dµ+ 2σ(ψ, T 2♭(D, f [·] + u, fy[·]y + u)).

Let us give a corollary of Theorem 3.2. For this we shall denote by C0[(y, u)]
the set of couples (y, u) satisfying conditions (i) and (ii) of Definition 3.1 and the
following conditions:

(iii) fy[·]y + u ∈ cone(D − f [·]− u);
(iv) gy[·]y ∈ cone(Q− g[·]).
It is clear that C0[(y, u)] is a cone which is contained in C[(y, u)].

Corollary 3.3. Suppose that hypotheses (H1) − (H4) are satisfied and (y, u) is a
locally optimal solution of problem (1.1)-(1.4). Then for each (y, u) ∈ C0[(y, u)],
there exist functions ϕ ∈ W 1,s

0 (Ω), ψ ∈ Lq(Ω), a number λ ≥ 0 and a nonnegative

Borel measure µ ∈ M(Ω) with |λ|+∥µ∥ ̸= 0 such that assertions (i)-(iv) of Theorem
3.2 and the following assertion are fulfilled:

(v′) (the nonnegative second order condition)

λ

∫
Ω
(Lyy[x]y

2(x) + 2Lyu[x]y(x)u(x) + Luu[x]u
2(x))dx+

∫
Ω
ϕ(x)hyy[x]y(x)

2dx

+

∫
Ω
ψ(x)fyy[x]y(x)

2dx+

∫
Ω
gyy[x]y

2(x)dµ ≥ 0.

3.2. Proofs of Theorem 3.2 and Corollary 3.3. For the proof of Theorem 3.2,
we shall reduce problem (1.1)-(1.4) to problem (1.5)-(1.8) and then apply Theorem
2.1. To do this, we put

Y =W 1,r
0 (Ω), U = Lp(Ω), Z = Y × U,

Π =W−1,r(Ω), E = Lp(Ω)

and define the mappings

Φ : Z → Π, Φ(y, u) = −
N∑

i,j=1

Dj(aij(·)Diy) + h(·, y)− u

F : Z → E, F (y, u) = f(·, y) + u

G1 : Z → C(Ω), G1(y, u) = G(y) = g(·, y).
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Then problem (1.1)-(1.4) is assigned with the following Lagrangian:

L(λ, ϕ, ψ, µ, z) = λJ(z) + ⟨ϕ,Φ(z)⟩+ ⟨ψ, F (z)⟩+ ⟨µ,G(y)⟩(3.2)

with z = (y, u), λ ∈ R, ϕ ∈ Π∗, ψ ∈ E∗ and µ ∈ M(Ω).
In what follows, we shall show that assumptions (A1)− (A4) of Theorem 2.1 are

fulfilled.

Lemma 3.4. Under assumptions (H1) − (H4), the mappings J , Φ, F and G1 are
of class C2 around (y, u) and their derivatives are given by the following formulae:

∇J(z) = (Ly[·], Lu[·]), ∇Φ(y, u) = (Λ + hy[·],−I)
∇F (z) = (fy[·], I), ∇G1(z) = (gy[·], 0)

∇2J(z) =

[
Lyy[·] Lyu[·]
Luy[·] Luu[·]

]
,∇2Φ(z) =

[
hyy[·] 0
0 0

]
and

∇2F (z) =

[
fyy[·] 0
0 0

]
,∇2G1(z) =

[
gyy[·] 0
0 0

]
.

Here I is the identity mapping and Λ is defined by Λy = −
∑N

i,j=1Dj(aij(·)Diy).

Proof. The proof is straightforward, which is based on standard arguments. □

As a consequence, we have the following.

Corollary 3.5. Suppose assumptions (H1) − (H4) and d = (y, u) ∈ Z. Then one
has

DyL(λ, ϕ, ψ, µ, z) = λLy[·] + Λ∗ϕ+ hy[·]∗ϕ+ fy[·]∗ψ + gy[·]∗µ
DuL(λ, ϕ, ψ, µ, z) = λLu[·]− ϕ+ ψ

and

D2
zzL(λ, ϕ, ψ, µ, z)(d, d) =λ

∫
Ω

(
Lyy[x]y

2 + 2Lyu[x]yu

+ Luu[x]u
2
)
dx+

∫
Ω
hyy[x]ϕy

2dx

+

∫
Ω
fyy[x]ψy

2dx+

∫
Ω
gyy[x]y

2dµ.

