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ON THE CONVERGENCE ANALYSIS OF A NEWTON-LIKE
METHOD UNDER WEAK SMOOTHNESS ASSUMPTIONS

D. R. SAHU, KRISHNA KUMAR SINGH, AND XTAOPENG ZHAO*

ABSTRACT. The aim of the paper is to discuss the semilocal convergence analysis
of a Newton-like method for solving the generalized operator equations containing
nondifferentiable term in Banach spaces under w-type conditions. Our result
extends and generalizes the corresponding result discussed by Argyros and Hilout
[Improved generalized differentiability conditions for Newton-like methods, J.
Complexity, 26 (2010), 316-333]. A numerical example is discussed in support of
our main result.

1. INTRODUCTION

Let X and Y be Banach spaces and D an open convex subset of X. Throughout
the paper, we denote B;[z] (and B,(x)) the closed ball defined by B,[z] = {y €
X:lly—z|| <r} (and By(z) ={y € X : ||y —z|| < r}), B(X,Y) the space of
bonded linear operators from X to Y, Ng = NU {0} and ® denotes the collection
of all positive nondecreasing real-valued functions defined on [0, 00). Consider the
nonlinear operator equation

(1.1) F(z) =0,

where F'is an operator defined from X into Y such that F' is continuously Fréchet
differentiable at each point of D. The problems of differential and integral equations,
differential inequalities, optimization problems, variational problems, fixed points
and many others can be formulated in terms of finding the solution of nonlinear
operator equations (1.1) (see [10, 11, 12, 13, 22]). The Newton method for solving
the operator equation (1.1) is given by

(1.2) Tpgl = Ty — F;:lF(xn) for all n € Ny.

In [9], Bartle considered the following Newton-like method for solving the operator
equation (1.1):

(1.3) Tptl = Ty — F;;lF(xn) for all n € Ny,

where {z,} is a sequence in D. Note that if z, = x¢ for all n € Ny, (1.3) reduces to
modified Newton method given by

Tptl = Tp — F;;lF(xn) for all n € Ny.
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In [21], Vijesh and Subrahmaniam considered the combination of (1.2) and (1.3)
and discussed the convergence analysis of

(1.4) Tnt1 = T — (AFL, + (1 = N F, )" F(z,) for all n € No,

where A is a fixed number in [0,1]. Note that for A = 1 and A = 0, (1.4) reduces
to (1.2) and (1.3), respectively. Recently, Argyros and Hilout [1] discussed the
convergence analysis of the Newton-like method:

(1.5) Tni1 = Tn — A(xy) ' F(xy), for all n € Ny,

where A(x) is a linear operator which approximates F).

The following problem is more general than problem (1.1):
(1.6) F(z)+ G(z) =0,

where F' and G are two operators defined on an open convex subset D of a Banach
space X into Banach space Y such that F' is continuously Fréchet differentiable at
each point of D and G is not necessarily differentiable. The operator equation (1.6)
has been considered by many authors, for example, see [2, 3, 4, 5, 6, 7, 8, 15, 16,
17, 18, 19, 20, 21] and references therein. In [1], Argyros and Hilout considered the
following iteration process:

(1.7) Tny1 = Tp — A(xn) " (F(2) + G(ay)), for all n e Ny,

for solving the operator equation (1.6). Recently, following the ideas of (1.4), Sahu
and Singh [17] discussed the semilocal convergence analysis of

(1.8) Tl = xp — (A, +(1— )\)Fz’n)_l(F(xn) + G(xy,)), for all n € Ny,

for solving the operator equation (1.6).

Motivated by the iterative algorithms (1.7) and (1.8), the main purpose of this
paper is to introduce a Newton-like iterative algorithm to compute the solution of
(1.6). We also discuss the semilocal convergence analysis of the sequence generated
by proposed algorithm under w-type conditions. Since our assumptions on the
nonlinear operators F' and G involving in operator equation (1.6) are fairly general,
our main result (Theorem 3.1) covers a wide variety of nonlinear operator equations
and it significantly generalizes the corresponding results of Argyros and Hilout [1]
and Vijesh and Subrahmanyam [21]. At the end, we give a numerical example to
illustrate our main result.

