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The first equation in (1.2) is similar to Newton’s method, but replacing the operator
f ′(xk)

−1 by a linear operator Bk. The second equation in (1.2) is Newton’s method
applied to equation gk(B) = 0 where gk : L(Y,X) → L(X,Y ) is defined by gk(B) =
B−1−f ′(xk). So {Bk} gives us an approximation of {f ′(xk)

−1}. Moser’s method was
developed as a technical tool for investigating the stability of the N-body problem
in celestial mechanics. The main difficulty in this, and similar problems involving
small divisors, is the solution of a system of nonlinear partial differential equations.

The convergence rate of Moser’s method was showed to be (1 +
√
5)/2, provided

the root of (1.1) is simple [13]. This is unsatisfactory from a numerical point of
view because the scheme uses the same amount of information per step as Newton’s
method, yet, it converges no faster than the secant method. However, quadratic
convergence rate can be obtained when the sequence {Bk} is generated by

Bk+1 = 2Bk −Bkf
′(xk+1)Bk for each k = 0, 1, . . . .

This is Ulm’s method introduced in [18] and has been further studied in [3, 6, 7, 8,
15, 23]. Notice that, here f ′(xk+1) appears instead of f ′(xk) in (1.2). This is crucial
for obtaining fast convergence. Under the classical assumption that the derivative f ′

is Lipschitz continuous around the solution, Ulm showed that the method generates
successive approximations that converge to a solution of (1.1), asymptotically as
fast as Newton’s method. Recently, some authors have employed Ulm’s method to
solve inverse eigenvalue problems and inverse singular value problems [16, 17, 19].
There they found that computing exactly the derivative f ′(xk) at each iteration is
costly especially in the case when the system is large.

The purpose of the present paper is, motivated by Ulm’s method, to propose
a Ulm-like method for solving the nonlinear operator equation f(x) = 0. Given
x0 ∈ D and B0 ∈ L(Y,X), the Ulm-like method is defined by

(1.3)

{
xk+1 = xk −Bkf(xk)
Bk+1 = 2Bk −BkAk+1Bk

for each k = 0, 1, , . . . ,

where Ak+1 is an approximation of the derivative f ′(xk+1). This method exhibits
several attractive features. First, it is inverse free: we do not need to solve a linear
equation at each iteration. Second, it is derivative free: we do not need to compute
the Frécher derivative at each iteration. Third, in addition to solve the nonlinear
equation (1.1), the method produces successive approximations {Bk} to the value

of f ′(x∗)−1, being x∗ a solution of (1.1). This property is very helpful especially
when one investigates the sensitivity of the solution to small perturbations. Further-
more, under certain assumptions, the radius of the convergence ball for the Ulm-like
method is estimated, and the quadratic convergence property is proved. Numerical
experiment is given in the last section illustrating the convergence performance of
the Ulm-like method.

2. Convergence analysis

Let X and Y be Banach spaces. Let B(x, R) stands for the open ball in X with
center x and radius R > 0. Let D be an open subset of X and let f : D ⊆ X → Y
be a nonlinear operator with the continuous Frécher derivative denoted by f ′. Let
x∗ ∈ D be a solution of the nonlinear equation f(x) = 0. Throughout the whole
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paper we shall always assume that the inverse f ′(x∗)−1 exists and that f ′ satisfies
Lipschitz condition on B(x∗, R) with the Lipschitz constant L:

(2.1) ∥f ′(x)− f ′(y)∥ ≤ L∥x− y∥ for each x, y ∈ B(x∗, R).

Let {xk} be generated by the Ulm-like method. Let Ak be an approximation to
f ′(xk) such that

(2.2) ∥Ak − f ′(xk)∥ ≤ ηk∥f(xk)∥ for each k = 0, 1, . . . .

Here {ηk} is a nonnegative-valued sequence satisfying sup
k≥0

ηk ≤ η where η is a

nonnegative constant. Let

(2.3) 0 < RL < min

1, R,
1(

L

2
η + L+ η∥f ′(x∗)∥

)
∥f ′(x∗)−1∥

 .

Then we have the following lemma which is crucial for the proof of the main theorem.

Lemma 2.1. If xk ∈ B(x∗, RL). Then the following assertions hold.

(i) ∥Ak − f ′(xk)∥ ≤ η

(
L

2
+ ∥f ′(x∗)∥

)
∥xk − x∗∥.

