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In [21], Vijesh and Subrahmaniam considered the combination of (1.2) and (1.3)
and discussed the convergence analysis of

(1.4) xn+1 = xn − (λF ′
xn

+ (1− λ)F ′
zn)

−1F (xn) for all n ∈ N0,

where λ is a fixed number in [0, 1]. Note that for λ = 1 and λ = 0, (1.4) reduces
to (1.2) and (1.3), respectively. Recently, Argyros and Hilout [1] discussed the
convergence analysis of the Newton-like method:

(1.5) xn+1 = xn −A(xn)
−1F (xn), for all n ∈ N0,

where A(x) is a linear operator which approximates F ′
x.

The following problem is more general than problem (1.1):

(1.6) F (x) +G(x) = 0,

where F and G are two operators defined on an open convex subset D of a Banach
space X into Banach space Y such that F is continuously Fréchet differentiable at
each point of D and G is not necessarily differentiable. The operator equation (1.6)
has been considered by many authors, for example, see [2, 3, 4, 5, 6, 7, 8, 15, 16,
17, 18, 19, 20, 21] and references therein. In [1], Argyros and Hilout considered the
following iteration process:

(1.7) xn+1 = xn −A(xn)
−1(F (xn) +G(xn)), for all n ∈ N0,

for solving the operator equation (1.6). Recently, following the ideas of (1.4), Sahu
and Singh [17] discussed the semilocal convergence analysis of

(1.8) xn+1 = xn − (λF ′
xn

+ (1− λ)F ′
zn)

−1(F (xn) +G(xn)), for all n ∈ N0,

for solving the operator equation (1.6).
Motivated by the iterative algorithms (1.7) and (1.8), the main purpose of this

paper is to introduce a Newton-like iterative algorithm to compute the solution of
(1.6). We also discuss the semilocal convergence analysis of the sequence generated
by proposed algorithm under ω-type conditions. Since our assumptions on the
nonlinear operators F and G involving in operator equation (1.6) are fairly general,
our main result (Theorem 3.1) covers a wide variety of nonlinear operator equations
and it significantly generalizes the corresponding results of Argyros and Hilout [1]
and Vijesh and Subrahmanyam [21]. At the end, we give a numerical example to
illustrate our main result.

2. Preliminaries

In subsequent sections, we shall make use of the following lemmas.

Lemma 2.1 (Rall [14, Page 50]). Let L be a bounded linear operator on a Banach
space X. Then the followings are equivalent:

(a) There is a bounded linear operator M on X such that M−1 exists, and

∥M − L∥ <
1

∥M−1∥
.

(b) L−1 exists.
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Further, if L−1 exists, then
∥∥L−1

∥∥ ≤ ∥M−1∥
1−∥1−M−1L∥ ≤ ∥M−1∥

1−∥M−1∥∥M−L∥ .

Lemma 2.2. Let H,H1, l0, l1, l2, η be some nonnegative real numbers, λ ∈ [0, 1]
be a fixed number and ω, ω0, ω1, ω2, ω3 ∈ Φ. Suppose that {δn} is a sequence of
nonnegative real numbers such that δn ≤ δ for all n ∈ N0 and for some δ ≥ 0.
Denote

ψ0 =
H1ω1(η) + λω2(0) + (1− λ)[ω1(δ) + ω2(δ)] + ω3(η) + (2− λ)l1 + l2

1− l0 − λω0(η)− (1− λ)ω0(δ)

and

ψ(r) =
Hω(η) + λω2(r) + (1− λ)[ω(δ + r) + ω2(δ)] + ω3(r) + l2

1− l0 − λω0(r)− (1− λ)ω0(δ)
.

Assume that the scalar equation

(2.1)

(
1 +

ψ0

1− ψ(r)

)
η = r

has a minimum positive zero r∗ such that

(2.2) λω0(r
∗) + (1− λ)ω0(δ) < 1− l0, ψ0 < 1 and ψ(r∗) < 1.