2. PRELIMINARIES
In subsequent sections, we shall make use of the following lemmas.
Lemma 2.1 (Rall [14, Page 50]). Let L be a bounded linear operator on a Banach
space X. Then the followings are equivalent:
(a) There is a bounded linear operator M on X such that M~' exists, and

1

IM =L < =
M1

(b) L~ emists.
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[ | IR (17|
T[T=M~ L] = T-[M 1M=L

Further, if L=1 exists, then HL_lH <

Lemma 2.2. Let H, Hy,ly,l1,l2,n be some nonnegative real numbers, A € [0,1]
be a fired number and w,wp,wr,w2,ws € ®. Suppose that {6,} is a sequence of
nonnegative real numbers such that 6, < § for all n € Ny and for some § > 0.
Denote

_ H1W1(T]) + )\wg(O) + (1 - )\)[wl(é) + WQ((S)] + CO3(77) + (2 - )\)ll + lg

vo Tl — o) — (1~ Ajeo(o)
and
b(r) = Hw(n) 4+ dwa(r) + (1 = N [w(d + 1) + wa(d)] + ws(r) + Ia
- 1-— lo — /\WO(T’) — (1 — )\)WO((S) '
Assume that the scalar equation
Yo >
2.1 1+ —— =r
2 (14 =)
has a minimum positive zero r* such that
(2.2) Awo(r*) + (1 — Nwo(d) < 1 =1, 0o <1 and (r*) < 1.
Then, the sequence {t,} defined by
to = 0,t1 =n,ta =11 +on and
(tn - tn—l)
n = n H n — tn— n—
tnt1 tn + 1—lo—Awo(tn)—(1—>\)wo(5n)< W(tn — th—1) + Awa(tn-1)
(2.3) +(1 — )\)(w(tn_1 + 5n_1) + WQ(5n_1)) + w;g(tn — tn—l) + lg) formn > 2

is well defined, nondecreasing, bounded above and hence convergent and converges
to its least upper bound t*. Moreover, the following estimate holds:

(2.4) tn — tn-1 < Yon(¥(r"))" "% n > 2.

Proof. Since r* is the minimum positive root of (2.1), we have t; = n < r* and
t1 — top < n. Using induction on n, we show that t, is well defined, ¢, <t, < r*
and (2.4) hold for all n > 2. Using (2.1) and (2.3), we note that ¢t < r* and
to —t1 < tgn. Thus, our assertion holds for n = 2. Let k > 2 be an integer. Assume
that our assertion hold for n = 2,3,... k. As t; < r*, it follows from (2.2) and
(2.3) that tg41 is well defined. Using (2.3), we have
(tk — th—1)
1-— lo - /\(,U()(tk) — (1 — /\)wo(ék)
+ (1 — /\)(w(tk,1 + (5]4,1) + wg(ék,l)) + w3(tk — tk,1) + lg)
<t
4 Hw(n) + w2 (r*) + (1 = N (w(r*+ 6) + wa(d)) + ws(r*) + lo
1-— l() - )\wo(’l“*) - (1 - )\)&)0(5)
=t +P(r*)(tk — th—1)
<t + V) (teo1 — te2) + V(") (e — tr—1)
< b+ p(r)(t2 — 1) + (") (ts — t2)
(2.5) +---+ iﬂ(T*)(tk,l — tkfg) + 1/1(7"*)(tk — tkfl)

lev1 =tk +

(Hw(tk — tk;fl) + )\wg(tkfl)

(tk — th1)
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< (1 o + Yo () + Yo((r)2 + - + () )

(1=

=r*.

Hence, we have t;11 < r*. By definition of w, wq, w1, w2, ws and (2.3), it follows that
tr < tgy1. Using (2.5), we have

Y(r*)(te — te—1)

bon (v (r*))F 1

Thus, (2.4) holds for n = k+1. Hence, the induction hypothesis is complete. There-

fore, the sequence {t,} is nondecreasing, bounded above and as such it converges
to its unique least upper bound ¢* for some t* € [n, r*]. O

tpy1 —tp <
<

3. CONVERGENCE ANALYSIS

Let F and G be two operators defined on an open convex subset D of a Banach
space X with values in a Banach space Y such that F' is Fréchet differentiable
at each point of D. Let A(x) € B(X,Y) be an operator which approximates F.
Let {z,} be a sequence in D. To solve the operator equation (1.6), we define the
Newton-like algorithm as follows: Starting with x¢ € D and after x,, € D is defined,
we define the next iteration z,11 as follows:

(31)  Zpy1 = xn — AA(z,) + (1 = NA(2,)) " H(F () + G(zy)), for all n € Ny.