Lemma 3.6. Under assumptions (H2) and (H3), the following assertions hold:

(i) the mapping ∇Φ(z) is surjective for all z around z;
(ii) The regularity condition (2.4) is valid.

Proof. Assertion (i) follows from [24, Lemma 3.1]. According to [24, Theorem 2.5]
(see also [39, Theorem 2.1]), the regularity condition (2.4) is equivalent to the
following condition:

E =
∩

z∈BZ(z,δ)∩A

[
∇F (z)(T (A, z))− cone(D − F (z))

]
for some δ > 0.(3.3)
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Choose δ > 0 small enough and ẑ ∈ BZ(z, δ). We shall show that

E = ∇F (z)(T (A, ẑ))− cone(D − F (z)).(3.4)

By (i), ∇Φ(ẑ) is surjective. Hence from [24, Lemma 2.2], we have

T (A, ẑ) = T ♭(A, ẑ) = {z = (y, u) ∈ Z | ∇Φ(ẑ)z = 0}
= {(y, u) ∈ Y × U | Λy + hy(·, ŷ)y = u}.

Taking any v ∈ E = Lp(Ω), we consider the equation

Λy + hy(·, ŷ)y + fy(·, y)y = v in Ω, y|Γ = 0.

By (H3) and [17, Theorem 2.4. 2.5, p. 124], this equation has a unique solution
y ∈ W 2,p(Ω). By (3.1) and the embedding theorem (see [6, Corollary 9.14]), the
embedding W 1,p(Ω) ↪→ Lr(Ω) is continuous. Note that W 2,p(Ω) = {y ∈ W 1,p(Ω) |
Dy ∈ W 1,p(Ω)}. Hence the embedding W 2,p(Ω) ↪→ W 1,r(Ω) is continuous. Since

r > N , we have y ∈ C(Ω). Hence y ∈ W 1,r
0 (Ω). Putting Λy + hy(·, ŷ)y = u, we see

that (y, u) ∈ T (A, ẑ). Thus we have fy(·, ŷ)y + u = v. This is equivalent to

∇F (ẑ)(y, u)− (F (z)− F (z)) = v.

Consequently, (3.4) is obtained. The proof of the lemma is complete. □

Proof of Theorem 3.2. From Lemmas 3.4-3.6, we see that assumptions (A1)− (A4)
are fulfilled. Take any d = (y, u) ∈ C[(y, u)]. According to Theorem 2.2, there exist

a nonnegative number λ, functions ϕ ∈ Π∗ = W 1,s
0 (Ω), ψ ∈ E∗ = Lq(Ω) and a

nonnegative Borel measure µ ∈ M(Ω) with |λ| + ∥µ∥ ≠ 0 such that the following
conditions are fulfilled:

(i′) (the adjoint equation) DzL(λ, ϕ, ψ, µ, z) = 0;
(ii′) ] (the complementary condition in z) ψ ∈ N(D,F (z));
(iii′) (the complementary conditions in y)

supp(µ) ⊂ {x ∈ Ω | g[x] = 0};
(iv′) (the second-order condition)

DzzL(λ, ϕ, ψ, µ, z)(d, d) ≥2σ(ψ, T 2♭(D,F (z),∇F (z)d))

+ 2σ(µ, T 2♭(Q,G(y),∇G(y)y)).
From Corollary 3.5 and (i′), we obtain assertions (i) and (ii) of Theorem 3.2. As-
sertions (ii′) and (iii′) imply (iii) and (iv), respectively.

By definition of C[(y, u)], we have T 2♭(Q,G(y),∇G(y)y) ̸= Ø. Using similar
arguments as in the proof of [25, Theorem 3.1] (see also the proof of [23, Lemma
4.4]), we have

σ(µ, T 2♭(Q,G(y),∇G(y)y)) =
∫
Ω
θa,b(x)dµ,

where a(x) := g[x] and b(x) := gy[x]y(x) and θa,b(x) is defined by (2.6). Combining
this with (iv′) and Corollary 3.5, we obtain assertion (v) of Theorem 3.2. The proof
is complete. □
Proof of Corollary 3.3. Since C0[(y, u)] ⊂ C[(y, u)], for each (y, u) ∈ C0[(y, u)], there
exist multipliers λ, ϕ, ψ and µ such that the assertions (i)-(v) of Theorem 3.2 are
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valid. Let us show that the implication (v) ⇒ (v)′ holds. Indeed, from ∇G(y)y ∈
cone(Q−G(y)), there exists s > 0 such that ∇G(y)y = s(v−G(y)) for some v ∈ Q.
By convexity of Q, for any sequence tn → 0+, we have

tn∇G(y)y = tnsv + (1− stn)G(y)−G(y) ∈ Q−G(y).

