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For the following notions see I.A. Rus [15], I.A. Rus, A. Petruşel, A. Ŝıntămărian
[16] and A. Petruşel [14].

Definition 1.1. Let (X, d) be a metric space, and F : X → Pcl(X) be a multivalued
operator. By definition, F is a multivalued weakly Picard (briefly MWP) operator
if for each x ∈ X and each y ∈ F (x) there exists a sequence (xn)n∈N such that:

(i) x0 = x, x1 = y;
(ii) xn+1 ∈ F (xn), for each n ∈ N;
(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of F .

Remark 1.2. A sequence (xn)n∈N satisfying the condition ( i) and ( ii), in the
Definition 1.1 is called a sequence of successive approximations of F starting from
(x, y) ∈ Graph(F ).

If F : X → P (X) is a MWP operator, then we define F∞ : Graph(F ) →
P (FixF ) by the formula F∞(x, y) := { z ∈ Fix(F ) | there exists a sequence of
successive approximations of F starting from (x, y) that converges to z }.
Definition 1.3. Let (X, d) be a metric space and F : X → P (X) be a MWP
operator. Then, F is called a ψ-multivalued weakly Picard operator (briefly ψ-
MWP operator) if and only ψ : R+ → R+ is increasing, continuous in 0 with
ψ(0) = 0 and there exists a selection f∞ of F∞ such that

d(x, f∞(x, y)) ≤ ψ(d(x, y)), for all (x, y) ∈ Graph(F ).

If, in particular, ψ has a linear representation (i.e., there exists c > 0 such that
ψ(t) = ct for all t ∈ R+), then F is called a c-MWP operator.

By Covitz-Nadler point principle (see [4], [12]) we get the following example.

Remark 1.4 ([16], [14]). Let (X, d) be a complete metric space and F : X → Pcl(X)
be a multivalued k-contraction, i.e., k ∈ [0, 1[ and

Hd(F (x), F (u)) ≤ kd(x, u), for all x, u ∈ X.

Then F is a 1
1−k -MWP operator.

The concept for metric regularity of multivalued operators appeared at the end
of the 1970s when a new branch of analysis later known as “non-smooth” analysis,
started the development of non-smooth analysis was mainly stimulated by the needs
of optimization theory. But the sources of the concept of metric regularity should
be sought in classical theorems of differential calculus and linear analysis.

Metric regularity is a local property, we can obtain new results of fixed points in
conditions which characterize theorems of fixed points. In general, metric regularity
deals with the study of equation of the type y ∈ F (x), where y ∈ X is fixed, for
a multivalued operator F : X → P (Y ). Many authors have obtained results in
the metric regularity field among whom we remind A. L. Dontchev, A. S. Lewis,
R. T. Rockafellar [5], A. L. Dontchev, A. S. Lewis [6], A. D. Ioffe [7], A. D. Ioffe
[8], L. A. Lyusternik [9] and others. The norm and the radius of metric regularity
characterize this property. A point x is an approximate solution of a generalized
equation y ∈ F (x) if the distance from the point y to the set F (x) is small. The
metric regularity of the multivalued operator F means that, locally, a constant mul-
tiple of this distance bounds the distance from x to an exact solution. The smallest
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such constant is the modulus of regularity and it is a measure of the sensitivity or
conditioning of the generalized equation.

Let F : X → P (Y ) be a multivalued operator between metric spaces (X, d) and
(Y, d), and U ⊆ X, V ⊆ Y given subsets. According to A. D. Ioffe [7] and B.
S. Mordukhovich [11], F is said to cover on (or to be open at a linear rate) with
respect to U × V if there exists a positive constant a such that

(1.1) F (B(x, r)) ⊇ B(F (x) ∩ V, ar), for all x ∈ U, r > 0 : B(x, r) ⊆ U,

where B(x, r) = {z ∈ X : d(z, x) < r} denotes the open ball centered at x, with

radius r, and B(Q, r) :=
∪
y∈Q

B(y, r) the r-neighborhood of the set Q.

The supremum of all constants satisfying inclusion (1.1) is called modulus of
open covering of F with respect to U × V and is denoted by covU×V F . Such
property along with the corresponding modulus, clearly relates to metrical aspects
of the surjective behavior of F . It captures a phenomenon around which many
fundamental issues of modern variational analysis turn out to revolve. In one of
its several manifestations, known and widely employed under the name of metric
regularity, it takes the form of an inequality providing an estimation for haw far a
point x is from being a solution to the generalized equation y ∈ F (x). In the most
developed theorems of subdifferential calculus, all qualification conditions appear
to be regularity/ open covering conditions for certain multivalued operators, see A.
D. Ioffe [7] and B. S. Mordukhovich [11].

The notion of open covering to the global case is the case in which U = X and
V = Y .

Definition 1.5 (A. D. Ioffe [7]). A multivalued operators F : X → P (Y ) between
metric spaces (X, d) and (Y, d) is said cover on X (or to be globally open at a linear
rate), provided that there exists a constant a > 0 such that

(1.2) F (B(x, r)) ⊇ B(F (x), ar), for all x ∈ X, r > 0.

The supremum over all values a satisfying inclusion (1.2) is called modulus of global
covering of F and denoted for short by cov(F ) (instead of covX×Y F ).

Notice that, due to the global validity of inclusion (1.2) and to the openness of
the involved enlargement, one has

F (B(x, r)) ⊇ B(F (x), cov(F )r), for all x ∈ X, r > 0.

