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In the case where f, g, h are smooth, Durea et al. [8] defined the notion of an ε-
KKT point (ε ≥ 0) of (P) in terms of the derivatives ▽f, ▽g and ▽h. Under
nonemptyness of both int(K) and int(Q) and surjectivity of ▽h(x̄) as well as the
so-called Mangasarian-Fromovitz condition, they established a stability result on
ε-KKT points of (P). In this paper, motivated by Durea et al. [8], we introduce a
different kind of approximate KKT points which are not necessarily feasible points
of (P) and can recapture the classical KKT points. Without the nonemptyness
assumption on both int(K) and int(Q), we provide a stability result on approximate-
KKT points of (P). In particular, under the weaker assumptions, we extend and
improve the stability result of approximate KKT points for (P) by Durea et al. [8].

2. Preliminaries

Let Y be a normed linear space with the topological dual Y ∗. For y ∈ Y and
δ > 0, B(y, δ) stands for the open ball with center y and radius δ. As usual, we
denote by BY and SY the closed unit ball and sphere of Y , respectively. Let K be
a closed convex cone in Y , which specifies an order relation ≤K in Y as follows:

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K.

We denote by K+ the dual cone of K, that is,

K+ := {y∗ ∈ Y ∗ : 0 ≤ ⟨y∗, k⟩, ∀ k ∈ K}.

For convenience, let

(2.1) 1K+ :=
{
y∗ ∈ K+ : ∥y∗∥ = 1} and ρK := inf

{
∥y∗∥ : y∗ ∈ w∗–cl

(
1K+

)}
,

where w∗–cl
(
1K+

)
denotes the closure of 1K+ with respect to the weak∗ topology

and ρK is understood as +∞ if w∗–cl
(
1K+

)
= ∅. Clearly, ρK > 0 if and only if

0 ̸∈ w∗–cl
(
1K+

)
; moreover ρK = 1 when Y is finite dimensional. It is known and

easy to verify that K has a nonempty interior if and only if there exists y0 ∈ Y such
that

K+ ⊂
{
y∗ ∈ Y ∗ : ∥y∗∥ ≤ ⟨y∗, y0⟩

}
.

In order to relax the assumption that int(K) ̸= ∅, Zheng and Ng [20] adopted the
so-called dually compact cone. Recall that a closed convex cone K of Y is said to
be dually compact if there exists a compact subset C of Y such that

(2.2) K+ ⊂
{
y∗ ∈ Y ∗ : ∥y∗∥ ≤ sup

y∈C
⟨y∗, y⟩

}
.

It is clear that if Y is finite dimensional then every closed convex cone in Y is dually
compact. The following lemma is useful for us and can be found in [17].

Lemma 2.1. Let K ⊂ Y be a closed convex cone. Then K is dually compact if and
only if ρK > 0.

Let A be a closed subset of X and x̄ ∈ A. We denote by T (A, x̄) the Clarke
tangent cone of A at x̄. Then, T (A, x̄) is a closed cone, and u ∈ T (A, x̄) if and only

if for any sequences xn
A−→ x̄ and tn → 0+ there exists un → u such that

xn + tnun ∈ A ∀n ∈ N,
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where xn
A−→ x̄ means xn → x̄ and xn ∈ A for all n ∈ N. Let N(A, x̄) denote the

Clarke normal cone of A at x̄, namely

N(A, x̄) := {x∗ ∈ X∗ : ⟨x∗, u⟩ ≤ 0 for all u ∈ T (A, x̄)}.

In the case when A is a convex set, it is well known (cf. [6]) that

T (A, x̄) = cl(∪t≥0t(A− x̄)) and N(A, x̄) = {x∗ ∈ X∗ : ⟨x∗, x− x̄⟩ ≤ 0 ∀x ∈ A}.

Let F : X ⇒ Y be a multifunction and let gph(F ) and dom(F ) denote respec-
tively the graph and domain of F , that is,

gph(F ) := {(x, y) ∈ X × Y : y ∈ F (x)} and dom(F ) := {x ∈ X : F (x) ̸= ∅}.