This implies that G(y) + tn∇G(y)y ∈ Q. Hence 0 ∈ T 2♭(Q,G(y),∇G(y)y). By [23,
Theorem 3.2] (see also [31, Corollary 4.2]), we have θa,b(x) ≥ 0 for all x ∈ Ω. Hence∫
Ω θa,b(x)dµ ≥ 0. Similarly, we have 0 ∈ T 2♭(D,F (z),∇F (z)d). It follows that

2σ
(
ψ, T 2♭(D, f [·] + u, fy[·]y + u)) = σ

(
ψ, T 2♭(D,F (z),∇F (z)d)) ≥ 0.

Hence we obtain assertion (v′) of the corollary. The proof is complete. □

Appendix

In this appendix, we shall present the proof of Lemma 2.3, which is similar to
the proof of Lemma 2.1 in [25]. Proof of Lemma 2.3. From (A4) and [24, Theorem

2.3], we have (ψ, ω) ∈ T 2♭(A∩F−1(D), z, d). Hence for any sequence tk → 0+, there
exists (ψk, ωk) → (ψ, ω) such that

(y, u) + tk(y, u) + t2k(ψk, ωk) ∈ A ∩ F−1(D).

To show that there exists k0 > 0 such that

(y + tky + t2kψk, u+ tku+ t2kωk) ∈ Aad, ∀k ≥ k0

we need to prove that, there exists k0 > 0 such that for all k ≥ k0 one has

(3.5) g(x, y(x) + tky(x) + t2kψk(x)) ≤ 0 ∀x ∈ Ω.

By a Taylor expansion, we have

G(y + tky + t2kψk) =G(y) + tk(∇G(y)y)

+ t2k

(
∇G(y)ψk +

1

2
∇2G(y)(y + tkψk)

2
)
+ o(t2k)

=G(y) + tk(∇G(y)y) + t2k∇G(y)ψ

+ t2k∇G(y)(ψk − ψ) +
1

2
t2k∇2G(y)(y + tkψk)

2 + o(t2k)

=G(y) + tk∇G(y)y + t2k

(
∇G(y)ψ +

1

2
∇2G(y)y2

)
+ o(t2k).

Thus we have

g(x, y(x) + tky(x) + t2kψk(x)) = g(x, y(x)) + tkgy(x, y(x))y(x)

(3.6)

+ t2k(gy(x, y(x))ψ(x) +
1

2
gyy(x, y(x))y

2(x)) + o(t2k),(3.7)

where o(t2k) is independent of x. Let us define functions

a(x) = g(x, y(x)) and b(x) = gy(x, y(x))y(x).
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Since (y, u) is an admissible couple, we have a(x) ≤ 0 for all x ∈ Ω. Since d =

(y, u) ∈ Θ[(y, u)], we have ∇G(y)y ∈ T ♭(Q,G(y)). By [23, Theorem 3.1], we have

b(x) = gy(x, y(x))y(x) ≤ 0 whenever a(x) = g(y(x)) = 0.

Since ∇G(y)ψ + 1
2∇

2G(y)y2 ∈ T 2♭
0 (Q,G(y),∇G(y)y), we have

gy(x, y(x))ψ(x) +
1

2
gyy(x, y(x))y

2(x) < θa,b(x) ∀x ∈ Ω.

Here θa,b is defined by (2.6). By [31, Lemma 3.3], there exists ϵ0 > 0 such that

(3.8) g(x, y(x)) + ϵgy(x, y(x))y(x)

+ ϵ2
(
(gy(x, y(x))ψ(x) +

1

2
gyy(x, y(x))y

2(x)) + ϵ0

)
≤ 0

for all ϵ ∈ (0, ϵ0) and for all x ∈ Ω. Let us choose k0 such that o(t2k)/t
2
k ≤ ϵ0 and

tk ∈ (0, ϵ0) for all k ≥ k0. Then from (3.6) and (3.8), we obtain

g(x, y(x) + tky(x) + t2kψk(x)) ≤ −ϵ0t2k + ϵ0t
2
k = 0

for all x ∈ Ω and for all k ≥ k0. The proof is complete. □
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