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where PCn∩Qn is the metric projection from H onto Cn ∩ Qn and {αn} ⊂ [0, 1] is
chosen so that 0 ≤ lim supn→∞ αn < 1. Then {xn} converges strongly to PF (T )x,
where PF (T ) is the metric projection from H onto F (T ).

Takahashi, Takeuchi and Kubota [18] also obtained the following result by using
the shrinking projection method:

Theorem 1.2. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T be a nonexpansive mapping of C into itself such that F (T ) ̸= ∅
and let x ∈ H. For C1 = C and x1 ∈ C, define a sequence {xn} of C as follows:

yn = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x, , ∀n ∈ N,

where 0 ≤ lim supn→∞ αn < 1. Then {xn} converges strongly to PF (T )x.

In this paper, motivated by the split feasibility problem in Hilbert spaces, we
consider the problem in Banach spaces. Using the shrinking projection method, we
prove two strong convergence theorems for finding a solution of the split feasibility
problem in Banach spaces. It seems that such theorems are first in Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨ · · ⟩ and
norm ∥ · ∥, respectively. For x, y ∈ H and λ ∈ R, we have from [16] that

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Furthermore, we have that for x, y, u, v ∈ H,

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We
know that the metric projection PC is firmly nonexpansive, i.e.,

(2.4) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩

for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [14].

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
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for all ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if δ(ϵ) > 0
for every ϵ > 0. It is known that a Banach space E is uniformly convex if and only
if for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u.

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for all x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.5) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is a
single-valued bijection and in this case, the inverse mapping J−1 coincides with the
duality mapping J∗ on E∗. The norm of E is said to be Fréchet differentiable if for
each x ∈ U , the limit (2.5) is attained uniformly for y ∈ U . It is known that if the
norm of E is Fréchet differentiable, then J is norm to norm continuous. For more
details, see [14] and [15]. We know the following result.

Lemma 2.1 ([14]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x − z∥ ≤ ∥x − y∥ for all y ∈ C. Putting z = PCx, we call a
mapping PC the metric projection of E onto C.

Lemma 2.2 ([14]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x1 ∈ E and z ∈ C.
Then, the following conditions are equivalent:

(1) z = PCx1;
(2) ⟨z − y, J(x1 − z)⟩ ≥ 0, ∀y ∈ C.

Let E be a smooth Banach space and let J be the duality mapping on E. Define
a function ϕ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E.

Observe that, in a Hilbert space H, ϕ(x, y) = ∥x−y∥2 for all x, y ∈ H. Furthermore,
we know that for each x, y, z, w ∈ E,

(2.6) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2;
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(2.7) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩;

(2.8) 2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w).

If E is additionally assumed to be strictly convex, then

(2.9) ϕ(x, y) = 0 if and only if x = y.

The following lemma was proved by Kamimura and Takahashi [8].

Lemma 2.3 ([8]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous, and convex function g : [0, 2r] → [0,∞)
such that g(0) = 0 and

g(∥x− y∥) ≤ ϕ(x, y)

for all x, y ∈ Br, where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a
nonempty, closed and convex subset of E. Then we know that for any x ∈ E, there
exists a unique element z ∈ C such that ϕ(z, x) ≤ ϕ(y, x) for all y ∈ C. Putting
z = QCx, we call a mapping QC the generalized projection of E onto C; see [1] and
[8].

Lemma 2.4 ([1], [8]). Let E be a smooth, strictly convex and reflexive Banach
space. Let C be a nonempty, closed and convex subset of E and let x1 ∈ E and
z ∈ C. Then, the following conditions are equivalent:

(1) z = QCx1;
(2) ⟨z − y, Jx1 − Jz⟩ ≥ 0, ∀y ∈ C.

For a sequence {Cn} of nonempty, closed and convex subsets of a Banach space
E, define s-LinCn and w-LsnCn as follows: x ∈ s-LinCn if and only if there exists
{xn} ⊂ E such that {xn} converges strongly to x and xn ∈ Cn for all n ∈ N.
Similarly, y ∈ w-LsnCn if and only if there exist a subsequence {Cni} of {Cn} and
a sequence {yi} ⊂ E such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N.
If C0 satisfies

(2.10) C0 = s-Li
n
Cn = w-Ls

n
Cn,

it is said that {Cn} converges to C0 in the sense of Mosco [9] and we write C0 =
M-limn→∞Cn. It is easy to show that if {Cn} is nonincreasing with respect to
inclusion, then {Cn} converges to

∩∞
n=1Cn in the sense of Mosco. For more details,

see [9]. The following lemma was proved by Tsukada [20].