We say that F is closed (resp. convex) if gph(F ) is a closed (resp. convex) subset
of the product space X × Y . Recall that F is metrically regular at (x̄, ȳ) if there
exist δ, τ ∈ (0, +∞) such that

d(x, F−1(y)) ≤ τd(y, F (x)), ∀(x, y) ∈ B(x̄, δ)×B(ȳ, δ).

The metric regularity is a fundamental notion in optimization and variational anal-
ysis and has been well studied (cf. [2, 7, 11,15,16] and references therein).

The following lemma (cf. [2, Proposition 2.79 and Theorem 2.81]), known as the
Robinson-Ursescu theorem, is useful for us.

Lemma 2.2. Let X,Y be Banach spaces and F : X ⇒ Y be a closed convex
multifunction. Let (x̄, ȳ) ∈ gph(F ). Then the following statements are equivalent:

(i) ȳ ∈ int(F (X)), where int(·) denotes the interior.
(ii) There exists δ > 0 such that

B(ȳ, δt) ⊂ F (B(x̄, t)), ∀t ∈ (0, 1).

(iii) F is metrically regular at (x̄, ȳ).

3. KKT condition for smooth vecrtor optimization

In this section, we consider constrained vector optimization problem (P) in the
smooth case. Throughout the remainder of this paper, let f : X → Y, g : X → Z, h :
X → W be smooth functions, where X,Y, Z,W are normed spaces. The derivatives
of f, g and h at x ∈ X are denoted by ▽f(x),▽g(x) and ▽h(x), respectively. Let
K ⊂ Y and Q ⊂ Z be closed convex cones. For convenience, let A denote the
feasible set of (P), that is,

A := g−1(−Q) ∩ h−1(0).

In the case when int(K) ̸= ∅, we recall that a point x̄ in A is said to be a weak
Pareto solution of (P) if

(3.1) f(A) ∩ (f(x̄)− int(K)) = ∅.

Durea et al. [8] adopted the so-called Mangasarian-Fromovitz condition for (P).
Recall (cf. [8]) that (P) satisfies Mangasarian-Fromovitz condition at x̄ ∈ A if
int(Q) ̸= ∅ and there exists u ∈ X such that

(MF) ▽g(x̄)(u) ∈ −int(Q) and ▽h(x̄)(u) = 0.
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In this paper, we adopt the following weak Robinson qualification:

(WRQ) (0, 0) ∈ int
(
cl
(
(▽g(x̄),▽h(x̄))

(
BX

)
+Q× {0}

) )
,

where (▽g(x̄),▽h(x̄))(BX) := {(▽g(x̄)(x),▽h(x̄)(x)) : x ∈ BX}. Firstly, we pro-
vide a lemma which is useful in the proof of the main result in the section.

Lemma 3.1. Let X, Z and W be normed vector spaces and let x̄ ∈ X and r ∈
(0, +∞). Then,

(3.2) r(BZ ×BW ) ⊂ cl
((
▽g(x̄),▽h(x̄)

)(
BX

)
−Q× {0}

)
if and only if

(3.3) r(∥z∗∥+ ∥w∗∥) ≤ ∥z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄)∥, ∀ (z∗, w∗) ∈ Q+ ×W ∗.

Consequently, (WRQ) holds if and only if there exists r > 0 such that (3.3) holds.

Proof. First suppose that (3.2) holds. Let z ∈ BZ and w ∈ BW . Then, there exist
{xn} ⊂ BX and {qn} ⊂ Q such that(

▽g(x̄)(xn)− qn,▽h(x̄)(xn)
)
−→ r(z, w).

