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given subset and established the generic property result and porosity result respec-
tively. It is well-known that a lot of works have been done on set-valued mapping
theory and some classical theorems for single-valued maps have been extended to
nonexpansive set-valued maps; see, for example, [1,4,8,12,13,16–18,20,23–25] and
the references therein.

The purpose of the present paper is to extend the notions of contractive maps and
contractive maps with respect to a set from the single-valued case to the set-valued
case, and study the porosity properties for non-contractive set-valued maps and/or
non-contractive maps with respect to a set in hyperbolic spaces. By using the notion
of admissible family introduced in [15,18], the main results are stated in Theorems
3.1 and 4.3, which respectively show that the set of all nonexpansive set-valued
maps on a star-shaped set fail to be contractive is σ-porous and that the set of all
nonexpansive set-valued maps on a star-shaped set fail to be contractive with respect
to D0 is σ-porous. These results extend and/or improve the the corresponding
results in [5, 21,22] from the single-valued case to the set-valued case.

The paper is organized as follows. Section 2 contains notations, terminology
which will be used later. In Sections 3 and 4, the porosity properties on the nonex-
pansive set-valued maps are presented.

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X and y ∈ X is a
map γ from a closed interval [0, r] ⊂ R to X such that γ(0) = x, γ(r) = y and
d(γ(t), γ(t′)) = |t − t′| for t, t′ ∈ [0, r]. The image γ([0, r]) of γ is called a geodesic
segment joining x and y which when unique is denoted by [x, y]. For any x, y ∈ X,
we denote the point z ∈ [x, y] such that d(x, z) = td(x, y) and d(z, y) = (1−t)d(x, y)
by z := (1− t)x⊕ ty, where 0 ≤ t ≤ 1. Similarly, for x ∈ X and A ⊆ X, we denote
the set {tx⊕ (1− t)a : a ∈ A} by tx⊕ (1− t)A. The space (X, d) is called a geodesic
space if each pair of two points of X are joined by a geodesic segment. Let Λ denote
the set of all geodesic segments in X. The following definition is taken from [2].

Definition 2.1. Let (X, d) be a geodesic space and Γ ⊆ Λ a family of geodesic
segments. (X, d) is said to be a

(a) Γ-uniquely geodesic space if for each pair of distinct points x and y of X,
there is a unique geodesic in Γ which passes through x and y.

(b) uniquely geodesic space if it is a Λ-uniquely geodesic space.

As explained in [2, Remark 6], the class of Γ-uniquely geodesic spaces is strictly
larger than the class of uniquely geodesic spaces. The following definition of hyper-
bolic space is taken from [20], which is a classical example of Γ-uniquely geodesic
space.

Definition 2.2. Let (X, d) be a geodesic space and Γ ⊆ Λ a family of geodesic
segments. (X, d) is called a hyperbolic space if X is Γ-uniquely geodesic and the
following inequality holds

(2.1) d(
1

2
x⊕ 1

2
y,

1

2
x⊕ 1

2
z) ≤ 1

2
d(y, z), ∀x, y, z ∈ X.
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Remark 2.3. (a) Classical examples of Hyperbolic spaces are CAT(0) spaces, in
particular, all Hadamard manifolds, and the Hilbert ball are hyperbolic spaces.
Furthermore, normed linear spaces with Γ := ΓL, the family of all linear segments
are hyperbolic spaces too; see for example [20].

(b) As explained in [20], since the metric d is continuous, (2.1) is equivalent to

(2.2) d(tx⊕ (1− t)y, tx⊕ (1− t)z) ≤ (1− t)d(y, z), ∀x, y, z ∈ X, t ∈ [0, 1].

In the remainder of this paper, we assume that Γ ⊆ Λ and (X, d) is a complete
hyperbolic space associated with Γ. Let A ⊆ X be a bounded subset. We use RA

to denote the diameter of A; while the distance function associated to A is defined
by

(2.3) d(x,A) := inf
a∈A

d(x, a), ∀x ∈ X.