Lemma 2.5 ([20]). Let E be a uniformly convex Banach space. Let {Cn} be a
sequence of nonempty, closed and convex subsets of E. If C0 =M-limn→∞Cn exists
and nonempty, then for each x ∈ E, {PCnx} converges strongly to PC0x, where PCn

and PC0 are the mertic projections of E onto Cn and C0, respectively.
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3. Main results

In this section, using the shrinking projection method introduced by Takahashi,
Takeuchi and Kubota [18], we first prove a strong convergence theorem for finding
a solution of the split feasibility problem in Banach spaces. Before proving the
theorem, we need the following result and lemma.

Let C be a nonempty, closed and convex subset of a uniformly convex Banach
space E and let PC be the metric projection of E onto C. Using Lemma 2.3, we can
prove that PC is continuous. In fact, let xn → x0. Since PC is the metric projection
of E onto C, we have from Lemma 2.2 that

⟨PCxn − y, J(xn − PCxn)⟩ ≥ 0, ∀y ∈ C.

Then we have ⟨PCxn − xn + xn − y, J(xn − PCxn)⟩ ≥ 0 and hence

∥xn − y∥∥xn−PCxn∥ ≥ ⟨xn − y, J(xn − PCxn)⟩
≥ ⟨xn − PCxn, J(xn − PCxn)⟩
= ∥xn − PCxn∥2.

This means that {xn − PCxn} is bounded. Furthermore, since PC is the metric
projection of E onto C, we have that ⟨PCxn − PCx0, J(xn − PCxn)⟩ ≥ 0 and

⟨PCx0 − PCxn, J(x0 − PCx0)⟩ ≥ 0.

Then we have

⟨PCxn − PCx0, J(xn − PCxn)− J(x0 − PCx0)⟩ ≥ 0.

Using (2.8) and Lemma 2.3, we have that

2⟨xn−x0, J(xn − PCxn)− J(x0 − PCx0)⟩
≥ 2⟨xn − PCxn − (x0 − PCx0), J(xn − PCxn)− J(x0 − PCx0)⟩
= ϕ(xn − PCxn, x0 − PCx0) + ϕ(x0 − PCx0, xn − PCxn)

≥ g(∥xn − PCxn − (x0 − PCx0)∥) + g(∥x0 − PCx0 − (xn − PCxn)∥)
= 2g(∥xn − PCxn − (x0 − PCx0)∥),

where g is a strictly increasing, continuous, and convex function in Lemma 2.3.
Therefore, if xn → x0, then PCxn → PCx0. Therefore, PC is continuous.

Lemma 3.1. Let E and F be strictly convex, reflexive and smooth Banach spaces
and let JE and JF be the duality mappings on E and F , respectively. Let C and
D be nonempty, closed and convex subsets of E and F , respectively. Let PC and
PD be the metric projections of E onto C and F onto D, respectively and let QC

and QD be the generalized projections of E onto C and F onto D, respectively. Let
A : E → F be a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint
operator of A. Suppose that C ∩ A−1D ̸= ∅. Let r > 0 and z ∈ E. Then the
following are equivalent:

(i) z = PC

(
z − rJ−1

E A∗JF (Az − PDAz)
)
;

(ii) z = QCJ
−1
E

(
JEz − rA∗(JFAz − JFQDAz)

)
;

(iii) z ∈ C ∩A−1D.
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Proof. The proof of (i) ⇐⇒ (iii) is in [17].
(ii) ⇒ (iii). Since C ∩ A−1D ̸= ∅, there exists z0 ∈ C ∩ A−1D, i.e., z0 ∈ C and

Az0 ∈ D. Assuming z = QCJ
−1
E

(
JEz − rA∗(JFAz − JFQDAz)

)
, we have from the

properties of QC that

⟨z − y, JEJ
−1
E

(
JEz − rA∗(JFAz − JFQDAz)

)
− JEz⟩ ≥ 0, ∀y ∈ C.

This implies that

⟨z − y, JEz − rA∗(JFAz − JFQDAz)− JEz⟩ ≥ 0.

Thus we have that

⟨z − y,−rA∗(JFAz − JFQDAz)⟩ ≥ 0

and hence

⟨z − y,A∗(JFAz − JFQDAz)⟩ ≤ 0.