Let (z∗, w∗) ∈ Q+ ×W ∗. Then 0 ≤ ⟨z∗, qn⟩ for all n ∈ N. Hence

⟨z∗, rz⟩+ ⟨w∗, rw⟩ = lim
n→∞

(⟨z∗,▽g(x̄)(xn)− qn⟩+ ⟨w∗,▽h(x̄)(xn)⟩)

≤ lim inf
n→∞

⟨z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄), xn⟩

≤ ∥z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄)∥.
It follows that

∥z∗ ∥ + ∥ w∗∥ = sup{⟨z∗, z⟩+ ⟨w∗, w⟩ : (z, w) ∈ BZ ×BW }

≤ 1

r
∥z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄)∥.

This shows that (3.3) holds.
Conversely, suppose that (3.3) holds. To prove (3.2), suppose to the contrary

that there exists

(3.4) (z0, w0) ∈ r(BZ ×BW ) \ cl
((
▽g(x̄),▽h(x̄)

)(
BX

)
+Q× {0}

)
.

Thus, by the separation theorem, there exist (z∗, w∗) ∈ Z∗ ×W ∗ and α ∈ R such
that
(3.5)
sup

{
⟨z∗,▽g(x̄)(x)+q⟩+⟨w∗,▽h(x̄)(x)⟩ : (x, q) ∈ BX×Q

}
< α < ⟨z∗, z0⟩+⟨w∗, w0⟩.

Hence,

−z∗ ∈ Q+ and sup
{
⟨z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄), x⟩ : x ∈ BX

}
< α.

This implies that

(3.6) ∥z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄)∥ < α.

On the other hand, by (3.4), one has

⟨z∗, z0⟩+ ⟨w∗, w0⟩ ≤ ∥z∗∥ · ∥z0∥+ ∥w∗∥ · ∥w0∥ ≤ r(∥z∗∥+ ∥w∗∥).
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This, together with (3.5) and (3.6), implies that

∥z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄)∥ < r(∥z∗∥+ ∥w∗∥),

contradicting (3.3) (by −z∗ ∈ Q+). The proof is completed. □

Next we provide some characterizations of the weak Robinson qualification. To
do this, recall that a subset A of a Banach space X is called to be CS-closed if
∞∑
n=1

tnan ∈ A for any {an} ⊂ A and {tn} ⊂ [0, 1] with
∞∑
n=1

tn = 1. The following

fact is useful and well-known in functional analysis (cf. [12, p.183, Theorem A.1]).
Fact CS. Let A be a CS-closed subset of a Banach space X. Then int(A) =

int(cl(A)).

Proposition 3.2. Let X,Z,W be Banach spaces and x̄ be a feasible point of (P)
and consider following statements:

(i) (WRQ) holds.
(ii) (0, 0) ∈ int{

(
▽g(x̄),▽h(x̄)

)(
BX

)
+Q× {0}}.

(iii)
(
▽g(x̄),▽h(x̄)

)(
X
)
+Q× {0} = Z ×W .

(iv) Φ is metrically regular at
(
x̄, (g(x̄), h(x̄))

)
, where Φ(x) := (g(x), h(x))+Q×

{0} for all x ∈ X.
(v) Φ is metrically regular at

(
x̄, (0, 0)

)
.

Then (i)⇔(ii)⇔(iii)⇔(iv)⇔(v).

Proof. Since X,Z,W are Banach spaces, it is known and easy to verify that(
▽g(x̄),▽h(x̄)

)(
εBX

)
+Q×{0} is a CS-closed set for any ε > 0. This and Fact CS

imply that

int
(
cl
((
▽g(x̄),▽h(x̄)

)(
εBX

)
+Q× {0}

))
=int

(
▽g(x̄),▽h(x̄)

)(
εBX

)
+Q× {0}

)
, ∀ε > 0.

Hence (i) and (ii) are equivalent. Let F : X ⇒ Z ×W be such that

F (x) = (▽g(x̄)(x− x̄),▽h(x̄)(x− x̄)) +Q× {0}, ∀x ∈ X.