Remark 1.6 (A. Uderzo [17]).

(i) The open covering property of a multivalued operator admits several useful
formulation. It is well known that a mapping F fulfils Definition 1.5 if and
only if there exists l > 0 such that

(1.3) D(x, F−1(y)) ≤ lD(y, F (x)), for all x ∈ X, y ∈ Y.

The infimum of all values l satisfying inequality (1.3) is called modulus of
global metric regularity of F and denoted by reg(F ). The following relation
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between the modulus of global covering and the modulus of global metric
regularity is know to hold

reg(F ) =
1

cov(F )
,

where the case reg(F ) = ∞, coresponding to cov(F ) = 0, is intended to
mean the absence of global open covering/ metric regularity for a given F .

(ii) Another characterization of open covering/ metric regularity can be ob-
tained in terms of Lipschitz behavior of the inverse multivalued operator.
In fact F covers on X if and only if F−1 is Lipschitz continuous in Y and it
holds

lip(F−1) =
1

cov(F )
.

2. Main results

Let (X, d) and (Y, ρ) be two metric spaces and S, T : X → P (Y ) be two multi-
valued operators.

Definition 2.1. By definition, a solution of the coincidence problem for S and T
is a pair (x∗, y∗) ∈ X × Y such that:

y∗ ∈ T (x∗) ∩ S(x∗).

Denote by CP (S, T ) ⊂ X × Y the set of all solutions of the coincidence problem
for S and T .

Let dZ be a traditional scalar metric on Z := X × Y . Let us consider the following
multivalued coincidence problem

(2.1) find (x, y) ∈ X × Y such that y ∈ S(x) ∩ T (x).

Definition 2.2. The multivalued coincidence problem (2.1) is called generalized
Ulam-Hyers stable if and only if there exists ψ : R2

+ → R+ increasing, continuous
in 0 and with ψ(0) = 0, such that for every ε1, ε2 > 0 and for each solution w∗ :=
(u∗, v∗) ∈ X × Y of the following approximative coincidence problem

(2.2) Dρ(S(u), v) ≤ ε1 and Dρ(T (u), v) ≤ ε2,

there exists a solution z∗ := (x∗, y∗) of (2.1) such that

dZ(z
∗, w∗) ≤ ψ(ε1, ε2).

If there exists c1, c2 > 0 such that ψ(t1, t2) = c1t1+c2t2 for each t1, t2 ∈ R+, then
the multivalued coincidence problem (2.1) is said to be Ulam-Hyers stable.

Let (X, d) and (Y, ρ) be two metric spaces and the following two metrics onX×Y :

d∗((x1, y1), (x2, y2)) := d(x1, x2) + ρ(y1, y2), for all (x1, y1), (x2, y2) ∈ X × Y

d∗((x1, y1), (x2, y2)) := max{d(x1, x2), ρ(y1, y2)}, for all (x1, y1), (x2, y2) ∈ X × Y.

Denote by Hd∗ and Hd∗ the Hausdorff-Pompeiu functionals on P (X×Y ) generated
by d∗ and d∗ respectively.
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Lemma 2.3. Let (X, d) and (Y, ρ) be two metric spaces. Then, we have:

1) Dd∗((x, y), A×B) = Dd(x,A) +Dρ(y,B)

2) Dd∗((x, y), A×B) = max{Dd(x,A), Dρ(y,B)},
for each x ∈ X, y ∈ Y , A ⊂ X and B ⊂ Y .

Proof. Let x ∈ X, y ∈ Y , A ⊂ X and B ⊂ Y . For 1) we have:

Dd∗((x, y), A×B) = inf
(a,b)∈A×B

{d∗((x, y), (a, b))} = inf
(a,b)∈A×B

{d(x, a) + ρ(y, b)}

= inf
a∈A

d(x, a) + inf
b∈B

ρ(y, b) = Dd(x,A) +Dρ(y,B).

In a similar way, we can prove 2). □
Lemma 2.4. Let us consider X, Y be two nonempty sets and S, T : X → P (Y ) be
two multivalued operators. If S is onto and we define G : X × Y → P (X)× P (Y ),
G(x, y) = S−1(y)× T (x), then

CP (S, T ) = Fix(G).

Proof. We successively have the equivalences (u∗, v∗) ∈ Fix(G1) ⇐⇒ (u∗, v∗) ∈
G(u∗, v∗) ⇐⇒ (u∗, v∗) ∈ S−1(v∗) × T (u∗) ⇐⇒ u∗ ∈ S−1(v∗) and v∗ ∈ T (u∗) ⇐⇒
v∗ ∈ S(u∗) and v∗ ∈ T (u∗) ⇐⇒ v∗ ∈ T (u∗) ∩ S(u∗) ⇐⇒ (u∗, v∗) ∈ CP (S, T ). □
Theorem 2.5 ([19]). Let (X, d) be a complete metric space and F : X → Pcl(X)
be a multivalued operator. If there exists k ∈ [0, 1) such that

ed(F (x), F (y)) ≤ k · d(x, y), for all x, y ∈ X,

then there exists at least one fixed point for F .

Our first existence and stability result is the following.

Theorem 2.6. Let (X, d) and (Y, ρ) be two complete metric spaces. Let T, S : X →
P (Y ) be two multivalued operators, such that S is an onto operator and:

(i) T : X → Pcl(Y ) is a contraction with constant kT < 1;
(ii) S : X → P (Y ) is metrically regular on X with constant kS ∈ (0, 1) and

S−1(y) is closed for each y ∈ Y .