(ii) Ak is invertible and moreover

∥A−1
k ∥ ≤ ∥f ′(x∗)−1∥

1−
(
L

2
η + L+ η∥f ′(x∗)∥

)
∥f ′(x∗)−1∥RL

.

Proof. Suppose that xk ∈ B(x∗, RL). For the proof of assertion (i), let us write
xθk = x∗ + θ(xk − x∗) where 0 ≤ θ ≤ 1. Then, noting that f(x∗) = 0, we can write

f(xk) = f(xk)− f(x∗) =

∫ 1

0
[f ′(xθk)− f ′(x∗)]dθ(xk − x∗) + f ′(x∗)(xk − x∗).

Combining this with (2.1), we obtain that

∥f(xk)∥ ≤
∫ 1

0
∥f ′(xθk)− f ′(x∗)∥dθ∥xk − x∗∥+ ∥f ′(x∗)∥ · ∥xk − x∗∥

≤
∫ 1

0
Lθ∥xk − x∗∥2dθ + ∥f ′(x∗)∥ · ∥xk − x∗∥

=
L

2
∥xk − x∗∥2 + ∥f ′(x∗)∥ · ∥xk − x∗∥.

Thus, by (2.2) and the fact that ∥xk − x∗∥ < RL < 1, one has

∥Ak − f ′(xk)∥ ≤ ηk∥f(xk)∥ ≤ η

(
L

2
+ ∥f ′(x∗)∥

)
∥xk − x∗∥.

That is to say assertion (i) holds and hence, by (2.1), we have

∥Ak − f ′(x∗)∥ ≤ ∥Ak − f ′(xk)∥+ ∥f ′(xk)− f ′(x∗)∥
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≤
(
L

2
η + L+ η∥f ′(x∗)∥

)
∥xk − x∗∥.

It follows from (2.3) and the assumption that

∥f ′(x∗)−1∥ · ∥Ak − f ′(x∗)∥ ≤
(
L

2
η + L+ η∥f ′(x∗)∥

)
∥f ′(x∗)−1∥RL < 1.

Consequently, using Banach’s lemma, we can derive that Ak is invertible and more-
over

∥A−1
k ∥ ≤ ∥f ′(x∗)−1∥

1−
(
L

2
η + L+ η∥f ′(x∗)∥

)
∥f ′(x∗)−1∥RL

.

This proves assertion (ii) and so the whole lemma. □
Note that in the Ulm-like method, sequence {Bk} is generated by the algorithm

except for B0. Below, we prove that if B0 approximates A−1
0 , then the sequence

{xk} generated by the Ulm-like method converges locally to x∗ with R-convergence
rate 2. For this end, let B0 satisfy that

(2.4) ∥I −B0A0∥ ≤ µ,

where µ is a positive constant.

Theorem 2.1. Suppose that the Jacobian matrix f ′(x∗) is invertible and that f ′

satisfies the Lipschitz condition (2.1) on B(x∗, RL). Suppose also that (2.2) holds.
Then there exist positive numbers δ and µ such that for any x0 ∈ B(x∗, δ) and B0

satisfying (2.4), the sequence {xk} generated by the Ulm-like method with initial
point x0 converges to x∗. Moreover, the following estimates hold for each k =
0, 1, . . . .

(2.5) ∥xk − x∗∥ ≤ τ

(
δ

τ

)2k

and

(2.6) ∥I −BkAk∥ ≤ 1

3

(
δ

τ

)2k

.

Here τ is a positive constant.

Proof. We write for simplicity,

ρ =
∥f ′(x∗)−1∥

1−
(
L
2 η + L+ η∥f ′(x∗)∥

)
∥f ′(x∗)−1∥RL

.

Set

(2.7) τ =
1

6ρ(Lη + 2η∥f ′(x∗)∥+ 2L)
.

Take δ and µ such that

(2.8) 0 < δ < min{RL, τ} and 0 < µ ≤ 2ρδ(Lη + 2η∥f ′(x∗)∥+ 2L).

We shall show that τ, δ, and µ are as desired. Let x0 ∈ B(x∗, δ) and B0 satisfy
(2.4). It suffices to verify that (2.5)-(2.6) hold for each k = 0, 1, . . . . We proceed by
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mathematical induction. Clearly, (2.5) is trivial for k = 0 by the assumption. By
(2.4), (2.7), and (2.8), we have

∥I −B0A0∥ ≤ µ ≤ 2ρδ(Lη + 2η∥f ′(x∗)∥+ 2L) =
δ

3τ
.