Then F is a closed convex multifunction. Thus, by Lemma 2.2, (ii) and (iii) are
equivalent. Since g(x̄) ∈ −Q and h(x̄) = 0, {(0, 0), (−g(x̄),−h(x̄))} ⊂ F (x̄). This
and Lemma 2.2 imply that (iii) is equivalent to anyone of the following (1) an (2):
(1) F is metrically regular at (x̄, (0, 0)).
(2) F is metrically regular at (x̄, (−g(x̄),−h(x̄))).
Let

g̃(x) := (g(x), h(x))− (▽g(x̄)(x− x̄),▽h(x̄)(x− x̄)), ∀x ∈ X.

Since g and h are continuously differentiable, it is easy from the mean-value theorem
to prove that for any ε > 0 there exists r > 0 such that

∥g̃(x1)− g̃(x2)∥ ≤ ε∥x1 − x2∥, ∀x ∈ B(x̄, r).

Noting that Φ(x) = F (x) + g̃(x) for all x ∈ X, it follows from [16, Theorem 10.3.6]
that (1) is equivalent to (iv) while (2) is equivalent to (v). The proof is complete. □
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Proposition 3.3. Let X, Z and W be Banach spaces. Suppose that (WRQ) holds.
Then,

N(A, x̄) = {z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄) : (z∗, w∗) ∈ Q+ ×W ∗ and ⟨z∗, g(x̄)⟩ = 0}

for any x̄ ∈ A.

Proof. Given x̄ ∈ A, we claim that

(3.7) T (A, x̄) = ▽g(x̄)−1(T (−Q, g(x̄))) ∩ ▽h(x̄)−1(0)

Let u ∈ T (A, x̄). Then there exist tn → 0+ and un → u such that x̄+ tnun ∈ A and
so g(x̄+ tnun) ∈ −Q and h(x̄+ tnun) = 0 for all n ∈ N. Since g and h are smooth
and h(x̄) = 0, one has

g(x̄) + tn▽g(x̄)(un) + o(tn) ∈ −Q and tn▽h(x̄)(un) + o(tn) = 0

Noting that ▽g(x̄)(un)+o(tn)/tn → ▽g(x̄)(u), it follows from the convexity ofQ that
▽g(x̄)(u) ∈ T (−Q, g(x̄)) and ▽h(x̄)(u) = 0, that is, u ∈ ▽g(x̄)−1(T (−Q, g(x̄))) ∩
▽h(x̄)−1(0). This shows that

T (A, x̄) ⊂ ▽g(x̄)−1(T (−Q, g(x̄))) ∩ ▽h(x̄)−1(0).

Conversely, let u ∈ ▽g(x̄)−1(T (−Q, g(x̄))) ∩ ▽h(x̄)−1(0) and take any sequences

xn
A→ x̄ and tn → 0+. Then,

g(xn)
−Q−→ g(x̄), h(xn) = 0 (∀n ∈ N), ▽g(x̄)(u) ∈ T (−Q, g(x̄)) and ▽h(x̄)(u) = 0.

Hence, there exist zn → ▽g(x̄)(u) such that g(xn) + tnzn ∈ −Q for all n ∈ N. From
the smoothness of g and h, it is easy to verify that there exist vn

Z−→ 0 and en
W−→ 0

such that

(g(xn + tnu), h(xn + tnu)) + tn(−vn,−en) ∈ −Q× {0} ∀n ∈ N,

namely tn(vn, en) ∈ Φ(xn + tnu) for all n ∈ N. By Proposition 3.2,

d(xn+tnu,A) = d(xn+tnu,Φ
−1((0, 0))) ≤ τd((0, 0),Φ(xn+tnu)) ≤ τtn(∥vn∥+∥en∥)

for all sufficiently large n, where τ is a positive constant. Hence there exists an ∈ A
such that ∥xn+ tnu−an∥ ≤ 2τtn(∥vn∥+ ∥en∥). Let un = an−xn

tn
. Then xn+ tnun =

an ∈ A and ∥un − u∥ ≤ 2τ(∥vn∥ + ∥en∥) → 0. This shows that u ∈ T (A, x̄).
Therefore, (3.7) holds and