Then there exists at least one solution of multivalued coincidence problem (2.1).
If, in addition, S−1 and T have compact values then the problem (2.1) is Ulam-

Hyers stable.

Proof. Let Z := X × Y and G1 : Z → P (Z) defined by G1(u, v) = S−1(v) × T (u).
For u := (u1, u2) ∈ Z, v := (v1, v2) ∈ Z, x := (x1, x2) ∈ G1(u) and used Lemma 2.3
we have:

Dd∗(x,G1(v)) = Dd∗((x1, x2), (G1(v1, v2)) = Dd∗((x1, x2), (S
−1(v2)× T (v1)))

= Dd(x1, S
−1(v2)) +Dρ(x2, T (v1)).

Taking into account that S is metrically regular on X, T is a contraction and
x ∈ G1(u) we obtain:

Dd∗(x,G1(v)) ≤ ksDρ(v2, S(x1)) +Hρ(T (u1), T (v1))

≤ kS · ρ(u2, v2) + kT · d(u1, v1) (because u2 ∈ S(x1))
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≤ max{kT , kS}[d(u1, v1) + ρ(u2, v2)]

= max{kT , kS} · d∗((u1, u2), (v1, v2)).

Denote by k := max{kT , kS}, we obtain that:

Dd∗(x,G1(v)) ≤ k · d∗(u, v).

So,

sup
x∈G1(u)

Dd∗(x,G1(v)) = sup
(x1,x2)∈G1(u1,u2)

Dd∗((x1, x2), G1(v1, v2))

= ed∗(G1(u1, u2), G1(v1, v2))(2.3)

≤ k · d∗((u1, u2), (v1, v2)) = k · d∗(u, v).

Similarly, for y := (y1, y2) ∈ G1(v) and used Lemma 2.3, we have:

Dd∗(y,G1(u)) = Dd∗((y1, y2), (G1(u1, u2))

= Dd∗((y1, y2), (S
−1(u2)× T (u1)))

= Dd(y1, S
−1(u2)) +Dρ(y2, T (u1)).

Taking into account that S is metrically regular on X, T is a contraction and
y ∈ G(v) we obtain:

Dd∗(y,G1(u)) ≤ ks ·Dρ(S(y1), u2) +Hρ(T (v1), T (u1))

≤ kS · ρ(u2, v2) + kT · d(u1, v1) (because v2 ∈ S(y1))

≤ max{kT , kS}[d(u1, v1) + ρ(u2, v2)]

= max{kT , kS} · d∗((u1, u2), (v1, v2)).

We obtain that: Dd∗(y,G1(u)) ≤ k · d∗(u, v). So,

sup
y∈G1(v)

Dd∗(y,G1(u)) = sup
(y1,y2)∈G1(v1,v2)

Dd∗((y1, y2), G1(u1, u2))

= ed∗(G1(v1, v2), G1(u1, u2))(2.4)

≤ k · d∗((u1, u2), (v1, v2)) = k · d∗(u, v).

From relations (2.3) and (2.4) we obtain:

Hd∗(G1(u), G1(v)) = max{ed∗(G1(u), G1(v)), ed∗(G1(v), G1(u))} ≤ k · d∗(u, v),

for all (u, v) ∈ Z × Z. So, we deduce that G1 : Z → P (Z) is a multivalued
contraction. Moreover, G1 has nonempty and closed values. Thus, we can apply
Covitz-Nadler’s fixed point theorem for G1 and we obtain that there exists z∗ ∈
Z such that z∗ ∈ G1(z

∗). Thus, by Lemma 2.4 (a), the multivalued coincidence
problem (2.1) has at least one solution.

For the second conclusion, let ε1, ε2 > 0 and w∗ := (u∗, v∗) ∈ X × Y a solution
of the approximative coincidence problem, i.e.,

(2.5) Dρ(S(u
∗), v∗) ≤ ε1 and Dρ(T (u

∗), v∗) ≤ ε2

By the first part of our proof, we get that z∗ := (x∗, y∗) ∈ X × Y is a solution of
the multivalued coincidence problem (2.1). Moreover, we apply Remark 1.4 for G1
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and we get that G1 is 1
1−k -MWP operator, i.e.,

d∗(w∗, z∗) ≤ 1

1− k
d∗(w∗, t), for each t ∈ G(w∗).

Then, for every (t1, t2) ∈ S−1(v∗)× T (u∗) we have that

d∗(w∗, z∗) ≤ 1

1− k
[d(u∗, t1) + ρ(v∗, t2)].

By (2.5) and the compactness of the values of T , there exists t∗2 ∈ T (u∗) such that
Dρ(T (u

∗), v∗) = ρ(t∗2, v
∗). Since S−1(v∗) is compact, using again (2.5) we get that

there exists t∗1 ∈ S−1(v∗) such that Dd(u
∗, S−1(v∗)) = d(u∗, t∗1). Then, taking into

account that S is metrically regular on X we get that

d(u∗, t∗1) = Dd(u
∗, S−1(v∗)) ≤ Dρ(S(u

∗), v∗).