Then, the sequence {tn} defined by

t0 = 0, t1 = η, t2 = t1 + ψ0η and

tn+1 = tn +
(tn − tn−1)

1− l0 − λω0(tn)− (1− λ)ω0(δn)
(Hω(tn − tn−1) + λω2(tn−1)

+(1− λ)(ω(tn−1 + δn−1) + ω2(δn−1)) + ω3(tn − tn−1) + l2) for n ≥ 2(2.3)

is well defined, nondecreasing, bounded above and hence convergent and converges
to its least upper bound t∗. Moreover, the following estimate holds:

tn − tn−1 ≤ ψ0η(ψ(r
∗))n−2, n ≥ 2.(2.4)

Proof. Since r∗ is the minimum positive root of (2.1), we have t1 = η ≤ r∗ and
t1 − t0 ≤ η. Using induction on n, we show that tn is well defined, tn−1 ≤ tn ≤ r∗

and (2.4) hold for all n ≥ 2. Using (2.1) and (2.3), we note that t2 ≤ r∗ and
t2− t1 ≤ ψ0η. Thus, our assertion holds for n = 2. Let k ≥ 2 be an integer. Assume
that our assertion hold for n = 2, 3, . . . , k. As tk < r∗, it follows from (2.2) and
(2.3) that tk+1 is well defined. Using (2.3), we have

tk+1 = tk +
(tk − tk−1)

1− l0 − λω0(tk)− (1− λ)ω0(δk)
(Hω(tk − tk−1) + λω2(tk−1)

+ (1− λ)(ω(tk−1 + δk−1) + ω2(δk−1)) + ω3(tk − tk−1) + l2)

≤ tk

+
Hω(η) +λω2(r

∗) + (1− λ)(ω(r∗+ δ) + ω2(δ)) + ω3(r
∗) + l2

1− l0 − λω0(r∗)− (1− λ)ω0(δ)
(tk − tk−1)

= tk + ψ(r∗)(tk − tk−1)

≤ tk−1 + ψ(r∗)(tk−1 − tk−2) + ψ(r∗)(tk − tk−1)

≤ t2 + ψ(r∗)(t2 − t1) + ψ(r∗)(t3 − t2)

+ · · ·+ ψ(r∗)(tk−1 − tk−2) + ψ(r∗)(tk − tk−1)(2.5)
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≤
(
1 + ψ0 + ψ0ψ(r

∗) + ψ0(ψ(r
∗))2 + · · ·+ ψ0(ψ(r

∗))k−1
)
η

≤
(
1 +

ψ0

1− ψ(r∗)

)
η

= r∗.

Hence, we have tk+1 ≤ r∗. By definition of ω, ω0, ω1, ω2, ω3 and (2.3), it follows that
tk ≤ tk+1. Using (2.5), we have

tk+1 − tk ≤ ψ(r∗)(tk − tk−1)

≤ ψ0η(ψ(r
∗))k−1.

Thus, (2.4) holds for n = k+1. Hence, the induction hypothesis is complete. There-
fore, the sequence {tn} is nondecreasing, bounded above and as such it converges
to its unique least upper bound t∗ for some t∗ ∈ [η, r∗]. □

3. Convergence analysis

Let F and G be two operators defined on an open convex subset D of a Banach
space X with values in a Banach space Y such that F is Fréchet differentiable
at each point of D. Let A(x) ∈ B(X,Y ) be an operator which approximates F ′

x.
Let {zn} be a sequence in D. To solve the operator equation (1.6), we define the
Newton-like algorithm as follows: Starting with x0 ∈ D and after xn ∈ D is defined,
we define the next iteration xn+1 as follows:

(3.1) xn+1 = xn − (λA(xn) + (1− λ)A(zn))
−1(F (xn) +G(xn)), for all n ∈ N0.

Note that when λ = 1, (3.1) reduces to (1.7) and when A(x) = F ′
x, (3.1) reduces to

(1.8).

The following theorem is the main result of this paper which guarantees the con-
vergence of the proposed algorithm (3.1) to a solution of the problem (1.6).