For any r > 0 and x ∈ X, we use BX(x, r) and UX(x, r) to denote the closed and
open ball of X with center x and radius r, respectively.

Let B(X) denote the family of nonempty closed bounded subsets of X. Recall
that the Hausdorff distance on B(X) is defined by

h(A,B) := max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}, A,B ∈ B(X).

It is well-known that (B(X),h) is a complete metric space if X is complete, see for
example [9]. Let D ⊂ X be a nonempty, closed and bounded subset and set

(2.4) B(D) := {A ⊂ D : A is nonempty and closed}.
Then the space B(D) is complete under the metric h. Following [26], a point a ∈ D
is called a star-shaped point of D if ta+ (1− t)x ∈ D for each x ∈ D and t ∈ [0, 1],
and D is called a star-shaped set if it contains a star-shaped point. The set of all
star-shaped points of D is denoted by st(D). Moreover, given x ∈ D and for any
A ⊂ D, we use {At;x} to denote the set family generated by x and A with each At;x

defined by

At;x := tx+ (1− t)A, ∀t ∈ [0, 1].

The notion of admissible family in part (b) of the following definition was first
introduced by Li and Xu in [15]; see also [18].

Definition 2.4. Let x ∈ D and χD ⊆ B(D). The set χD is called
(a) an x-admissible family if At;x ∈ χD whenever A ∈ χD and t ∈ [0, 1);
(b) an admissible family if it is an x-admissible family for each x ∈ D.

Remark 2.5. Consider the families of subsets of D defined as follows:

χS
D := {{x} : x ∈ D};

χB
D := B(D);

χK
D := {A ∈ B(D) : A is compact};
χC
D := {A ∈ B(D) : A is convex}.

χKC
D := {A ∈ B(D) : A is compact and convex}.

Then each of them is a-admissible for any a ∈ st(D) and admissible if st(D) = D.
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Throughout the remainder of this paper, we further assume that D ⊆ X is a
nonempty, closed, bounded Γ-star-shaped subset, and a ∈ stΓ(D) is fixed. Set

(2.5) M := {F : D → χD : h(F (x), F (y)) ≤ d(x, y), ∀x, y ∈ X}.

Let M be equipped with the uniform metric ρ defined by

(2.6) ρ(F1, F2) := sup
x∈D

h(F1(x), F2(x)), ∀F1, F2 ∈ M.

Then M is complete under the metric ρ. Let F ∈ M. The following definition is a
natural extension of the one in [19] due to Rakotch.

Definition 2.6. F is said to be contractive if there is a function αF : [0, RD] → [0, 1)
such that αF is decreasing and

(2.7) h(F (x), F (y)) ≤ αF (d(x, y))d(x, y), ∀x, y ∈ D.

The notation of a contractive map (single-valued) as well as its modifications and
applications were studied by many authors; see, for example [19, 21, 22]. We end
this section by the notion of porosity.

Definition 2.7. A subset Y ⊂ X is said to be porous in X if there are t ∈ (0, 1] and
r0 > 0 such that for every x ∈ X and r ∈ (0, r0] there is a point y ∈ X such that
BX(y, tr) ⊆ BX(x, r) ∩ (X \ Y ). Y is said to be σ-porous in X if it is a countable
union of sets which are porous in X.

Note that in this definition, the statement “for every x ∈ X” can be replaced
by “for every x ∈ Y ”. Clearly, a set which is σ-porous in X is also meager in X,
the converse being false, in general. Furthermore, if X = Rn, then each σ-porous
set has (Lebesgue) measure zero. See for example [6, 7]. Note further that if Y is
σ-porous in X then the complement X \ Y is residual in X.

3. Contractive maps

In this section, we will establish the porosity result on the existence of fixed points
for nonexpansive set-valued maps in X. Recall that X is a complete hyperbolic
space, D ⊆ X is a nonempty, closed, bounded, Γ-star-shaped set, and a ∈ stΓ(D).
The main theorem of this section is as follows, which seems new for the set-valued
case even in Banach spaces.