Note that when A = 1, (3.1) reduces to (1.7) and when A(x) = F., (3.1) reduces to
(1.8).

The following theorem is the main result of this paper which guarantees the con-
vergence of the proposed algorithm (3.1) to a solution of the problem (1.6).

Theorem 3.1. Let F and G be two operators defined on an open convex subset D
of a Banach space X with values in a Banach space Y such that F' is Fréchet differ-
entiable at each point of D. Let A(x) € B(X,Y') be an operator which approximates
F! for x € D. Let {6,} be a sequence of nonnegative real numbers such that 6, < §
for all n € Ny and for some 6 > 0. For xg € D, let {z,}72, be a sequence in D
satisfying ||zn — zo|| < 0 and A(zo) ™, (MA(zo) + (1 — N A(2)) ' € B(Y, X) for
some fired X € [0,1]. For xz,y € D and for some nonnegative numbers n,ly,l1,ls,
assume that the operators F, F' and A(x) satisfy the following conditions:

(C1) [[(AA(zo) + (1 = X)A(20)) " (F(=o) + G (o)) < n;

(€2) || A(zo) " (FL — F)Il < w(llz — yl));

(€3) [|A(zo) ' (A(x) — Az0))|| < wo(llx — woll) + lo;
(C4) || A(zo)  (F) — F)ll < willle — xoll) + I

(C5) | A(zo) " (F) — A(2))|| < wa(l|x — ol|) + Ia;
(€6) | A(z0) " (G(z) — Gl < ws(llz — yl)]lz — yl,

where w,wp, w1, ws,ws € ®. Assume that
(3.2) w(ts) < h(t)w(s),wi(ts) < hi(t)wi(s) for allt € [0,1] and for all s € [0,00)
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for some positive nondecreasing continuous functions h and hy defined in [0, 1].
Denote H = fol h(t)dt and Hy = fol hi(t)dt. Suppose that the scalar equation
defined by (2.1) has a minimum positive zero r* such that (2.2) is satisfied and
By«[x9] € Dy. Then, we have the following:
(a) The sequence {x,} generated by (3.1) is well defined, remains in By«[zo]
and converges to a solution ©* € By«[xo] of (1.6). Moreover, the following
error estimates hold:

(3.3) |Znt1 — xnl| < tnt1 — tn for all n € No,

(3.4) |Xnst1 — xol] < tng1 for all n € Ny
and

(3.5) |xnt1 — || < t° — typq1 for all n € Ny,
where {t,} is a sequence generated by (2.3) and t* is the limit of sequence
{tn}-

(b) Further, if v** is a positive number such that
Hw(r™) 4+ Awa(r*) + (1 = N)(w(r* + 0) + w(d)) + wa(r**) + 2
1—1lp— Awo(r*) — (1 — Nwo(9)
then the solution x* of (1.6) is unique in Bys«[zo] N D.
Proof. (a) It follows from Lemma 2.2 that the sequence {t,} defined by (2.3) is

convergent and converges to its unique least upper bound t* for some t* € [n, r*].
We now proceed with the following steps:

(3.6) 6= <1,

Step 1. {x,} is well defined and it remains in B,«[zo] and (3.3) and (3.4) hold
for all n > 0.

Note [lo1 = o] = | (M(w0) + (1~ X) A(:0) ™ (Flao) + Gla)| <=1~ tg <1

Hence, z1 € By+[zo] and (3.3) and (3.4) hold for n = 0. Using induction on n, we
show that x, is well defined for each n > 2 and remains in B,+[xo] and (3.3)-(3.4)
hold for all n > 1. Put L, = AA(z,) + (1 — A\)A(z,). From (3.1), we have
1A(z0) ™ (A(wo) — L1)|
1A(20) T (A A(z0) + (1 = M) A(0) — MA(1) — (1 = M) A(21))]
M A(zo) ™ (A1) = Alwo)) || + (1= N[ A(zo) ™" (A(z1) — Alo))|
Awo([l21 = zoll) + (1 = Awo(llz1 — zoll) + 1o
Awo(t1) + (1 — Nwo(01) + o
)\Q)(](T*) + (1 — /\)W0(5) + 1y < 1.
Hence, by Banach lemma, L]L_1 exists and