In conclusion

d∗(z∗, w∗) ≤ 1

1− k
[d(u∗, t∗1) + ρ(v∗, t∗2)] ≤

1

1− k
(ε1 + ε2),

proving that the multivalued coincidence problem (2.1) is Ulam-Hyers stable. □
Theorem 2.7. Let (X, d) and (Y, ρ) be two complete metric spaces. Let T, S : X →
P (Y ) be two onto multivalued operators, such that:

(i) T : X → Pcl(Y ) is metrically regular on X with constant kT ∈ (0, 1);
(ii) S−1 : Y → P (X) is metrically regular on Y with constant kS ∈ (0, 1) and

S−1(y) is closed, for all y ∈ Y ;

Then there exists at least one solution of the multivalued coincidence problem
(2.1).

If, in addition, S−1 and T have compact values then the problem (2.1) is Ulam-
Hyers stable.

Proof. Let Z := X×Y . We define G1, G2 : Z → P (Z) by G1(u, v) = S−1(v)×T (u)
and G2(u

′, v′) = T−1(v′) × S(u′). We can observe that G2 = G−1
1 . We prove that

G1 is metrically regular on Z.
For x := (x1, x2) ∈ Z, y := (y1, y2) ∈ Z and taking into account that T is

metrically regular on X and S−1 is metrically regular on Y , we have:

Dd∗((x1, x2), G2(y1, y2)) = Dd∗((x1, x2), T
−1(y2)× S(y1))

= Dd(x1, T
−1(y2)) +Dρ(x2, S(y1))

≤ kT ·Dρ(T (x1), y2) + kS ·Dd(S
−1(x2), y1)

≤ max{kT , kS}[Dd(S
−1(x2), y1) +Dρ(T (x1), y2)]

= max{kT , kS} ·Dd∗(S
−1(x2)× T (x1), (y1, y2))

= max{kS , kT } ·Dd∗(G1(x1, x2), (y1, y2)).

We denote by k := max{kT , kS} ∈ (0, 1) and we deduce that G1 : Z → P (Z) is
metrically regular on Z with the norm of regularity Reg(G) := max{kT , kS} ∈ (0, 1).
For y := (y1, y2) ∈ Z, we have:

(2.6) sup{Dd∗((x1, x2), G2(y1, y2)) : (x1, x2) ∈ Z} ≤ k ·Dd∗((y1, y2), G1(x1, x2)).
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Taking into account that T and S are onto operators we can deduce that for all
t := (t1, t2) ∈ Z, there exists (x1, x2) ∈ Z such that (t1, t2) ∈ G1(x1, x2). From
relation (2.6) we have:

sup{Dd∗((x1, x2), G2(y1, y2)) : (x1, x2) ∈ Z} ≤ k ·Dd∗((y1, y2), (t1, t2)).

For x := (x1, x2) ∈ Z, y := (y1, y2) ∈ Z, we can write:

(2.7) sup{Dd∗(x,G2(y)) : x ∈ Z} = ed∗(G2(y), G2(t)) ≤ k · d∗(y, t).

Moreover, G2 has nonempty and closed values. Thus, we can apply Theorem 2.5
for G2 and we obtain that there exists z∗ ∈ Z such that z∗ ∈ G2(z

∗). Thus, by
Lemma 2.4 (b), we deduce that the multivalued coincidence problem (2.1) has at
least one solution.

The proof of the second conclusion is similar with the proof of Theorem 2.6. □

Remark 2.8. A similar result take place if we replace, in the proof of the above
theorem, the metric d∗ with d∗ and Hd∗ with Hd∗ .

Corollary 2.9. In Theorem 2.6 and Theorem 2.7 if we consider two subsets U ⊆ X
and V ⊆ Y such that the operators T, S : U → P (V ) satisfy all the conditions of
these theorems on U × V , then we obtain the same conclusions on U × V .

Next we give an application of Theorem 2.6.

Theorem 2.10. Let us consider the multivalued differential inclusion:

(2.8) x′(t) ∈ F (t, x(t)), a.e. t ∈ [a, b],

where F : [a, b]× Rn → Pcl,cv(Rn) is a multivalued operator such that:

(a) there exists an integrable function M : [a, b] → R+ such that for each u ∈ Rn

we have F (s, u) ⊂M(s)B(0, 1), a.e. s ∈ [a, b];
(b) F (·, u(·)) : [a, b] → Pcl,cv(Rn) is measurable for every u ∈ C([a, b)];
(c) for each u ∈ Rn, F (·, u) : [a, b] → Pcl,cv(Rn) is lower semi-continuous;
(d) there exists a continuous function p : [a, b] → R+ such that for each s ∈ [a, b]

and each u, v ∈ Rn we have that: H(F (s, u), F (s, v)) ≤ p(s) · |u− v|;
(e)

∫ t
0 f(τ, 0)dτ = O(e

∫ t
0 L(τ)dτ ).

Then the following conclusions hold:

(i) there exists at least one solution for the Cauchy problem:

(2.9)

{
x′(t) ∈ F (t, x(t)), a.e. t ∈ [a, b];
x(a) = α, α ∈ Rn.

(ii) the differential inclusion (2.8) is Ulam-Hyers stable, i.e. for each ε > 0
there exists cε > 0 such that for each function y ∈ C([a, b],Rn) a solution of
the inequation

D∥·∥Rn (y(t), F (t, y(t))) ≤ ε, t ∈ [a, b],

there exists a solution x of differential inclusion (2.8) such that

∥x(t)− y(t)∥Rn ≤ cε · ε, for each t ∈ [a, b].
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Proof. The problem (2.9) is equivalent to an integral inclusion of Volterra type:

(2.10) x(t) ∈ α+

∫ t

a
F (s, x(s))ds, t ∈ [a, b].