N(A, x̄) = N
(
▽g(x̄)−1(T (−Q, g(x̄))) ∩ ▽h(x̄)−1(0), 0

)
= N

(
(▽g(x̄),▽h(x̄))−1(T (−Q, g(x̄))× {0}), 0

)
= N

(
(▽g(x̄),▽h(x̄))−1(−T (Q,−g(x̄))× {0}), 0

)
.
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Since Q is a closed convex cone, Q ⊂ T (Q,−g(x̄)). It follows from Proposition 3.2
that (▽g(x̄),▽h(x̄))(X)+T (Q,−g(x̄))×{0} = Z×W . Thus, by [17, Theorem 3.1],

N(A, x̄)

= N
(
(▽g(x̄),▽h(x̄))−1(−T (Q,−g(x̄))× {0}), 0

)
=

{
∂((z∗, w∗) ◦ (▽g(x̄),▽h(x̄)))(0) : (z∗, w∗) ∈ N

(
− T (Q,−g(x̄))× {0}, (0, 0)

)}
=

{
∂((z∗, w∗) ◦ (▽g(x̄),▽h(x̄)))(0) : (z∗, w∗) ∈ N

(
−Q, g(x̄))×W ∗}

=
{
z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄) : (z∗, w∗) ∈ Q+ ×W ∗ and ⟨z∗, g(x̄)⟩ = 0

}
.

The proof is complete. □

Theorem 3.4. Let X, Y , Z and W be normed vector spaces. Let int(K) ̸= ∅ and
x̄ be a weak Pareto solution of (P). Suppose that that (WRQ) holds. Then, there
exist y∗ ∈ 1K+, z∗ ∈ Q+ and w∗ ∈ W ∗ such that

(3.8) y∗ ◦ ▽f(x̄) + z∗ ◦ ▽g(x̄) + w∗ ◦ ▽h(x̄) = 0 and ⟨z∗, g(x̄)⟩ = 0.

Proof. Since x̄ is a weak Pareto solution of (P), (3.1) holds. We claim that

(3.9) ▽f(x̄)
[
T (A, x̄)

]
∩ int(−K) = ∅.

Granting this, by the separation theorem, there exists y∗ ∈ 1K+ such that

inf{⟨y∗,▽f(x̄)(u)⟩ : u ∈ T (A, x̄)} ≥ 0.

It follows that

0 ∈ y∗ ◦ ▽f(x̄) +N(A, x̄).

This and Proposition 3.3 imply that there exist z∗ ∈ Q+ and w∗ ∈ W ∗ such that
(3.8) holds. It remains to show that (3.9) holds. Let u ∈ T (A, x̄). Then there exists
un → u such that x̄+ un

n ∈ A for all n ∈ N. Hence, by (3.1),

f
(
x̄+

un
n

)
= f(x̄) +

1

n
▽f(x̄)(un) + o

( 1

n

)
̸∈ f(x̄)− int(K) ∀n ∈ N

and so ▽f(x̄)(un)+no( 1n) ̸∈ −int(K) for all n ∈ N. Therefore, ▽f(x̄)(u) ̸∈ −int(K).
This shows that (3.9) holds. The proof is complete. □

4. Approximate KKT point

Durea et al. [8] introduced the following notion of approximate KKT points for
(P).

Definition 4.1. Let ε ≥ 0. A feasible point x̄ of (P) is said to be an ε-KKT point
of (P) if there exist y∗ ∈ 1K+ , z∗ ∈ Q+ and p∗ ∈ W ∗ such that

(4.1) ∥y∗ ◦ ▽f(x̄) + z∗ ◦ ▽g(x̄) + p∗ ◦ ▽h(x̄)∥ ≤ ε.

Let T (ε) denote the set of all ε-KKT points of (P).