1 1
I < < :
1-— lo — /\WQ(tl) — (1 — )\)wg((51) 1-— l() — )\wo(r*) — (1 — )\)w()((S)
Therefore, x5 is well defined. Now, we have
w2 — x| = | L1~ (F (21) + G(z1))|

IA A IACIA

1L A(o)
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= || L1 (F(21) + G(21) — F(20) — G(z0) — Lo(z1 — 20))]|
1

_ H L} AA(z0) — (1= N)A(20)) (21 — 20)dt

a:+t:1: T
0 o+t(z1—z0)

G(a1) = G%)H

1
sum1A@@({AUA@M*MQHMQM—AWMM
(U= M AG0) ™ Py sger —any — Al DIkt — oldt

+M@@*@@n—mmm0

1
:Mﬁmm(éumm»W%Wmm—%+ﬂfAmm
(1= MA@ ™ (Fl yier—zo) — Fho + Fho = Flo + Fly = Alz0))])
xmrwwﬁ+mww*@mn—amm0

Using (C2) — (C6) and (3.2), we get

w2 — 1|
12171 A(zo) || (Huwr (|21 — 2oll) 4+ Aw2(0) + (1 — A) (w1 ([ 20 — zol|)
twa(llz0 — zol)) + ws([[z1 — zol|) + (2 = MNlx + &2)[lz1 — 20|
Hywi(n) + Awz(0) + (1 = A)(wi(0) + w2(0)) +ws(n) + 2 =Nl + b
- 1—1o— Awo(n) — (1 — Nwo(6)
= ton =tz —t1,
which shows (3.3) holds for n = 1. Note

IN

llze — x| < ||lz2 — z1|| + |x1 — 20| <to —t1 +t1 —tg =ta <77,

which shows (3.4) holds for n = 1 and x2 € By«[xg|. Thus, our assertion holds for
n = 1. Let k > 1 be an integer. Assume that our assertion holds for some positive
integer n = k. From (3.1), we have

|A(z0) ™  (A(zo) — Li) |

|A(z0) " (AA(zo) + (1 — X)A(w0) — AMA(zx) — (1 — ) A(z))]|
M| A(zo) " (A(zr) — Alzo)) || + (1 = N)||A(zo) " (A(2) — A(z0))|
Awo([lzk = zol) + (1 = Nwo([lz — 2oll) + lo

)\w()(tk) + (1 — )\)wo(5k) + I

Awp (%) + (1 — Nwo(6) + g < 1.

(VAN VAN VAN VAN

Hence, by Banach lemma, L,;l exists and

1 1

-1
Ly~ A(o)|| < 1~ o — Awoltr) — (1 — Nwo(0r) STC lo — Awo(r*) — (1 — N)wp(6)
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Therefore, x4 is well defined. Now, we have

|41 — 2|
= || L (F(2k) + G(ap)) |
= ||Li (F(ar) + Gag) — Fwp1) — G(ag-1) — Lr—1(zx — zp-1)) |

1
< ||Lx ™ A(o) | </O 1A(0) ™ (Fy, vt y) — M(@1) = (1= X A(z-1))|
< Nl — s e+ [ Azo) ™ (Glax) - G(mk_mu)
1 ! 1
< ||Lx " Aao)] / (AHA(zco) (FL, ooan ) — Foo + Fo = Alwien)|
O NIAG) Lt =P Pl =P 4P = Al
% llag — apa | + 1A (o) " (Glay) — G(m))\\] -

Again, by using (C2) — (C6) and (3.2), we get

|Zrt1 — x|
< Ly A(zo) | [HW(H% —zp1|]) + Awa([|er—1 — 0]|)
+(1 = N (w(||zp—1 — T—1l])
twa(llzk—1 — woll)) + ws(llzr — w—1l]) + l2| |2k — 21l
(tk — tr—1)
< Huw(ty, — t),_ te
= 1= 1o — Mwo(te) — (1 = Nwo(6r) Wty = 1) + Awa(ti-1)

+(1 = A)(W(Op—1 + tr—1) + w2 (0p—1)) + ws(tr — te—1) + lz]
= ter1 —
which shows that (3.3) holds for n = k + 1. Note
|zk+1 — zoll < l|zpt1 — 2l + -+ + |lz1 — 2ol < L1 <77,

which shows (3.4) holds for n = k and xp41 € By«[zo]. Thus, our assertion holds
for all n > 0.