Let us consider the multivalued operator T : C([a, b],Rn) → P (C([a, b],Rn)) defined
by

(Tx)(t) :=

{
α+

∫ t

a
F (s, x(s))ds

}
e−p

∫ t
0 L(s)ds

and the operator S : C([a, b],Rn)→C([a, b],Rn) defined by (Sx)(t) := x(t)e−p
∫ t
0 L(s)ds

where p > 1 and C([a, b],Rn) is the space of continuous function on [a, b] with a
Bielecki-type norm in C([a, b],Rn), given by

∥x∥B := sup
t∈[a,b]

(∥x(t)∥Rn · e−τq(t)), where q(t) :=

∫ t

a
p(s)ds.

We observe that (2.9) is equivalent to (2.10) and, by the above notation, equivalent
to the inclusion

(2.11) S(x) ∈ T (x), x ∈ C([a, b],Rn).

We will prove that T is a multivalued contraction on C([a, b],Rn). Notice first
that one may suppose (without affecting the generality of the Lipschitz condition)
that the inequality from (d) is strict. Let x1, x2 ∈ C([a, b],Rn) and v1 ∈ T (x1).
Then

v1(t) ∈
{
α+

∫ t

a
F (s, x1(s))ds

}
e−p

∫ t
0 L(s)ds, t ∈ [a, b].

It follows that

v1(t) ∈
{
α+

∫ t

a
f1(s)ds

}
e−p

∫ t
0 L(s)ds, t ∈ [a, b],

for some f1(s) ∈ F (s, x1(s))ds, s ∈ [a, b].

From (d) we have H(F (s, x1(s)), F (s, x2(s))) < p(s) · |x1(s)− x2(s)|. Thus there
exists w ∈ F (s, x2(s) such that |f1(s)− w| ≤ p(s) · |x1(s)− x2(s)|, for s ∈ [a, b].

Let as define U : [a, b] → P (Rn), by

U(s) := {w| |f1(s)− w| ≤ p(s) · |x1(s)− x2(s)|}.

Since the multivalued operator V (s) := U(s) ∩ F (s, x2(s)) is measurable, so there
exists f2(s) a measurable selection for V . By (a) we obtain that f2 is integrable.
Hence f2(s) ∈ F (s, x2(s)) and |f1(s)−f2(s)| ≤ p(s)·|x1(s)−x2(s)|, for each s ∈ [a, b].

Consider v2(t) =

{
α +

∫ t

a
f2(s)

}
e−p

∫ t
0 L(s)ds, t ∈ [a, b]. Then for each t ∈ [a, b],

we have:

|v1(t)− v2(t)| ≤
∫ t

a
|f1(s)− f2(s)|e−p

∫ t
0 L(s)dsds

≤ e−p
∫ t
0 L(s)ds

∫ t

a
p(s)|x1(s)− x2(s)|ds
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= e−p
∫ t
0 L(s)ds

∫ t

a
p(s)eτq(s)|x1(s)− x2(s)|e−τq(s)ds

≤ e−p
∫ t
0 L(s)ds

∫ t

a
p(s)eτq(s)∥x1 − x2∥Bds

=
e−p

∫ t
0 L(s)ds

τ
∥x1 − x2∥B(eτq(t) − eτq(a))

≤ e−p
∫ t
0 L(s)ds

τ
∥x1 − x2∥Beτq(t).

Thus we get ∥v1 − v2∥B ≤ e−p
∫ t
0 L(s)ds

τ
∥x1 − x2∥B. A similar relation can be

obtained by interchanging the role of x1 and x2. By choosing now τ > e−p
∫ t
0 L(s)ds

we get that H∥·∥B (T (x1), T (x2)) ≤
e−p

∫ t
0 L(s)ds

τ
∥x1 − x2∥B, which prove that T is a

multivalued contraction with constant α :=
e−p

∫ t
0 L(s)ds

τ
.

We will prove that S is metrically regular on C([a, b],Rn).

We have (S−1y)(t) = y(t) · ep
∫ t
0 L(s)ds. By calculation we get:

|x(t)− (S−1y)(t)| = |x(t)− y(t) · ep
∫ t
0 L(s)ds|

= |ep
∫ t
0 L(s)ds| · eτq(s) · |x(t) · e−p

∫ t
0 L(s)ds − y(t)| · e−τq(s)

= ep
∫ t
0 L(s)ds · eτq(s) · ∥(Sx)− y∥B

and further ∥x − (S−1y)∥B = ep
∫ t
0 L(s)ds · ∥(Sx) − y∥B. So, S is metrically regular

with constant ep
∫ t
0 L(s)ds > 0.

So, all the conditions from Theorem 2.6 are satisfy, then there exists x̄ ∈
C([a, b],Rn) suchh that S(x̄) ∈ T (x̄). There exists at least one solution for the
Cauchy problem (2.9).

For the second conclusion, we observe that, from definition of S that the operator
S−1 has compact values and from Theorem 8.8.2 Bang-Bang Principle) from [2], we
deduce that the operator T has compact values. So, from Theorem 2.6 we that the
differential inclusion (2.9) is Ulam-Hyers stable.

□

Next, we give an example for Corollary 2.9 with Theorem 2.6.