Theorem 3.1. There exists a set N ⊂ M such that M\N is σ-porous in M and
each F ∈ N is contractive.

Proof. Let n ∈ N and define Mn ⊂ M by

Mn := {F ∈ M : ∃kn ∈ (0, 1) s.t. ∀x, y ∈ D with

d(x, y) ≥ RD

2n
, h(F (x), F (y)) ≤ knd(x, y)}.

It suffices to show that
(a) each F ∈ ∩n∈NMn is contractive;
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(b) M\Mn is porous in M.
To show (a), let F ∈ ∩n∈NMn. By (??), for each n ∈ N, there is kn ∈ (0, 1) such
that

(3.1) h(F (x), F (y)) ≤ knd(x, y), ∀x, y ∈ D with d(x, y) ≥ RD

2n
.

Without loss of generality, we may assume that kn ≤ kn+1. Define αF : [0, RD] →
[0, 1) by

(3.2) αF (d) := kn,
RD

2(n− 1)
> d ≥ RD

2n
.

Then αF is decreasing on [0, RD] and αF (d) < 1 for all d > 0. So (a) is proved.
Below we show (b). To do this, set

(3.3) α :=
1

8
min{RD, 1}(2n)−1(RD + 1)−1 and r0 := 1.

Let F ∈ M, r ∈ (0, r0] and

(3.4) λ :=
r

2(RD + 1)
.

Define G : D → χD by

(3.5) G(x) := λa⊕ (1− λ)F (x), ∀x ∈ D.

By (2.2), one has that

(3.6) h(G(x), G(y)) ≤ (1− λ)h(F (x), F (y)) ≤ (1− λ)d(x, y), ∀x, y ∈ D

and

(3.7) h(G(x), F (x)) ≤ λh(a, F (x)) ≤ λRD, ∀x ∈ D.

Then G ∈ M and

(3.8) ρ(F,G) ≤ λRD.

It suffices to show that

(3.9) BM(G,αr) ⊂ BM(F, r) ∩Mn.

To show (3.9), let H ∈ BM(G,αr) and x, y ∈ D with d(x, y) ≥ RD
2n . It follows from

(3.6) that

(3.10) d(x, y)− h(G(x), G(y)) ≥ λd(x, y) ≥ λ
RD

2n
.

Note that

h(H(x),H(y)) ≤ h(H(x), G(x)) + h(G(x), G(y)) + h(G(y),H(y))(3.11)

≤ h(G(x), G(y)) + 2αr.

This together with (3.3),(3.4) and (3.10) implies that

d(x, y)− h(H(x),H(y)) ≥ d(x, y)− h(G(x), G(y))− 2αr

≥ λ
RD

2n
− 2αr(3.12)

≥ rRD

8n(RD + 1)
.
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Thus

(3.13) h(H(x),H(y)) ≤ d(x, y)− rRD

8n(RD + 1)
≤ (1− r

8n(RD + 1)
)d(x, y).

Noting that (3.13) holds for all x, y ∈ D such that d(x, y) ≥ RD
2n , we conclude that

H ∈ Mn and so

(3.14) BM(G,αr) ⊂ Mn.

On the other hand, by (3.8), one has

(3.15) h(H(x), F (x)) ≤ h(H(x), G(x)) + h(G(x), F (x)) ≤ αr + λRD ≤ r,

which means that BM(G,αr) ⊂ BM(F, r). This together with (3.14) implies that
(3.9) holds. Set N := ∩n∈NMn and the proof is complete. □

Applying Theorem 3.1 to the special admissible family χS
D, we get the following

corollary, which extends and improves the corresponding results in [22] and [21].
In particular, Corollary 3.2 was proved in [22, Theorem 2.2] in the Banach space
setting.