Step 2. x,, — x*, where z* € B,«[x] is a solution of (1.6) and (3.5) holds for all
n € Np.

Using (3.3), we have

”$n+m - an < ”mn—i-m - xn—&-m—lH + ”xn—l-m—l - xn+m—2H +oet Hxn+1 - an
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n+m—1 n+m—1
(3.7) = Z [Zht1 — 2kl < Z (te1 — tk) = tntm — tn.
k=n k=n

It follows that {x,} is Cauchy and hence converges to some z* € B;+[xg].
(3.1), we get

1A(z0) ™ (F(2n) + G(za))|

< 1AGo) " (La)l|znr1 — zall
< [ A(o) ™ (AA(@n) + (L = A)A(2n) — AA(0) + AA(xo)
—(1 A)A(w )+ (1= A)A(@o)) [lllznt1 — 2l
= [|A(w0) T (M(A(wn) = A(0)) + (1 = N)(A(za) — A(a0))
+A(@o) [llzn+1 = 2l
< (Qwo(llzn = zoll) + (1 = Mwo(llzn = 2oll) +lo + Dl[[[zn+1 — 2n]|
< (Awo(r*) + (1 = XNwo(0) + 1o + 1) (tn+1 — tn) — 0 as n — oc.

From

From the continuity of F' and G, we have F'(z*)+ G(2*) = 0. Thus, z* is a solution

of (1.6). Taking limit as m — oo in (3.7), we get (3.5).

(b) We show that z* is the unique solution of (1.6) in B,««[xo] N D. Suppose that

y* is another solution of (1.6) in B,««[xo] N D. For n € N, we obtain in turn

ly" = Znaa|
= |ly* =+ Lo~ (F(zq) + Glzn))|
= | La " (F(y") = Flza) + G(y") = G(zn) = La(y* —an))|

1
=HLn‘1A(fco)H( 1A ey~ L)l =
T 1ACz0) " (Glan) G(y*»n)
1
~ 2 4G | [ Q1A ey — Al

+ (1= MIA0) ™ (Fy, iy —an) — Alzn))Dlly" — wnlldt

+ | A(20) G (y") — G(%))II]

1
= || Ln ™" A(zo) | /0 A A@0) ™ (Fy, 14ty —a) = Fay + Fa,, = Alzn))]

+ (1= N[ A@o) ™ (Fy, iy —an) — Frt Fr = FL A+ FL = ACz))IDlly™ — @nlldt

+ | A(20) (G (y") — G(%))H] :
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Using (C2) — (C6) and (3.2), we get

Hy*_xn-i-lH
[Hw<||y* = ) + Aeoallzn — oll) + (1 = N (12 — all) + walllzn — zoll)
- 1 — 1o — dwo(||zn — 2ol]) — (1 = Nwo(||lzn — zo]])
ws(ly” — nl) + s ] *
+ —an
=T~ Mwo(len — zol) — (1= Newo(lzm — o)) 14~

[Hw(”y* — Zpl|]) + Awa(tn) + (1 — A)(w(0y + tn) + wa(dy))
1- ZO - AWO(tn) - (1 - )‘)WO(én)
ws(lly* = @al) + 12 ],y*_x |
1— 1o — Awo(tn) — (1 — Nwo(d,) i

which gives

_l’_

Huw(|ly* — zp]|) + Awa(r*) + (1 — X)(w(d + 7*) + w2(9))
1-— l() - )\wo(T*) — (1 — )\)WO((;)
w3(||y* = znl|) + I ] ly* — anl.
1-— lo — )\WO(T*) — (1 - )\)WQ(&)
We now prove using induction that
(3.9) 1y" = 2nall < Olly™ — 2l

holds for all n € Ny. Using (3.6) and (3.8), we see that (3.9) holds for n = 0. Let k
be a positive integer and suppose that (3.9) holds for n = k — 1. Again using (3.6)
and (3.8), we have

Iy = 2nstl] < [

(3.8) +

" = 2l
_ Hw(ly — wel) + A7) + (L= V(0 +17) + wa(0)) + wallly” = al) + o
- 1—1p— )\WQ(T‘*) — (1 — /\)wo((s)
x|ly* =zl
o Ho(ly" = zoll) + Awa(r®) + (1 = M (w(0 + %) + w2(9)) +ws(lly” — zol|) + L
- 1—1p— )\wo(’l“*) — (1 — )\)LL)Q((;)
x|ly* =zl
< Huw(r*) 4+ Awa(r*) + (1 = A (w(r* 4 0) + w2(0)) + w3 (r™) + l2 Iy — 2l
. L= lp = Awo(r) = (1 = N 9) v
= Olly" — .