Theorem 3.1. Let F and G be two operators defined on an open convex subset D
of a Banach space X with values in a Banach space Y such that F is Fréchet differ-
entiable at each point of D. Let A(x) ∈ B(X,Y ) be an operator which approximates
F ′
x for x ∈ D. Let {δn} be a sequence of nonnegative real numbers such that δn ≤ δ

for all n ∈ N0 and for some δ ≥ 0. For x0 ∈ D, let {zn}∞n=0 be a sequence in D

satisfying ∥zn − x0∥ ≤ δn and A(x0)
−1, (λA(x0) + (1 − λ)A(z0))

−1 ∈ B(Y,X) for
some fixed λ ∈ [0, 1]. For x, y ∈ D and for some nonnegative numbers η, l0, l1, l2,
assume that the operators F, F ′ and A(x) satisfy the following conditions:

(C1) ∥(λA(x0) + (1− λ)A(z0))
−1(F (x0) +G(x0))∥ ≤ η;

(C2) ∥A(x0)−1(F ′
x − F ′

y)∥ ≤ ω(∥x− y∥);
(C3) ∥A(x0)−1(A(x)−A(x0))∥ ≤ ω0(∥x− x0∥) + l0;

(C4) ∥A(x0)−1(F ′
x − F ′

x0
)∥ ≤ ω1(∥x− x0∥) + l1;

(C5) ∥A(x0)−1(F ′
x −A(x))∥ ≤ ω2(∥x− x0∥) + l2;

(C6) ∥A(x0)−1(G(x)−G(y))∥ ≤ ω3(∥x− y∥)∥x− y∥,
where ω, ω0, ω1, ω2, ω3 ∈ Φ. Assume that

(3.2) ω(ts) ≤ h(t)ω(s), ω1(ts) ≤ h1(t)ω1(s) for all t ∈ [0, 1] and for all s ∈ [0,∞)
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for some positive nondecreasing continuous functions h and h1 defined in [0, 1].

Denote H =
∫ 1
0 h(t)dt and H1 =

∫ 1
0 h1(t)dt. Suppose that the scalar equation

defined by (2.1) has a minimum positive zero r∗ such that (2.2) is satisfied and
Br∗ [x0] ⊆ D0. Then, we have the following:

(a) The sequence {xn} generated by (3.1) is well defined, remains in Br∗ [x0]
and converges to a solution x∗ ∈ Br∗ [x0] of (1.6). Moreover, the following
error estimates hold:

(3.3) ∥xn+1 − xn∥ ≤ tn+1 − tn for all n ∈ N0,

(3.4) ∥xn+1 − x0∥ ≤ tn+1 for all n ∈ N0

and

(3.5) ∥xn+1 − x∗∥ ≤ t∗ − tn+1 for all n ∈ N0,

where {tn} is a sequence generated by (2.3) and t∗ is the limit of sequence
{tn}.

(b) Further, if r∗∗ is a positive number such that

(3.6) θ =
Hω(r∗∗) + λω2(r

∗) + (1− λ)(ω(r∗ + δ) + ω(δ)) + ω3(r
∗∗) + l2

1− l0 − λω0(r∗)− (1− λ)ω0(δ)
< 1,

then the solution x∗ of (1.6) is unique in Br∗∗ [x0] ∩D.

Proof. (a) It follows from Lemma 2.2 that the sequence {tn} defined by (2.3) is
convergent and converges to its unique least upper bound t∗ for some t∗ ∈ [η, r∗].
We now proceed with the following steps:

Step 1. {xn} is well defined and it remains in Br∗ [x0] and (3.3) and (3.4) hold
for all n ≥ 0.

Note ∥x1 −x0∥ = ∥((λA(x0)+ (1−λ)A(z0))
−1(F (x0)+G(x0))∥ ≤ η = t1− t0 ≤ r∗.

Hence, x1 ∈ Br∗ [x0] and (3.3) and (3.4) hold for n = 0. Using induction on n, we
show that xn is well defined for each n ≥ 2 and remains in Br∗ [x0] and (3.3)-(3.4)
hold for all n ≥ 1. Put Ln = λA(xn) + (1− λ)A(zn). From (3.1), we have

∥A(x0)−1(A(x0)− L1)∥
= ∥A(x0)−1(λA(x0) + (1− λ)A(x0)− λA(x1)− (1− λ)A(z1))∥
≤ λ∥A(x0)−1(A(x1)−A(x0))∥+ (1− λ)∥A(x0)−1(A(z1)−A(x0))∥
≤ λω0(∥x1 − x0∥) + (1− λ)ω0(∥z1 − x0∥) + l0

≤ λω0(t1) + (1− λ)ω0(δ1) + l0

≤ λω0(r
∗) + (1− λ)ω0(δ) + l0 < 1.