Corollary 3.2. Let MS := {f : D → χS
D : f is nonexpansive}. Then there exists a

set NS ⊂ MS such that MS\NS is σ-porous in MS and each f ∈ NS is contractive.

4. Attractive sets

As assumed in the previous sections, E is a complete hyperbolic space, D ⊆ E is
a nonempty, closed, bounded, Γ-star-shaped set. In this section, let D0 be a convex
subset of D. Set

(4.1) MD0 := {F ∈ M : x ∈ F (x), ∀x ∈ D0}.

Clearly, MD0 is a closed subset of M. The next definition is an extension of the
single-valued case.

Definition 4.1. Let F ∈ MD0 . F is said to be contractive with respect to D0 if
there is a function αF : [0, RD] → [0, 1) with αF being decreasing such that

(4.2) inf
f∈F (x)

d(f,D0) ≤ α(d(x,D0))d(x,D0), ∀x ∈ D.

Remark 4.2. As in the single-valued case, for any F ∈ MD0 , F is contractive
implies that F is contractive with respect toD0. In fact, let F ∈ MD0 be contractive
and y ∈ D0 be arbitrary. Then y ∈ F (y) and

(4.3) inf
f∈F (x)

d(y, f) ≤ h(F (x), F (y)) ≤ αF (d(x, y))d(x, y).

It follows that

(4.4) inf
f∈F (x),y∈D0

d(y, f) ≤ inf
y∈D0

αF (d(x, y))d(x, y).

Noting that αF is decreasing, (4.2) follows from (4.4) immediately.
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Let ND0 denote the set of all F ∈ MD0 such that F is contractive with respect
to D0. Furthermore, let

(4.5) MS
D0

:= {f ∈ MS : f(x) = x, ∀x ∈ D0}.
The main result in this section is as follows, which seems new for the set-valued
case even in Banach spaces.

Theorem 4.3. Suppose that there is p ∈ MS
D0

such that p(D) = D0. Then the set
MD0 \ ND0 is σ-porous in MD0.

Proof. Let n ∈ N be arbitrary and let Mn
D0

denote the set of all F ∈ MD0 which
have the following property.
(4.6)

∃kn ∈ (0, 1) s.t. ∀x ∈ D with d(x,D0) ≥
min{RD, 1}

n
, inf
f∈F (x)

d(f,D0) ≤ knd(x,D0).

To complete the proof, we only need to show that
(a) ∩n∈NMn

D0
⊆ ND0 ;

(b) the set MD0 \Mn
D0

is porous in MD0 .

To show (a), let F ∈ ∩n∈NMn
D0

. By (4.6), for each n ∈ N, there is kn ∈ (0, 1)
such that

(4.7) inf
f∈F (x)

d(f,D0) ≤ knd(x,D0), ∀x ∈ D with d(x,D0) ≥
min{RD, 1}

n
.

Without loss of generality, we may assume that kn ≤ kn+1. Define αF : [0, RD] →
[0, 1) by

(4.8) αF (d) := kn,
min{RD, 1}

n− 1
> d ≥ min{RD, 1}

n
.

Then αF is decreasing on [0, RD] and αF (d) < 1 for all d > 0. So (a) is proved.
Below we show (b). For this purpose, set

(4.9) α :=
1

8
min{RD, 1}(2n)−1(RD + 1)−1 and r0 := 1.

Let F ∈ MD0 , r ∈ (0, r0],

(4.10) λ :=
r

2(RD + 1)

and define G : D → χD by

(4.11) G(x) := λp(x)⊕ (1− λ)F (x), ∀x ∈ D.

Then x ∈ G(x) for all x ∈ D0. By (2.2), one has

(4.12) h(G(x), F (x)) ≤ λd(p(x), F (x)) ≤ λRD, ∀x ∈ D

and

(4.13) h(G(x), G(y)) ≤ d(x, y), ∀x, y ∈ D.