Thus, (3.9) holds for n = k. Hence, (3.9) holds for all n € Np. Since § < 1. We

conclude from (3.9) that lim z, = y*. But we have shown that lim z, = z*.
n—00 n—00

Hence, we deduce x* = y*. O

If § =0, we get z, = xg for all n € Ny. The following corollary follows from
Theorem 3.1.

Corollary 3.2. Let F' and G be two operators defined on an open convexr subset
D of a Banach space X with values in a Banach space Y such that F is Fréchet
differentiable at each point of D. Further, let A(x) € B(X,Y) be an operator
which approzimates F., for x € D. For xy € Dy, assume that A(aco)_l exists.
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For w,wp,w1,ws,ws € ®, assume that (C2) — (C6) and (3.2) are satisfied and the
following condition holds:

(C'1) [ A(z0) ™ (F(xo) + G(xo))| < n, for some 1 > 0;
Let H = fol h(t)dt and H; = fol hi(t)dt. Denote

Hiwi (1) + Awz(0) + (1 = M) (wi(0) +w2(0)) +ws(n) + (2 =Nl + 1o

Yo = T~ 1o — Awo(n) — (1 — Nwo(0)

and
b(r) = Hw(n) + Adws(r) + (1 = A)(w(r) + wa(0)) + ws(r) + o
1—1p— Awo(r) — (1 — N)wo(0)
Assume that the scalar equation (2.1) has a minimum positive root r* with
Awo (™) + (1 = Nwo(0) < 1 =1y and ¥(r*) < 1,7y < 1.
Assume that By, [zo] € Do. Then, we have the following:
(a) The sequence {x,} generated by

Tpg1 = T — (AA(xp) + (1 — N A(xo)) " HF(z,) + G(x)) for all n € Ny
is well defined, remains in By, [xo] and converges to a solution x* € By, [xo]
of the operator equation (1.6). Moreover, the error estimates (3.3)-(3.4)
hold, where t* is the limit of the sequence {t,} generated by
to = 0,t1 =mn,to =t1 +Yon and forn > 2,
(tn - tn—l)
1 =1y — Awo(tn) — (1 — N)wp(0)
+(1 - )\)(W(tn—l) + W2(0)) + W3(tn - tn—l) + l2)
(b) If r** is a positive number such that
Hw(r™) + dwa (1) + (1 = A)(w(r*) + w(0)) + w3 (r**) + lo
1-— lo — )\wo(r*) - (1 - )\)L{)O(O)
then the solution x* of (1.6) is unique in By««[xo] N Dy.

tn—l—l = tp+

(Hw(tn — tn—1) + Awa(tp—1)

<1,

We now have the following semilocal convergence analysis of (1.7) which follows
from Corollary 3.2 for A = 1.

Corollary 3.3. Let F' and G be two operators defined on an open convex subset
D of a Banach space X with values in a Banach space Y such that F' is Fréchet
differentiable at each point of D. Further, let A(x) € B(X,Y) be an operator
which approzimates F,, for x € D. For xy € Dy, assume that A(xo)fl exists. For
w, wp, w1, w2, w3 € Y, assume that (C2) — (C6) with (3.2). Further, assume that (C'1)
holds. Let H = fol h(t)dt and Hy = fol hi(t)dt. Denote

_ Hiwi(n) + wa(0) +ws(n) + 11 + 1o b(r) = Huw(n) + wa(r) + ws(r) + o
1—[0—&)0(77) " 1—[0—0)0(7’)

and assume that the scalar equation (2.1) has a minimum positive root r* with
(r*) < 1o < 1 and wo(r*) < 1 —lo.
Assume that By, [zo] € Do. Then, we have the following:

(20
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(a) The sequence {xn} generated by (1.7) is well defined, remains in By,[zo]
and converges to a solution x* € By,[zo] of the operator equation (1.6).
Moreover, the error estimates (3.3)-(3.4) hold, where t* is the limit of the
sequence {t,} generated by

to = 0,t1 = 1,12 = t1 + Yon,
tn—i—l = tn + (Hw(tn*tn71)+w2(tnfl)+w3(tn*tn71)+12) (t'n, _ tn—l)y n Z 2.