Example 2.11. Let us consider the following multivalued operators: T : [0, 1] →
P ([0, 1]), T (x) = [0, x2 ] and S : [0, 1] → P ([0, 1]), S(x) = [0, x].
We consider the following coincidence problem:

(2.12) T (x) ∩ S(x) ̸= ∅.

The multivalued operator T is a contraction with constant 1
2 < 1, because:

H(T (x), T (y)) = H

([
0,
x

2

]
,

[
0,
y

2

])
= max

{
0,

1

2
|x− y|

}
=

1

2
|x− y|.
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We will show that S is metrically regular on U × V ⊆ R2.
So, S−1 : [0, 1] → P ([0, 1]), S−1(y) = [y, 1].

D(S−1(y), x) = inf
v∈S−1(y)

|v − x| = inf
v∈[y,1]

|v − x| = y − x.

D(y, S(x)) = inf
u∈S(x)

|y − u| = inf
u∈[0,x]

|y − u| = y.

So, S is metrically regular if y − x ≤ k · y ⇒ (1− k)y ≤ x, with k < 1.
For k = 1

2 we deduce that S is metrically regular on subset {(x, y) ⊆ R2|x ∈
[0, 1], y ≤ 2x} (Figure (a)), and for k = 2

3 we deduce that S is metrically regular

on subset {(x, y) ⊆ R2|x ∈ [0, 1], y ≤ 3x} (Figure (b)). So, all the conditions of

Theorem 2.6 are satisfy on a subset of R2. We apply Corollary 2.9 and we obtain
that there exists at least one solution for coincidence problem (2.12).

3. The vector valued case

Let us consider the above approach using now a Hausdorff-Pompeiu type vector
metric.

If x, y ∈ Rm, x = (x1, ..., xm) and y = (y1, ..., ym), then, by definition:

x ≤ y if and only if xi ≤ yi, for each i ∈ {1, 2, ...,m}

and

x < y if and only if xi < yi, for each i ∈ {1, 2, ...,m}.

Notice that, through this paper, we will make an identification between row and
column vectors in Rm.
Let us introduce now some vector-valued metrics of Perov’s type. Let (X, d) and
(Y, ρ) be two metric spaces. Let Z := X ×Y and define on Z ×Z the vector metric

dV (u, v) :=

(
d(u1, v1)
ρ(u2, v2)

)
, for each u = (u1, u2), v = (v1, v2) ∈ Z.
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In the same framework as above, let us consider a Hausdorff-Pompeiu type vector
functional given by H∗ : (P (X)× P (Y ))× (P (X)× P (Y )) → R2

+ given by

H∗(A×B,U × V ) :=

(
Hd(A,U)
Hρ(B, V )

)
.

From the definition, it follows that H∗ is a vector metric on Pcl(X)× Pcl(Y ).
Similarly, we can define D∗ : (X × Y )× (P (X)× P (Y )) → R2

+ given by

D∗((x, y), U × V ) :=

(
Dd(x,U)
Dρ(y, V )

)
.

The following lemma follows immediately by the definition of H∗ and the prop-
erties of the Hausdorff-Pompeiu functional.

Lemma 3.1. Let (X, d) and (Y, ρ) be two metric spaces. Let A,C ⊂ X and B,D ⊂
Y and q > 1. Then, for any z ∈ A×B there exists w ∈ C ×D such that

dV (z, w) ≤ qH∗(A×B,C ×D).

A classical result in matrix analysis is the following theorem (see, e.g., [1]).

Theorem 3.2. Let A ∈Mmm (R+). The following assertions are equivalent:

(i) A is convergent towards zero;
(ii) An → 0 as n→ ∞;
(iii) The spectral radius ρ(A) of A is strictly less than 1, i.e., the eigenvalues of

A are in the open unit disc;
(iv) The matrix I −A is nonsingular and

(3.1) (I −A)−1 = I +A+ · · ·+An + · · · ;

(v) The matrix (I −A) is nonsingular and (I −A)−1 has nonnegative elements;
(vi) Anq → 0 and qAn → 0 as n→ ∞, for each q ∈ Rm;
(vii) The matrices qA and Aq converge to 0, for each q ∈ (1, Q), where Q := 1

ρ(A) .

Notice that we have the following result.

Lemma 3.3 (see [13]). Let A ∈ Mm,m (R+) be a matrix convergent to zero. Then,
there exists Q > 1 such that for any q ∈ (1, Q) the matrix qA is convergent to 0.

We present now a vector version of Nadler’s fixed point theorem. See also [18] for
a similar result.

Theorem 3.4 ([10]). Let (X, d) and (Y, ρ) be two complete metric spaces. Let
F := F1 × F2 be a multivalued operator such that F1 : X × Y → Pcl(X) and
F2 : X × Y → Pcl(Y ) are two multivalued operators with the property that there
exists a matrix A ∈M22 (R+) which converges to zero such that

H∗ (F (u) , F (v)) ≤ AdV (u, v) , for all u = (u1, u2), v = (v1, v2) ∈ X × Y.

Then:

(i) Fix(F ) ̸= ∅, i.e., there exists z∗ := (z∗1 , z
∗
2) ∈ X × Y such that z∗1 ∈ F1(z

∗)
and z∗2 ∈ F2(z

∗);
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(ii) for each (z, w) ∈ Graph(F ) there exists a sequence (zn)n∈N (with z0 = z,
z1 = w and zn+1 ∈ F (zn), for each n ∈ N∗) such that (zn)n∈N is convergent
to a fixed point z∗ of F and dV (z, z∗) ≤ (I −A)−1dV (z, w).