That is, estimate (2.6) holds for k = 0. Now assume that (2.5)-(2.6) hold for k = m.
Then, one has

(2.9) ∥xm − x∗∥ ≤ τ

(
δ

τ

)2m

and

(2.10) ∥I −BmAm∥ ≤ 1

3

(
δ

τ

)2m

.

It follows from (2.8) that

∥xm − x∗∥ ≤ τ

(
δ

τ

)2m

< δ < RL.

Thus, Lemma 2.1 is applicable to concluding that
(2.11)

∥Am − f ′(xm)∥ ≤ η

(
L

2
+ ∥f ′(x∗)∥

)
∥xm − x∗∥ ≤ η

(
L

2
+ ∥f ′(x∗)∥

)
τ

(
δ

τ

)2m

and that

(2.12) ∥A−1
m ∥ ≤ ∥f ′(x∗)−1∥

1−
(
L

2
η + L+ η∥f ′(x∗)∥

)
∥f ′(x∗)−1∥RL

= ρ,

where the equality holds because of the definition of ρ. Since δ < τ , we derive from
(2.10) and (2.12) that

∥Bm∥ ≤ ∥BmAm∥ · ∥A−1
m ∥ ≤ (1 + ∥I −BmAm∥) · ∥A−1

m ∥

≤ ρ

[
1 +

1

3

(
δ

τ

)2m
]

(2.13)

≤
√
2ρ.

Note by (1.3) that

xm+1 − x∗ = xm − x∗ −Bm(f(xm)− f(x∗))

= xm − x∗ −
∫ 1

0
Bmf ′(xθm)(xm − x∗)dθ

=

∫ 1

0
[I −Bmf ′(xm) +Bm(f ′(xm)− f ′(xθm))](xm − x∗)dθ,

where xθm = x∗ + θ(xm − x∗) for each 0 ≤ θ ≤ 1. Since ∥xm − x∗∥ ≤ RL and
∥xθm−x∗∥ = θ∥xm−x∗∥ ≤ ∥xm−x∗∥ ≤ RL, it follows from the Lipschitz condition
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that

(2.14)

∥xm+1 − x∗∥ ≤
∫ 1

0
(∥I −Bmf ′(xm)∥

+L(1− θ)∥Bm∥ · ∥xm − x∗∥) · ∥xm − x∗∥dθ

= ∥I −Bmf ′(xm)∥ · ∥xm − x∗∥+ L

2
∥Bm∥ · ∥xm − x∗∥2.

In addition, by (2.10), (2.11), and (2.13), we have

∥I −Bmf ′(xm)∥ ≤ ∥I −BmAm∥+ ∥Bm∥ · ∥Am − f ′(xm)∥

≤ 1

3

(
δ

τ

)2m

+
√
2ρη

(
L

2
+ ∥f ′(x∗)∥

)
τ

(
δ

τ

)2m

.

This together with (2.13)-(2.14) as well as (2.9) gives that

∥xm+1 − x∗∥ ≤

[
1

3

(
δ

τ

)2m

+
√
2ρη

(
L

2
+ ∥f ′(x∗)∥

)
τ

(
δ

τ

)2m
]
τ

(
δ

τ

)2m

+

√
2

2
Lρτ2

(
δ

τ

)2m+1

=

[
1

3
+

√
2ρτ

(
L

2
η + η∥f ′(x∗)∥+ L

2

)]
τ

(
δ

τ

)2m+1

.

Thus, thanks to the definitions of δ and τ , we can derive

∥xm+1 − x∗∥ ≤ τ

(
δ

τ

)2m+1

< δ < RL.

Consequently, (2.5) holds for k = m+ 1 and hence, by Lemma 2.1(i),

(2.15) ∥Am+1 − f ′(xm+1)∥ ≤ η

(
L

2
+ ∥f ′(x∗)∥

)
τ

(
δ

τ

)2m+1

.

Below, we verify (2.6) holds for k = m+1. We shall note by the Lipschitz condition
that

∥Am+1 −Am∥ ≤ ∥Am+1 − f ′(xm+1)∥+ ∥f ′(xm+1)− f ′(xm)∥+ ∥Am − f ′(xm)∥
≤ ∥Am+1 − f ′(xm+1)∥+ ∥Am − f ′(xm)∥+ L∥xm+1 − xm∥
≤ ∥Am+1 − f ′(xm+1)∥+ ∥Am − f ′(xm)∥

+L(∥xm+1 − x∗∥+ ∥xm − x∗∥).