1—l0—w0(tn)
(b) If r** is a positive number such that
Huw(r™) + wa(r*) + ws(r™) + la
1-— lo — Wy (T‘*)

then the solution x* of (1.6) is unique in By««[zo] N Dy.

<1,

We now present an example to show the effectiveness and convergence of the
sequence generated by the proposed iterative scheme.

Example 3.4. Consider the operator equation

(3.10) 302 + 2% + 23 + |z = 0.

Let X =Y =R, D = (—1.1,1.1) and define functions F,G : D =Y by
F(x) = 30x + 2% + 2°, G(2) = |=|.

Let g = % and \ = % Let {z,} be a sequence in D defined by

Zn = m,n € NU.
Observe that
1 1 n 1
— = —— | <=0, < — =4
Iz = ol ‘n—i—ZO 20| = 20(n +20) " 20
Define A(x) by
A(z) =30+ 2z,2 € D.
Let a =0.29,b=0.11,¢=0.1,d = 0.1. Since
1 301
A = A = _— = —
(z0) (20) =30+ 50 — 10 # 0,
it follows that A(xo)™ " emists and ||A(zo)” || = =%, Note that (AA(zmo) + (1 —

AN A(z)) ™t = 3. Now, we have
[(AA(z0) + (1 — N A(20)) " (F(z0) + G(x0))|| = 0.05158 < 0.06 = 7.
Let z,y € D, Then we have
1A o) (Fy = F)| = [ A(z0) M I(2 + 3|z + y) |z = yll < allz — yll = w(||z — yl)),
where w(t) = at,t > 0. Let wi(t) = w(t),l1 = 0. Clearly, w,w1 € ®. Next, we have
1A(zo) ™ (Fr — A@)]l < [ Ao) " IIF: — A2

30| || 30| || [|zo|
< 2L, bt Lo LK1 it SA 1)
< gop 1wl =5y
< b|lz — x|l + 0.006
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= wa([lz — zol|) + I,
where wy(t) = bt,ly = 0.006. Finally, we have
1A(z0) ™ (A(x) — Az0))| = 2l A(z0) " [lllz — ol

< |l — o
= wo([|z — o) + lo,

where wy(t) = ct,lp = 0. Now, we have

- 10
1A(z0) ™ (G(2) = Gy))| = 301 /1% — ¥l 2 0.03322]]z — y|| < dlx —y]

= wy(llz —yl= —yll,

where w3(t) = d,Vt > 0. Note the scalar equation (2.1) reduces to the quadratic
polynomial

(3.11) Ar* 4+ Br+C =0,

where A = a+b+c, B = da+(6—n)b+(d—n—1on)c+2d+2l2—2 and C = —n(n+0)a—

b — dn(1 4+ o) — 2dn — 2o+ 2on + 21 Since B2 —4AC ~ 1.536416619182858 >

fBi\/BAwa For
5 )

0, the equation (3.11) has real and distinct roots, which are

r* = =B=vBi-4dC V2’B:_4AC ~ 0.087920205078916, one can see that r* is the minimum
positive zero of (3.11), wo(r*) + wp(d) ~ 0.018792020507892 < 2 — Iy, ¢ (1r*) =~
0.344194808039604 < 1 and By+[xo| = (xo—r*,xzo+7*) C (—=1.1,1.1) = D. Further,
let 7% be any number with 0 < p** < 2OFTNaHbE 200 o 4 741516887794973.
Then, 6 < 1. Hence, all the conditions of Theorem 3.1 are satisfied. Therefore,
the sequence generated by (3.1) is well defined, remains in (xg — r*, o + r*) and

converges to a solution x* € (xg — r*,x0 + %) of (3.10) with the error estimates
(3.3)-(3.5). Further, the solution x* of (1.6) is unique in By«[xo] N D.
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