Hence, by Banach lemma, L−1
1 exists and

∥L−1
1 A(x0)∥ ≤ 1

1− l0 − λω0(t1)− (1− λ)ω0(δ1)
≤ 1

1− l0 − λω0(r∗)− (1− λ)ω0(δ)
.

Therefore, x2 is well defined. Now, we have

∥x2 − x1∥ = ∥L1
−1(F (x1) +G(x1))∥
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= ∥L1
−1(F (x1) +G(x1)− F (x0)−G(x0)− L0(x1 − x0))∥

=
∥∥∥L1

−1
(∫ 1

0
(F ′

x0+t(x1−x0)
− λA(x0)− (1− λ)A(z0))(x1 − x0)dt

+G(x1)−G(x0)
)∥∥∥

≤ ∥L1
−1A(x0)∥

(
λ

∫ 1

0
(∥A(x0)−1(F ′

x0+t(x1−x0)
−A(x0))∥

+ (1− λ)∥A(x0)−1(F ′
x0+t(x1−x0)

−A(z0))∥)∥x1 − x0∥dt

+ ∥A(x0)−1(G(x1)−G(x0))∥
)

= ∥L1
−1A(x0)∥

(∫ 1

0
(λ∥A(x0)−1(F ′

x0+t(x1−x0)
− F ′

x0
+ F ′

x0
−A(x0))∥

+ (1− λ)∥A(x0)−1(F ′
x0+t(x1−x0)

− F ′
x0

+ F ′
x0

− F ′
z0 + F ′

z0 −A(z0))∥)

× ∥x1 − x0∥dt+ ∥A(x0)−1(G(x1)−G(x0))∥
)
.

Using (C2)− (C6) and (3.2), we get

∥x2 − x1∥
≤ ∥L1

−1A(x0)∥(H1ω1(∥x1 − x0∥) + λω2(0) + (1− λ)(ω1(∥z0 − x0∥)
+ω2(∥z0 − x0∥)) + ω3(∥x1 − x0∥) + (2− λ)l1 + l2)∥x1 − x0∥

≤
[
H1ω1(η) + λω2(0) + (1− λ)(ω1(δ) + ω2(δ)) + ω3(η) + (2− λ)l1 + l2

1− l0 − λω0(η)− (1− λ)ω0(δ)

]
η

= ψ0η = t2 − t1,

which shows (3.3) holds for n = 1. Note

∥x2 − x0∥ ≤ ∥x2 − x1∥+ ∥x1 − x0∥ ≤ t2 − t1 + t1 − t0 = t2 ≤ r∗,

which shows (3.4) holds for n = 1 and x2 ∈ Br∗ [x0]. Thus, our assertion holds for
n = 1. Let k ≥ 1 be an integer. Assume that our assertion holds for some positive
integer n = k. From (3.1), we have

∥A(x0)−1(A(x0)− Lk)∥
= ∥A(x0)−1(λA(x0) + (1− λ)A(x0)− λA(xk)− (1− λ)A(zk))∥
≤ λ∥A(x0)−1(A(xk)−A(x0))∥+ (1− λ)∥A(x0)−1(A(zk)−A(x0))∥
≤ λω0(∥xk − x0∥) + (1− λ)ω0(∥zk − x0∥) + l0

≤ λω0(tk) + (1− λ)ω0(δk) + l0

≤ λω0(r
∗) + (1− λ)ω0(δ) + l0 < 1.

Hence, by Banach lemma, L−1
k exists and

∥L−1
k A(x0)∥ ≤ 1

1− l0 − λω0(tk)− (1− λ)ω0(δk)
≤ 1

1− l0 − λω0(r∗)− (1− λ)ω0(δ)
.
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Therefore, xk+1 is well defined. Now, we have

∥xk+1 − xk∥
= ∥Lk

−1(F (xk) +G(xk))∥
= ∥Lk

−1(F (xk) +G(xk)− F (xk−1)−G(xk−1)− Lk−1(xk − xk−1))∥

≤ ∥Lk
−1A(x0)∥

(∫ 1

0
∥A(x0)−1(F ′

xk−1+t(xk−xk−1)
− λA(xk−1)− (1− λ)A(zk−1))∥

× ∥xk − xk−1∥dt+ ∥A(x0)−1(G(xk)−G(xk−1))∥
)