So G ∈ MD0 . It suffices to show that

(4.14) BMD0
(G,αr) ⊂ BMD0

(F, r) ∩Mn
D0

.
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Let W ∈ BMD0
(G,αr) and x ∈ D with d(x,D0) ≥ min{RD,1}

n . For each ϵ > 0, there
is z ∈ D0 such that

(4.15) d(x, z) ≤ d(x,D0) + ϵ.

Noting that z ∈ F (z), (2.2) and (4.15), one has that

inf
g∈G(x)

d(g,D0) = inf
f∈F (x)

d(λp(x)⊕ (1− λ)f,D0)

≤ inf
f∈F (x)

d(λp(x)⊕ (1− λ)f, λp(x)⊕ (1− λ)z)

≤ inf
f∈F (x)

(1− λ)d(f, z)

= (1− λ)d(z, F (x))

≤ (1− λ)h(F (z), F (x))

≤ (1− λ)d(x, z)

≤ (1− λ)d(x,D0) + (1− λ)ϵ.

Since ϵ > 0 is arbitrary, it follows that

(4.16) inf
g∈G(x)

d(g,D0) ≤ (1− λ)d(x,D0).

Note that for x1, x2 ∈ D, |d(x1, D0)− d(x2, D0)| ≤ d(x1, x2). It follows from (4.16)
that

(4.17) inf
w∈W (x)

d(w,D0) ≤ inf
w∈W (x)

d(w, g) + d(g,D0) ≤ αr + d(g,D0)

and hence

(4.18) inf
w∈W (x)

d(w,D0) ≤ inf
g∈G(x)

d(g,D0) + αr ≤ (1− λ)d(x,D0) + αr.

Thus

inf
w∈W (x)

d(w,D0) ≤ (1− λ)d(x,D0) + αr

= d(x,D0)

(
1− λ+

αr

d(x,D0)

)
≤ d(x,D0)

(
1− r

2(RD + 1)
+

αnr

min{RD, 1}

)
≤ d(x,D0)

(
1− r

2(RD + 1)
+

r

16(RD + 1)

)
= d(x,D0)

(
1− 7r

16(RD + 1)

)
,

which implies that W ∈ Mn
D0

and hence

(4.19) BMD0
(G,αr) ⊂ Mn

D0
.

On the other hand, by (4.9), (4.10) and (4.12), one gets

(4.20) ρ(W,F ) ≤ ρ(W,G) + ρ(G,F ) ≤ αr + λRD ≤ r,

which means that (4.14) holds and the proof is complete. □
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Applying Theorem 4.1 to the special a-admissible family AS
D. We have the fol-

lowing corollary, which extends the corresponding results in [21, 22]. In particular,
under the assumption that D is convex, Corollary 4.4 was proved in [22] in the
Banach space setting.

Corollary 4.4. Suppose that there is p ∈ MS
D0

such that p(D) = D0 and let N S
D0

denote the set of all f ∈ MS
D0

such that f is contractive with respect to D0. Then

the set MS
D0

\ N S
D0

is σ-porous in MS
D0

.

5. Concluding remark

As metioned in the introduction section, every contractive single-valued map has
a unique fixed point. However, we do not know whether every contractive set-
valued map has a fixed point or not. Actually, it seems little to be known about
the existence of fixed point for the set-valued case.
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tractions non linéaires dans un espace de Banach, C. R. Acad. Sci. Paris Sér. I Math. 283
(1976), 185–187.

[6] F. S. De Blasi and J. Myjak, Sur la porosité de l’ensemble des contractions sans point fixe, C.
R. Acad. Sci. Paris Sér. I Math. 308 (1989), 51–54.

[7] F. S. De. Blasi, J. Myjak and P. L. Papini, Porous sets in best approximation theory, J. London
Math. Soc. 44 (1991), 135–142.

[8] F. S. De. Blasi, J. Myjak, S. Reich and J. Z. Alexander, Generic existence and approximation
of fixed points for nonexpansive set-valued maps, Set-Valued Anal. 17 (2009), 97–112.
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