In the case when Y = R, Z = Rm, W = Rn, K = R+ and Q = Rm
+ , (P) reduces

to the following standard scalar constrained problem

(P̃) min f(x) subject to gi(x) ≤ 0 (i = 1, . . . ,m) and h1(x) = · · · = hn(x) = 0.
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The KKT point (or KKT condition) for (P̃) is a classical notion in optimization

and can be stated as follows: a feasible point x̄ of (P̃) is a KKT point of (P̃) if
there exist λi ∈ R+ (i = 1, . . . ,m) and µj ∈ R (j = 1, . . . , n) such that

▽f(x̄) +
m∑
i=1

λi▽gi(x̄) +
n∑

j=1

µj▽hi(x̄) = 0 and λigi(x̄) = 0 (i = 1, . . . ,m).

In this case, a point in T (0) is not necessarily a KKT point of (P̃) (because (4.1)
does not imply that λigi(x̄) = 0 (i = 1, . . . ,m) even when ε = 0). This motivates
us to introduce the following kind of approximate KKT points.

Definition 4.2. Let ε ≥ 0. A point x̄ in X is said to be a normal ε-KKT point of
(P) if there exist y∗ ∈ 1K+ , z∗ ∈ Q+ and p∗ ∈ W ∗ such that (4.1) holds and

(4.2) d(g(x̄),−Q) ≤ ε, |h(x̄)∥ ≤ ε, |⟨z∗, g(x̄)⟩| ≤ ε.

Let T̂ (ε) denote the set of all normal ε-KKT points of (P).

In contrast with the KKT point notion by Durea et al., a normal ε-KKT point
of (P) reduces to the classical KKT point in the special case when ε = 0, Y = R,
Z = Rm, W = Rn, K = R+ and Q = Rm

+ ; moreover a normal ε-KKT point is not
necessarily a feasible point of (P). Thus, the normal ε-KKT points may be useful
from the computational point of view.

Under the Mangasarian-Fromovitz condition, Durea et al. [8] proved the following
theorem.

Theorem A. Let X,Y, Z be Banach spaces and W be finite dimensional, and let
int(K) ̸= ∅ and int(Q) ̸= ∅. Let x̄ be a feasible point of (P) such that (MF) is
satisfied and ▽h(x̄)(X) = W . Then the following statements hold:

(i) If x̄ ∈ lim sup
µ→0+

T (µ) then x̄ ∈ T (0).

(ii) Suppose that Y is finite dimensional and ε > 0. If x̄ ∈ lim sup
µ→ε+

T (µ), then

x̄ ∈ T (ε).

Relaxing the assumptions that int(K) and int(Q) are nonempty and that (MF)
holds, we extend Theorem A to the case when W and Y are infinite dimensional.

Theorem 4.3. Let X, Y , Z, W be normed vector spaces. Let x̄ be a feasible point
of (P) and ε ≥ 0. Suppose that the ordering cone K is dually compact and that

(WRQ) holds. Then, x̄ ∈ lim sup
µ→ε+

T̂ (µ) ⇒ x̄ ∈ T̂ ( ε
ρK

), where ρK is as in (2.1).

Consequently, x̄ ∈ lim sup
µ→0+

T̂ (µ) ⇒ x̄ ∈ T̂ (0).

Proof. Suppose that x̄ ∈ lim sup
µ→ε+

T̂ (µ). Then, there exist µn → ε+ and xn → x̄ such

that each xn is a normal µn-KKT point of (P). Hence

(4.3) d(g(xn),−Q) ≤ µn and ∥h(xn)∥ ≤ µn.

Take y∗n ∈ 1K+ and (z∗n, w
∗
n) ∈ Q+ ×W ∗ such that

(4.4) ∥⟨z∗n, g(xn)⟩| ≤ µn and ∥y∗n ◦ ▽f(xn) + z∗n ◦ ▽g(xn) + w∗
n ◦ ▽h(xn)∥ ≤ µn.
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By (WRQ) and Lemma 3.1, there exists r > 0 such that

(4.5) r(∥z∗n∥+ ∥w∗
n∥) ≤ ∥z∗n ◦ ▽g(x̄) + w∗

n ◦ ▽h(x̄)∥, ∀n ∈ N.