≤ ∥Lk
−1A(x0)∥

[∫ 1

0

(
λ∥A(x0)−1(F ′

xk−1+t(xk−xk−1)
− F ′

xk−1
+ F ′

xk−1
−A(xk−1))∥

+(1−λ)∥A(x0)−1(F ′
xk−1+t(xk−xk−1)

−F ′
xk−1

+F ′
xk−1

−F ′
zk−1

+F ′
zk−1

−A(zk−1))∥dt
)

× ∥xk − xk−1∥+ ∥A(x0)−1(G(xk)−G(xk−1))∥

]
.

Again, by using (C2)− (C6) and (3.2), we get

∥xk+1 − xk∥

≤ ∥Lk
−1A(x0)∥

[
Hω(∥xk − xk−1∥) + λω2(∥xk−1 − x0∥)

+(1− λ)(ω(∥zk−1 − xk−1∥)

+ω2(∥zk−1 − x0∥)) + ω3(∥xk − xk−1∥) + l2

]
∥xk − xk−1∥

≤ (tk − tk−1)

1− l0 − λω0(tk)− (1− λ)ω0(δk)

[
Hω(tk − tk−1) + λω2(tk−1)

+(1− λ)(ω(δk−1 + tk−1) + ω2(δk−1)) + ω3(tk − tk−1) + l2

]
= tk+1 − tk,

which shows that (3.3) holds for n = k + 1. Note

∥xk+1 − x0∥ ≤ ∥xk+1 − xk∥+ · · ·+ ∥x1 − x0∥ ≤ tk+1 ≤ r∗,

which shows (3.4) holds for n = k and xk+1 ∈ Br∗ [x0]. Thus, our assertion holds
for all n ≥ 0.

Step 2. xn → x∗, where x∗ ∈ Br∗ [x0] is a solution of (1.6) and (3.5) holds for all
n ∈ N0.

Using (3.3), we have

∥xn+m − xn∥ ≤ ∥xn+m − xn+m−1∥+ ∥xn+m−1 − xn+m−2∥+ · · ·+ ∥xn+1 − xn∥
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=
n+m−1∑
k=n

∥xk+1 − xk∥ ≤
n+m−1∑
k=n

(tk+1 − tk) = tn+m − tn.(3.7)

It follows that {xn} is Cauchy and hence converges to some x∗ ∈ Br∗ [x0]. From
(3.1), we get

∥A(x0)−1(F (xn) +G(xn))∥
≤ ∥A(x0)−1(Ln)∥∥xn+1 − xn∥
≤ ∥A(x0)−1(λA(xn) + (1− λ)A(zn)− λA(x0) + λA(x0)

−(1− λ)A(x0) + (1− λ)A(x0))∥∥xn+1 − xn∥
= ∥A(x0)−1(λ(A(xn)−A(x0)) + (1− λ)(A(zn)−A(x0))

+A(x0)∥∥xn+1 − xn∥
≤ (λω0(∥xn − x0∥) + (1− λ)ω0(∥zn − x0∥) + l0 + 1)∥∥xn+1 − xn∥
≤ (λω0(r

∗) + (1− λ)ω0(δ) + l0 + 1)(tn+1 − tn) → 0 as n→ ∞.

From the continuity of F and G, we have F (x∗)+G(x∗) = 0. Thus, x∗ is a solution
of (1.6). Taking limit as m→ ∞ in (3.7), we get (3.5).

(b) We show that x∗ is the unique solution of (1.6) in Br∗∗ [x0]∩D. Suppose that
y∗ is another solution of (1.6) in Br∗∗ [x0] ∩D. For n ∈ N, we obtain in turn

∥y∗ − xn+1∥
= ∥y∗ − xn + Ln

−1(F (xn) +G(xn))∥
= ∥Ln

−1(F (y∗)− F (xn) +G(y∗)−G(xn)− Ln(y
∗ − xn))∥

= ∥Ln
−1A(x0)∥

(∫ 1

0
∥A(x0)−1(F ′

xn+t(y∗−xn)
− Ln)∥∥y∗ − xn∥dt

+ ∥A(x0)−1(G(xn)−G(y∗))∥
)