Then, using (2.11), (2.15) and (2.5)(with k = m, m+ 1), we get that

∥Am+1 −Am∥ ≤
(η
2
L+ η∥f ′(x∗)∥+ L

)[(
δ

τ

)2m

+ 1

]
τ

(
δ

τ

)2m

≤ (ηL+ 2η∥f ′(x∗)∥+ 2L)τ

(
δ

τ

)2m

,

where the last inequality holds because that δ < τ. Moreover, by (1.3),

I −Bm+1Am+1 = I − (2Bm −BmAm+1Bm)Am+1 = (I −BmAm+1)
2.
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Thus, it follows from (2.6)(with k = m), (2.13) as well as the definition of τ that

∥I −Bm+1Am+1∥ ≤ (∥I −BmAm∥+ ∥Bm∥ · ∥Am+1 −Am∥)2
≤ 2∥I −BmAm∥2 + 2∥Bm∥2 · ∥Am+1 −Am∥2

≤ 2

9

(
δ

τ

)2m+1

+ 4ρ2(ηL+ 2η∥f ′(x∗)∥+ 2L)2 · τ2
(
δ

τ

)2m+1

=
1

3

(
δ

τ

)2m+1

.

This conforms that (2.6) holds for k = m+ 1 and the proof is complete.
□

3. A numerical example

Consider the two-point boundary value problem

(3.1)

{
x′′ + x2 = 0,
x(0) = x(1) = 0.

We divide the interval [0, 1] into m + 1 subintervals and we get h = 1
m+1 . Let

d0, d1, . . . , dm+1 be the points of subdivision with 0 = d0 < d1 < · · · < dm+1 = 1.
An approximation for the second derivative may be chosen as{

x
′′
i =

xi−1 − 2xi + xi+1

h2
,

x0 = x1 = 0,
xi = x(di) for each i = 1, 2, . . . , m.

Let the operator ϕ : Rm → Rm be defined by

ϕ(x) = (x21, x
2
2, . . . , x

2
m)T for each x = (x1, x2, . . . , xm)T ∈ Rm.

To get an approximation to the solution of (3.1), we need to solve the following
nonlinear equation:

(3.2) f(x) := Mx+ h2ϕ(x) = 0 for each x ∈ Rm,

where

M =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2


m×m

.

Obviously, x∗ = 0 is a solution of (3.2) and

f ′(x) = M + 2h2diag(x1, x2, . . . , xm).

Hence f ′(x∗) = M. Furthermore, it is easy to verify that

∥f ′(x)− f ′(y)∥ ≤ 2h2∥x− y∥ for each x, y ∈ Rm

where ∥ · ∥ denotes the ∞-norm. Thus thanks to the results from Section 2, there
exists a radius δ such that for each x0 ∈ B(x∗, δ), the sequence {xk} generated by
the Ulm-like method converges to x∗ = 0 with convergence order 2. For different
choices of ηk, the convergence performance of the algorithm are illustrated in the
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following tables. Here we take m = 4 and x0 = (0.2, 0.2, 0.2, 0.2)T in Table 1, while
in Table 2, m = 19 and x0 = (0.01, 0.01, . . . , 0.01)T .

Table 1. Values of αk := ∥xk − x∗∥∞ for different ηk (m = 4)

k Ulm’s method Ulm-like method

ηk ≡ 1
20

ηk ≡ 1
10

0 4.0e− 1 4.0e− 1 4.0e− 1

1 8.51e− 3 8.51e− 3 8.51e− 3

2 3.76e− 4 6.49e− 4 7.17e− 4

3 1.12e− 6 4.20e− 6 5.49e− 6

4 3.74e− 11 2.36e− 10 3.10e− 10

5 0.00 0.00 0.00

Table 2. Values of αk := ∥xk − x∗∥∞ for different ηk (m = 19)

k Ulm’s method Ulm-like method

ηk ≡ 1
30

ηk ≡ 1
20

0 4.36e− 2 4.36e− 2 4.36e− 2

1 4.09e− 5 4.09e− 5 4.09e− 5

2 8.32e− 8 6.73e− 7 1.03e− 6

3 5.29e− 13 1.83e− 10 6.47e− 10

4 0.00 0.00 0.00
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