(iii) if (zn)n∈N → z∗ ∈ Fix(F ) as n→ +∞, then

dV (zn, z
∗) ≤ An(I −A)−1dV (z0, z1),

for each n ∈ N∗.

We will recall now the concept of generalized Ulam-Hyers stablility, in a vector
form, for coincidence point problems.

Definition 3.5. Let (X, d) and (Y, ρ) be two metric spaces and S, T : X → P (Y )
be two multivalued operators. The multivalued coincidence problem (2.1) is called
generalized Ulam-Hyers v-stable if and only if there exists ψ : R2

+ → R2
+ increasing,

continuous in 0 with ψ(0) = 0, such that for every ε := (ε1, ε2) (with ε1, ε2 > 0) and
for each ε-solution w∗ := (u∗, v∗) ∈ X × Y of the multivalued coincidence problem
(2.1) (i.e., a solution of the following approximative coincidence problem

Dρ(S(u), v) ≤ ε1 and Dρ(T (u), v) ≤ ε2),

there exists a solution z∗ := (x∗, y∗) of (2.1) such that

(3.2) dV (z∗, w∗) ≤ ψ(ε).

If there exists a matrix C ∈ M22(R+) such that ψ(t) = Ct for each t ∈ R2
+, then

the multivalued coincidence problem (2.1) is said to be Ulam-Hyers v-stable.

We can prove now another existence and Ulam-Hyers stability result for the multi-
valued coincidence problem.

Theorem 3.6. Let (X, d) and (Y, ρ) be two complete metric spaces. Let T, S : X →
P (Y ) be two multivalued operators, such that S is an onto operator and:

(i) T : X → P (Y ) is Lipschitz with constant kT > 0;
(ii) S : X → P (Y ) is metrically regular on X with constant kS > 0 and S−1(y)

is closed for each y ∈ Y ;
(iii) kT · kS < 1.

Then there exists at least one solution of multivalued coincidence problem (2.1).
If, in addition, S−1 and T have compact values then the problem (2.1) is Ulam-

Hyers stable.

Proof. Let Z := X × Y and G1 : Z → P (Z) defined by G1(u, v) = S−1(v) × T (u).
For u := (u1, u2) ∈ Z, v := (v1, v2) ∈ Z, x ∈ G1(u) and taking into account that S
is metrically regular on X and T is Lipschitz, we have:

D∗(x,G1(v)) = D∗((x1, x2), G1(v1, v2)) = D∗((x1, x2), (S
−1(v2)× T (v1)))

=

(
Dd(x1, S

−1(v2))
Dρ(x2, T (v1))

)
≤

(
kS ·Dρ(v2, S(x1))
Hρ(T (u1), T (v1))

)
≤

(
kS · ρ(u2, v2)
kT · d(u1, v1)

)
=

(
0 kS
kT 0

)
·
(
d(u1, v1)
ρ(u2, v2)

)
=

(
0 kS
kT 0

)
· dV (u, v).
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If we denote by A :=

(
0 kS
kT 0

)
, we obtain:

sup
x∈G1(u)

D∗(x,G1(v)) = sup
(x1,x2)∈G1(u1,u2)

D∗((x1, x2), G1(v1, v2))

= edV (G1(u1, u2), G1(v1, v2))(3.3)

≤ A ·
(
d(u1, v1)
ρ(u2, v2)

)
= A · dV (u, v).

Similarly, for y := (y1, y2) ∈ G1(v), we have D∗(y,G1(u)) ≤ A · dV (u, v). So,
sup

y∈G1(v)
D∗(y,G1(u)) = sup

(y1,y2)∈G1(v1,v2)
D∗((y1, y2), G1(u1, u2))

= edV (G1(v1, v2), G1(u1, u2))(3.4)

≤ A ·
(
d(u1, v1)
ρ(u2, v2)

)
= A · dV (u, v).

From relations (3.4) and (??) we obtain:

H∗(G1(u), G1(v)) = max{edV (G1(u), G1(v)), edV (G1(v), G1(u))} ≤ A · dV (u, v),
for all (u, v) ∈ Z × Z. Since A is convergent to zero, we can apply to G1 the
multivalued version of Perov’s fixed point theorem (see Theorem 3.4) and we obtain
that there exists z∗ ∈ Z such that z∗ = G1(z

∗). Thus by Lemma 2.4 (a), the
multivalued coincidence problem (2.1) has at least one solution.

For the second conclusion, let ε1, ε2 > 0 and let w∗ := (u∗, v∗) ∈ Z be a solution
of the approximative coincidence problem, i.e.,

(3.5) Dρ(S(u
∗), v∗) ≤ ε1 and Dρ(T (u

∗), v∗) ≤ ε2,

By (3.5) and the compactness of the values of T , there exists t∗2 ∈ T (u∗) such that

ρ(t∗2, v
∗) = Dρ(T (u

∗), v∗) ≤ ε2.

Since S−1(v∗) is compact, there exists t∗1 ∈ S−1(v∗) such that d(u∗, t∗1) =
Dd(u

∗, S−1(v∗)). Taking into account that S is metrically regular on X, we get:

d(u∗, t∗1) = Dd(u
∗, S−1(v∗)) ≤ Dρ(S(u

∗), v∗) ≤ ε1.