= ∥Ln
−1A(x0)∥

[∫ 1

0
(λ∥A(x0)−1(F ′

xn+t(y∗−xn)
−A(xn))∥

+ (1− λ)∥A(x0)−1(F ′
xn+t(y∗−xn)

−A(zn))∥)∥y∗ − xn∥dt

+ ∥A(x0)−1(G(y∗)−G(xn))∥

]

= ∥Ln
−1A(x0)∥

[∫ 1

0
(λ∥A(x0)−1(F ′

xn+t(y∗−xn)
− F ′

xn
+ F ′

xn
−A(xn))∥

+ (1− λ)∥A(x0)−1(F ′
xn+t(y∗−xn)

− F ′
xn

+ F ′
xn

− F ′
zn+ F ′

zn −A(zn))∥)∥y∗ − xn∥dt

+ ∥A(x0)−1(G(y∗)−G(xn))∥

]
.
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Using (C2)− (C6) and (3.2), we get

∥y∗ − xn+1∥

≤
[
Hω(∥y∗ − xn∥) + λω2(∥xn − x0∥) + (1− λ)(ω(∥zn − xn∥) + ω2(∥zn − x0∥))

1− l0 − λω0(∥xn − x0∥)− (1− λ)ω0(∥zn − x0∥)

+
ω3(∥y∗ − xn∥) + l2

1− l0 − λω0(∥xn − x0∥)− (1− λ)ω0(∥zn − x0∥)

]
∥y∗ − xn∥

≤
[
Hω(∥y∗ − xn∥) + λω2(tn) + (1− λ)(ω(δn + tn) + ω2(δn))

1− l0 − λω0(tn)− (1− λ)ω0(δn)

+
ω3(∥y∗ − xn∥) + l2

1− l0 − λω0(tn)− (1− λ)ω0(δn)

]
∥y∗ − xn∥,

which gives

∥y∗ − xn+1∥ ≤
[
Hω(∥y∗ − xn∥) + λω2(r

∗) + (1− λ)(ω(δ + r∗) + ω2(δ))

1− l0 − λω0(r∗)− (1− λ)ω0(δ)

+
ω3(∥y∗ − xn∥) + l2

1− l0 − λω0(r∗)− (1− λ)ω0(δ)

]
∥y∗ − xn∥.(3.8)

We now prove using induction that

∥y∗ − xn+1∥ ≤ θ∥y∗ − xn∥(3.9)

holds for all n ∈ N0. Using (3.6) and (3.8), we see that (3.9) holds for n = 0. Let k
be a positive integer and suppose that (3.9) holds for n = k − 1. Again using (3.6)
and (3.8), we have

∥y∗ − xk+1∥

≤ Hω(∥y∗ − xk∥) + λω2(r
∗) + (1− λ)(ω(δ + r∗) + ω2(δ)) + ω3(∥y∗ − xk∥) + l2

1− l0 − λω0(r∗)− (1− λ)ω0(δ)

×∥y∗ − xk∥

≤ Hω(∥y∗ − x0∥) + λω2(r
∗) + (1− λ)(ω(δ + r∗) + ω2(δ)) + ω3(∥y∗ − x0∥) + l2

1− l0 − λω0(r∗)− (1− λ)ω0(δ)

×∥y∗ − xk∥

≤ Hω(r∗∗) + λω2(r
∗) + (1− λ)(ω(r∗ + δ) + ω2(δ)) + ω3(r

∗∗) + l2
1− l0 − λω0(r∗)− (1− λ)ω0(δ)

∥y∗ − xk∥

= θ∥y∗ − xk∥.
Thus, (3.9) holds for n = k. Hence, (3.9) holds for all n ∈ N0. Since θ < 1. We
conclude from (3.9) that lim

n→∞
xn = y∗. But we have shown that lim

n→∞
xn = x∗.

Hence, we deduce x∗ = y∗. □
If δ = 0, we get zn = x0 for all n ∈ N0. The following corollary follows from

Theorem 3.1.