Since xn → x̄ and g, h are continuously differentiable on X, without loss of gener-
ality, we can assume that

max{∥▽g(xn)− ▽g(x̄)∥, ∥▽h(xn)− ▽h(x̄)∥} ≤ r

2
, ∀n ∈ N.

It follows from the second inequality of (4.4) that, for any n ∈ N,

∥z∗n ◦ ▽g(x̄) + w∗
n ◦ ▽h(x̄)∥ ≤ ∥z∗n ◦ (▽g(x̄)− ▽g(xn)) + w∗

n ◦ (▽h(x̄)− ▽h(xn))∥
+∥y∗n ◦ ▽f(xn)∥
+∥y∗n ◦ ▽f(xn) + z∗n ◦ ▽g(xn) + w∗

n ◦ ▽h(xn)∥
≤ r

2
(∥z∗n∥+ ∥w∗

n∥) + ∥▽f(xn)∥+ µn.

Thus, by (4.5), one has

r

2
(∥z∗n∥+ ∥w∗

n∥) ≤ µn + ∥▽f(xn)∥, ∀n ∈ N.

Noting that µn → ε and ∥▽f(xn)∥ → ∥▽f(x̄)∥, this implies that {∥z∗n∥} and {∥w∗
n∥}

are bounded. Without loss of generality, we can assume that z∗n
w∗
−−→ z∗, w∗

n
w∗
−−→ p∗,

y∗n
w∗
−−→ y∗ (taking subnets if necessary). Then, z∗ ∈ Q+, y∗ ∈ w∗-cl(1K+) and

y∗n ◦ ▽f(x̄) + z∗n ◦ ▽g(x̄) + w∗
n ◦ ▽h(x̄) w∗

−−→ y∗ ◦ ▽f(x̄) + z∗ ◦ ▽g(x̄) + p∗ ◦ ▽h(x̄).
Since ∥▽f(xn)− ▽f(x̄)∥ → 0, ∥▽g(xn)− ▽g(x̄)∥ → 0 and ∥▽h(xn)− ▽h(x̄)∥ → 0,
it follows that

y∗n ◦▽f(xn) + z∗n ◦▽g(xn) +w∗
n ◦▽h(xn) w∗

−−→ y∗ ◦▽f(x̄) + z∗ ◦▽g(x̄) + p∗ ◦▽h(x̄).
Thus, by (4.4), one has ∥y∗ ◦▽f(x̄)+z∗ ◦▽g(x̄)+p∗ ◦▽h(x̄)∥ ≤ ε. Since K is dually
compact and y∗ ∈ w∗-cl(1K+), it follows from Lemma 2.1 and the definition of ρK
that 0 < ρK ≤ ∥y∗∥ ≤ 1 and so

(4.6)

∥∥∥∥ y∗

∥y∗∥
◦ ▽f(x̄) + z∗

∥y∗∥
◦ ▽g(x̄) + p∗

∥y∗∥
◦ ▽h(x̄)

∥∥∥∥ ≤ ε

ρK
.

On the other hand, by (4.3) and the first inequality of (4.4), one also has

d(g(x̄)−Q) ≤ ε ≤ ε

ρK
, ∥h(x̄)∥ ≤ ε ≤ ε

ρK
and

⟨
z∗

∥y∗∥
, g(x̄)

⟩
≤ ε

∥y∗∥
≤ ε

ρK
.

This and (4.6) imply that x̄ ∈ T̂ ( ε
ρK

). The proof is completed. □

Corollary 4.4. Let X,Z,W be Banach spaces and Y be finite dimensional. Let
x̄ ∈ X and ε ≥ 0. Suppose that(

▽g(x̄),▽h(x̄)
)(
X
)
+Q× {0} = Z ×W.