Since A∗ is the adjoint operator, we have that

⟨Az −Ay, JFAz − JFQDAz⟩ ≤ 0.

From z0 ∈ C we have that

(3.1) ⟨Az −Az0, JFAz − JFQDAz⟩ ≤ 0.

On the other hand, since QD is the generalized projection of F onto D, we have
that

⟨QDAz − v, JFAz − JFQDAz⟩ ≥ 0, ∀v ∈ D.

From Az0 ∈ D we have that

(3.2) ⟨QDAz −Az0, JFAz − JFQDAz⟩ ≥ 0.

Using (3.1) and (3.2), we have that

⟨Az −QDAz, JFAz − JFQDAz⟩ ≤ 0

and hence

ϕ(Az,QDAz) + ϕ(QDAz,Az) ≤ 0.

This implies that Az = QDAz. Using this and

z = QCJ
−1
E

(
JEz − rA∗(JFAz − JFQDAz)

)
,

we have that z = QCz. Therefore z ∈ C ∩A−1D.
(iii) ⇒ (ii). Since z ∈ C ∩ A−1D, we have that Az ∈ D and z ∈ C. It follows

that Az = QDAz and z = QCz. Thus we have

QCJ
−1
E

(
JEz − rA∗(JFAz − JFQDAz)

)
= QCz = z.

The proof is complete. □

Theorem 3.2. Let H be a Hilbert space and let F be a uniformly convex Banach
space whose norm is Fréchet differentiable. Let JF be the duality mapping on F .
Let C and D be nonempty, closed and convex subsets of H and F , respectively. Let
PC and PD be the metric projections of H onto C and F onto D, respectively. Let
A : H → F be a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint
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operator of A. Suppose that C ∩A−1D ̸= ∅. Let {un} be a sequence in H such that
un → u. Let x1 ∈ H, C1 = H, and {xn} be a sequence generated by

zn = PC

(
xn − rA∗JF (Axn − PDAxn)

)
,

Cn+1 = {z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥} ∩ Cn,

xn+1 = PCn+1un+1, ∀n ∈ N,

where 0 < r∥A∥2 ≤ 2. Then {xn} converges strongly to a point z0 ∈ C ∩ A−1D,
where z0 = PC∩A−1Du.

Proof. We first show that the sequence {xn} is well defined. Let x1 ∈ H and

zn = PC

(
xn − rA∗JF (Axn − PDAxn)

)
with 0 < r ≤ 2

∥A∥2 . We have that for

z ∈ C ∩A−1D,

∥zn − z∥2 = ∥PC

(
xn − rA∗JF (Axn − PDAxn)

)
− PCz∥2

≤ ∥xn − rA∗JF (Axn − PDAxn)− z∥2

= ∥xn − z − rA∗JF (Axn − PDAxn)∥2

= ∥xn − z∥2 − 2⟨xn − z, rA∗JF (Axn − PDAxn)⟩
+ ∥rA∗JF (Axn − PDAxn)∥2

≤ ∥xn − z∥2 − 2r⟨Axn −Az, JF (Axn − PDAxn)⟩
+ r2∥A∥2∥JF (Axn − PDAxn)∥2

= ∥xn − z∥2 − 2r⟨Axn − PDAxn + PDAxn −Az, JF (Axn − PDAxn)⟩(3.3)

+ r2∥A∥2∥Axn − PDAxn∥2

≤ ∥xn − z∥2 − 2r∥Axn − PDAxn∥2

− 2r⟨PDAxn −Az, JF (Axn − PDAxn)⟩+ r2∥A∥2∥Axn − PDAxn∥2

≤ ∥xn − z∥2 − 2r∥Axn − PDAxn∥2 + r2∥A∥2∥Axn − PDAxn∥2

≤ ∥xn − z∥2 − 2r∥Axn − PDAxn∥2 + r2∥A∥2∥Axn − PDAxn∥2

= ∥xn − z∥2 + r(r∥A∥2 − 2)∥Axn − PDAxn∥2

≤ ∥xn − z∥2.

Therefore, C ∩A−1D ⊂ Cn for all n ∈ N. Moreover, since

{z ∈ H : ∥zn − z∥ ≤ ∥xn − z∥} = {z ∈ H : ∥zn − z∥2 ≤ ∥xn − z∥2}

= {z ∈ H : ∥zn∥2 − ∥xn∥2 ≤ 2 ⟨zn − xn, z⟩},

it is closed and convex. Applying these facts inductively, we obtain that Cn are
nonempty, closed, and convex for all n ∈ N, and hence {xn} is well defined.