Corollary 3.2. Let F and G be two operators defined on an open convex subset
D of a Banach space X with values in a Banach space Y such that F is Fréchet
differentiable at each point of D. Further, let A(x) ∈ B(X,Y ) be an operator

which approximates F ′
x, for x ∈ D. For x0 ∈ D0, assume that A(x0)

−1 exists.
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For ω, ω0, ω1, ω2, ω3 ∈ Φ, assume that (C2) − (C6) and (3.2) are satisfied and the
following condition holds:

(C′1) ∥A(x0)−1(F (x0) +G(x0))∥ ≤ η, for some η ≥ 0;

Let H =
∫ 1
0 h(t)dt and H1 =

∫ 1
0 h1(t)dt. Denote

ψ0 =
H1ω1(η) + λω2(0) + (1− λ)(ω1(0) + ω2(0)) + ω3(η) + (2− λ)l1 + l2

1− l0 − λω0(η)− (1− λ)ω0(0)

and

ψ(r) =
Hω(η) + λω2(r) + (1− λ)(ω(r) + ω2(0)) + ω3(r) + l2

1− l0 − λω0(r)− (1− λ)ω0(0)
.

Assume that the scalar equation (2.1) has a minimum positive root r∗ with

λω0(r
∗) + (1− λ)ω0(0) < 1− l0 and ψ(r∗) < 1, ψ0 < 1.

Assume that Br0 [x0] ⊆ D0. Then, we have the following:

(a) The sequence {xn} generated by

xn+1 = xn − (λA(xn) + (1− λ)A(x0))
−1(F (xn) +G(xn)) for all n ∈ N0

is well defined, remains in Br0 [x0] and converges to a solution x∗ ∈ Br0 [x0]
of the operator equation (1.6). Moreover, the error estimates (3.3)-(3.4)
hold, where t∗ is the limit of the sequence {tn} generated by

t0 = 0, t1 = η, t2 = t1 + ψ0η and for n ≥ 2,

tn+1 = tn +
(tn − tn−1)

1− l0 − λω0(tn)− (1− λ)ω0(0)
(Hω(tn − tn−1) + λω2(tn−1)

+(1− λ)(ω(tn−1) + ω2(0)) + ω3(tn − tn−1) + l2).

(b) If r∗∗ is a positive number such that

Hω(r∗∗) + λω2(r
∗) + (1− λ)(ω(r∗) + ω(0)) + ω3(r

∗∗) + l2
1− l0 − λω0(r∗)− (1− λ)ω0(0)

< 1,

then the solution x∗ of (1.6) is unique in Br∗∗ [x0] ∩D0.

We now have the following semilocal convergence analysis of (1.7) which follows
from Corollary 3.2 for λ = 1.

Corollary 3.3. Let F and G be two operators defined on an open convex subset
D of a Banach space X with values in a Banach space Y such that F is Fréchet
differentiable at each point of D. Further, let A(x) ∈ B(X,Y ) be an operator

which approximates F ′
x, for x ∈ D. For x0 ∈ D0, assume that A(x0)

−1 exists. For
ω, ω0, ω1, ω2, ω3 ∈ Φ, assume that (C2)−(C6) with (3.2). Further, assume that (C′1)

holds. Let H =
∫ 1
0 h(t)dt and H1 =

∫ 1
0 h1(t)dt. Denote

ψ0 =
H1ω1(η) + ω2(0) + ω3(η) + l1 + l2

1− l0 − ω0(η)
η, ψ(r) =

Hω(η) + ω2(r) + ω3(r) + l2
1− l0 − ω0(r)

and assume that the scalar equation (2.1) has a minimum positive root r∗ with

ψ(r∗) < 1, ψ0 < 1 and ω0(r
∗) < 1− l0.

Assume that Br0 [x0] ⊆ D0. Then, we have the following:
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(a) The sequence {xn} generated by (1.7) is well defined, remains in Br0 [x0]
and converges to a solution x∗ ∈ Br0 [x0] of the operator equation (1.6).
Moreover, the error estimates (3.3)-(3.4) hold, where t∗ is the limit of the
sequence {tn} generated by{
t0 = 0, t1 = η, t2 = t1 + ψ0η,

tn+1 = tn +
(
Hω(tn−tn−1)+ω2(tn−1)+ω3(tn−tn−1)+l2

1−l0−ω0(tn)

)
(tn − tn−1), n ≥ 2.

(b) If r∗∗ is a positive number such that

Hω(r∗∗) + ω2(r
∗) + ω3(r

∗∗) + l2
1− l0 − ω0(r∗)

< 1,

then the solution x∗ of (1.6) is unique in Br∗∗ [x0] ∩D0.