Then, x̄ ∈ lim sup
µ→ε+

T̂ (µ) =⇒ x̄ ∈ T̂ (ε).
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Proof. Since Y is finite dimensional, the ordering cone K in Y is dually compact
and the weak∗ topology is identical with the norm topology in Y ∗. Hence 1K+

is closed with respect to the weak∗ topology and so ρK = 1. Thus, the proof is
completed by Theorem 3.4 and Proposition 3.4. □

With T̂ (µ) replaced by T (µ), one can similarly prove the following result (in fact
its proof is simpler than that of Theorem 4.3).

Theorem 4.5. Let X, Y , Z, W be normed vector spaces. Let x̄ be a feasible point
of (P) and ε ≥ 0. Suppose that the ordering cone K is dually compact and that
(WRQ) holds. Then, x̄ ∈ lim sup

µ→ε+
T (µ) ⇒ x̄ ∈ T ( ε

ρK
), where ρK is as in (2.1).

Consequently, x̄ ∈ lim sup
µ→0+

T (µ) ⇒ x̄ ∈ T (0).

Remark 4.6. It is possibly interesting to compare the assumptions in Theorems
4.3 and 4.5 with the corresponding ones in Theorem A. Recall that Theorem A
requires the following assumptions:

(A1) X,Y, Z are Banach spaces and W is finite dimensional,
(A2) the ordering cones K and Q have nonempty interiors, and
(A3) ▽h(x̄)(X) = W and (MF) is satisfied.

In Theorems 4.3 and 4.5, (A1) is relaxed to the assumption that X,Y, Z and W
are normed spaces and (A2) is relaxed to the assumption that K is dually compact.
Now, in the case when X,Z,W are Banach spaces, we show that (A3) is stronger
than (WRQ) in Theorems 4.3 and 4.5. To do this, we claim that if (MF) holds,
then

(4.7) (▽g(x̄),▽h(x̄))(X) +Q× {0} = Z × ▽h(x̄)(X).

Indeed, by (MF), there exists ū ∈ X such that ▽g(x̄)(ū) ∈ −intQ and ▽h(x̄)(ū) = 0.
Therefore, there exists δ > 0 such that δBZ ⊂ ▽g(x̄)(ū) +Q and so

Z = R+δBZ ⊂ ▽g(x̄)(R+ū) + R+Q = ▽g(x̄)(R+ū) +Q.

It follows that

Z = Z + ▽g(x̄)(x) = ▽g(x̄)(R+ū+ x) +Q, ∀x ∈ X.

Hence

Z × {▽h(x̄)(x)} = (▽g(x̄),▽h(x̄))(R+ū+ x) +Q× {0}, ∀x ∈ X.

This implies that (4.7) holds. Thus, in the case when X,Z,W are Banach spaces,
Proposition 3.2 and (4.7) imply that

[(MF) and ▽h(x̄)(X) = W ] =⇒ (WRQ).

Therefore, Theorem 4.5 extend and improve Theorem A.

We conclude the section with an example which shows that the assumptions
of Theorems 4.3 and 4.5 are fulfilled but the assumptions of Theorem A are not
satisfied. Let

X = R3, Y = Z = R2, W = R, K = Q = R+ × {0},
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and let f, g : R3 → R2 and h : R3 → R be defined by

f(u1, u2, u3) = (u21, 0), g(u1, u2, u3) = (u1 + u2, u2 + u3) and h(u1, u2, u3) = u1 + u3

for all (u1, u2, u3) ∈ R3. Then K is dually compact. Noting that g and h are linear,
it is easy to verify that(

▽g(x),▽h(x)
)(s1 − s2 + s3

2
,
s1 + s2 − s3

2
,
s2 + s3 − s1

2

)
= (s1, s2, s3)

for all x ∈ R3 and (s1, s2, s3) ∈ R3, and so(
▽g(x),▽h(x)

)
(X) +Q× {0} = R2 × R, ∀x ∈ R3.

Let x̄ = (0, 0, 0). Then x̄ is a feasible point of (P) and the assumptions of The-
orem 4.3 are fulfilled at x̄. But, int(K) = int(Q) = ∅; hence either (MF) or the
nonemptyness of int(K) is not satisfied.
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