By the first part of our proof, we know there exists z∗ := (x∗, y∗) ∈ Z a solution
of the multivalued coincidence problem (2.1). Then, from the second part of (ii) in
Theorem 3.4 we get that

dV (w∗, z∗) ≤ (I −A)−1dV (w∗, t), for any t ∈ G1(w
∗).

Thus, for t := t∗ = (t∗1, t
∗
2) ∈ S−1(v∗)× T (u∗) = G1(w

∗), we have that

dV (w∗, z∗) ≤ (I −A)−1

(
d(u∗, t∗1)
ρ(v∗, t∗2)

)
≤ (I −A)−1

(
ε1
ε2

)
= (I −A)−1ε,

proving that the multivalued coincidence problem (2.1) is generalized Ulam-Hyers
stable with a function ψ : R2

+ → R2
+, ψ(t) = (I −A)−1t. □

Remark 3.7. Notice that the assumptions on S and T in Theorem 3.6 are much
more relaxed than those in Theorem 2.6, which shows the advantages of working
with the vector metric technique.
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We will present now an application of Theorem 3.6.

Theorem 3.8. Consider the differential equation

(3.6) x′ = f(t, x)

with initial condition

(3.7) x(0) = ξ.

Suppose that the function f is defined in the half-plane t ≥ 0, −∞ < x < +∞ and
satisfies following conditions:

• i) f(t, x) is a continuous function of x for almost all t ≥ 0;
• ii) f(t, x) is a measurable function of t for all x ∈ R;
• iii) Lipschitz inequality, i.e.

|f(t, x)− f(t, y)| ≤ L(t)|x− y|,

where L is locally integrable function on the interval (0,∞);

• iv)
∫ t
0 f(τ, 0)dτ = O(e

∫ t
0 L(τ)dτ ).

Then the differential equation (3.6) has for every ξ ∈ R a unique solution and the
equation (3.6) is Ulam-Hyers stable.

Proof. Let us consider the set

A = {x ∈ C[0,∞) : x(t) = O(e
∫ t
0 L(τ)dτ )}.

We define the operators S, T : A→ B by

(Tx)(t) =

{∫ t

0
f(τ, x(τ))dτ + ξ

}
e−p

∫ t
0 L(τ)dτ ,

(Sx)(t) = x(t)e−p
∫ t
0 L(τ)dτ ,

where B is a Banach space of bounded continuous functions on [0,∞) with the
norm ∥x∥ = sup

(0,∞)
|x(t)| and p > 1. By simple calculation we have

|(Tx)(t)− (Ty)(t)| ≤ e−p
∫ t
0 L(τ)dτ

p
∥x− y∥

and further ∥Tx − Ty∥ ≤ e−p
∫ t
0 L(τ)dτ

p
∥x − y∥. So T is a Lipschitz operator with

constant
e−p

∫ t
0 L(τ)dτ

p
> 0.

We will prove that S is metrically regular on A. We have (S−1y)(t) = y(t) ·
ep

∫ t
0 L(τ)dτ . By calculation we get:

|x(t)− (S−1y)(t)| = |x(t)− y(t) · ep
∫ t
0 L(τ)dτ |

= |ep
∫ t
0 L(τ)dτ | · |x(t) · e−p

∫ t
0 L(τ)dτ − y(t)|

= ep
∫ t
0 L(τ)dτ · |(Sx)(t)− y(t)|
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and further ∥x− (S−1y)∥ = ep
∫ t
0 L(τ)dτ · ∥(Sx)− y∥. So, S is metrically regular with

constant ep
∫ t
0 L(τ)dτ > 0.

The condition (iii) by Theorem 3.6 is satisfy because
e−p

∫ t
0 L(τ)dτ

p
·ep

∫ t
0 L(τ)dτ =

1

p
<

1.
So, all the conditions from Theorem 3.6 are satisfy, then there exists x̄ ∈ A such
that S(x̄) = T (x̄). From this we have

x̄(t) =

∫ t

0
f(τ, x̄(τ))dτ + ξ.

Then the differential equation (3.6) has, for every ξ ∈,R at least one solution with
the initial condition x̄(0) = ξ.

We willl prove that the solution for the differential equation (3.6) is unique.
Suppose that there exists x̄, ȳ ∈ A solutions for the differential equation (3.6). In
this case, we have:

x̄(t) =

∫ t

0
f(τ, x̄(τ))dτ + ξ.

ȳ(t) =

∫ t

0
f(τ, ȳ(τ))dτ + ξ.

Taking into account that f is Lipschitz, we have:

|x̄(t)− ȳ(t)| ≤
∫ t

0
|f(τ, x̄(τ))− f(τ, ȳ(τ))|dτ ≤

∫ t

0
L(τ)|x̄(τ)− ȳ(τ)|dτ

Using Gronwall Lemma, we obtain that |x̄(t) − ȳ(t)| ≤ 0 =⇒ x̄(t) = ȳ(t), so the
differential equation (3.6) has, for every ξ ∈,R a unique solution with the initial
condition x̄(0) = ξ.

Because S−1 and T have compact values, we deduce that the equation (3.6) is
Ulam-Hyers stable. □
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[14] A. Petruşel, Multivalued weakly Picard operators and applications, Sci. Math. Jpn. 59 (2004),

169–202.
[15] I.A. Rus, Remarks on Ulam stability of the operatorial equations, Fixed Point Theory 10

(2009), 305–320.
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400084, Cluj-Napoca, Romania

E-mail address: oana.mlesnite@math.ubbcluj.ro

Adrian Petruşel
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