We now present an example to show the effectiveness and convergence of the
sequence generated by the proposed iterative scheme.

Example 3.4. Consider the operator equation

(3.10) 30x+ x2 + x3 + |x| = 0.

Let X = Y = R, D = (−1.1, 1.1) and define functions F,G : D → Y by

F (x) = 30x+ x2 + x3, G(x) = |x|.
Let x0 =

1
20 and λ = 1

2 . Let {zn} be a sequence in D defined by

zn =
1

n+ 20
, n ∈ N0.

Observe that

∥zn − x0∥ =

∣∣∣∣ 1

n+ 20
− 1

20

∣∣∣∣ ≤ n

20(n+ 20)
= δn <

1

20
= δ.

Define A(x) by
A(x) = 30 + 2x, x ∈ D.

Let a = 0.29, b = 0.11, c = 0.1, d = 0.1. Since

A(x0) = A(z0) = 30 +
1

20
=

301

10
̸= 0,

it follows that A(x0)
−1 exists and ∥A(x0)−1∥ = 10

301 . Note that (λA(x0) + (1 −
λ)A(z0))

−1 = 10
301 . Now, we have

∥(λA(x0) + (1− λ)A(z0))
−1(F (x0) +G(x0))∥ ≈ 0.05158 < 0.06 = η.

Let x, y ∈ D,Then we have

∥A(x0)−1(F ′
x − F ′

y)∥ = ∥A(x0)−1∥(2 + 3|x+ y|)∥x− y∥ < a∥x− y∥ = ω(∥x− y∥),
where ω(t) = at, t ≥ 0. Let ω1(t) = ω(t), l1 = 0. Clearly, ω, ω1 ∈ Φ. Next, we have

∥A(x0)−1(F ′
x −A(x))∥ ≤ ∥A(x0)−1∥∥F ′

x −A(x)∥

≤ 30∥x∥
301

∥x− x0∥+
30∥x∥∥x0∥

301
< b∥x− x0∥+ 0.006
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= ω2(∥x− x0∥) + l2,

where ω2(t) = bt, l2 = 0.006. Finally, we have

∥A(x0)−1(A(x)−A(x0))∥ = 2∥A(x0)−1∥∥x− x0∥
< c∥x− x0∥
= ω0(∥x− x0∥) + l0,

where ω0(t) = ct, l0 = 0. Now, we have

∥A(x0)−1(G(x)−G(y))∥ =
10

301
∥x− y∥ ≈ 0.03322∥x− y∥ < d∥x− y∥

= ω3(∥x− y∥)∥x− y∥,

where ω3(t) = d, ∀t ≥ 0. Note the scalar equation (2.1) reduces to the quadratic
polynomial

(3.11) Ar2 +Br + C = 0,

where A = a+b+c,B = δa+(δ−η)b+(δ−η−ψ0η)c+2d+2l2−2 and C = −η(η+δ)a−
δηb−δη(1+ψ0)c−2dη−2l2η+2ψ0η+2η. Since B2−4AC ≈ 1.536416619182858 >

0, the equation (3.11) has real and distinct roots, which are −B±
√
B2−4AC
2A . For

r∗ = −B−
√
B2−4AC
2A ≈ 0.087920205078916, one can see that r∗ is the minimum

positive zero of (3.11), ω0(r
∗) + ω0(δ) ≈ 0.018792020507892 < 2 − l0, ψ(r

∗) ≈
0.344194808039604 < 1 and Br∗ [x0] = (x0−r∗, x0+r∗) ⊆ (−1.1, 1.1) = D. Further,

let r∗∗ be any number with 0 < r∗∗ < 2−(δ+r∗)(a+b+c)−2d−2l2
a ≈ 4.741516887794973.

Then, θ < 1. Hence, all the conditions of Theorem 3.1 are satisfied. Therefore,
the sequence generated by (3.1) is well defined, remains in (x0 − r∗, x0 + r∗) and
converges to a solution x∗ ∈ (x0 − r∗, x0 + r∗) of (3.10) with the error estimates
(3.3)-(3.5). Further, the solution x∗ of (1.6) is unique in Br∗∗ [x0] ∩D.
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