Let C0 =
∩∞

n=1Cn. Then since C0 ⊃ C ∩ A−1D ̸= ∅, C0 is also nonempty. Let
wn = PCnu for every n ∈ N. Then, by Lemma 2.5, we have wn → z0 = PC0u. Since
a metric projection on H is nonexpansive, it follows that

∥xn − z0∥ ≤ ∥xn − wn∥+ ∥wn − z0∥
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= ∥PCnun − PCnu∥+ ∥wn − z0∥
≤ ∥un − u∥+ ∥wn − z0∥

and hence xn → z0.
Since z0 ∈ C0 ⊂ Cn+1, we have ∥zn − z0∥ ≤ ∥xn − z0∥ for all n ∈ N. Tending

n → ∞, we get that zn → z0. Since PC , A, A∗, JF and PD are continuous, the
mapping PC(I − rA∗JF (A− PDA)) is continuous. Then we have that

∥zn − PC(I − rA∗JF (A− PDA))z0∥
= ∥PC(I − rA∗JF (A− PDA))xn − PC(I − rA∗JF (A− PDA))z0∥ → 0.

Hence we have that

∥z0 − PC(I − rA∗JF (A− PDA))z0∥
≤ ∥z0 − zn∥+ ∥zn − PC(I − rA∗JF (A− PDA))z0∥
→ 0.

This implies z0 ∈ C ∩ A−1D by Lemma 3.1. Since PC0u = z0 ∈ C ∩ A−1D and
C ∩A−1D ⊂ C0, we have z0 = PC∩A−1Du, which completes the proof. □

We do not know whether a Hilbert space H in Theorem 3.2 is replaced by a
Banach space E or not and whether the metric projections in Theorem 3.2 are re-
placed by the generalized projections or not. Furthermore, we do not know whether
such a theorem (Theorem 3.2) holds or not for the hybrid method of Nakajo and
Takahashi (Theorem 1.1).

Next, using the shrinking projection method, we prove another strong conver-
gence theorem for finding a solution of the split feasibility problem in Banach spaces.

Theorem 3.3. Let E and F be uniformly convex and smooth Banach spaces and
let JE and JF be the duality mappings on E and F , respectively. Let C and D
be nonempty, closed and convex subsets of E and F , respectively. Let PD be the
metric projection of F onto D. Let A : E → F be a bounded linear operator such
that A ̸= 0 and let A∗ be the adjoint operator of A. Suppose that C ∩ A−1D ̸= ∅.
Let x1 ∈ E and let C1 = C. Let {xn} be a sequence generated by

zn = xn − rJ−1
E A∗JF (Axn − PDAxn),

Cn+1 = {z ∈ Cn : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
xn+1 = PCn+1x1, ∀n ∈ N,

where 0 < r < 1
∥A∥2 . Then {xn} converges strongly to a point z0 ∈ C ∩A−1D, where

z0 = PC∩A−1Dx1.

Proof. It is obvious that Cn are closed and convex for all n ∈ N. We show that
C ∩ A−1D ⊂ Cn for all n ∈ N. It is obvious that C ∩ A−1D ⊂ C = C1. Suppose
that C ∩A−1D ⊂ Ck for some k ∈ N. To show C ∩A−1D ⊂ Ck+1, let us show that
⟨zk − z, JE(xk − zk)⟩ ≥ 0 for all z ∈ A−1D. In fact, we have that for all z ∈ A−1D,

⟨zk − z, JE(xk − zk)⟩ = ⟨zk − xk + xk − z, JE(xk − zk)⟩
= ⟨−rJ−1

E A∗JF (Axk − PDAxk)

+ xk − z, JE(rJ
−1
E A∗JF (Axk − PDAxk))⟩
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= ⟨−rJ−1
E A∗JF (Axk − PDAxk) + xk − z, rA∗JF (Axk − PDAxk)⟩

= −r2∥A∗JF (Axk − PDAxk)∥2 + ⟨xk − z, rA∗JF (Axk − PDAxk)⟩
= −r2∥A∗JF (Axk − PDAxk)∥2 + r⟨Axk −Az, JF (Axk − PDAxk)⟩(3.4)

= −r2∥A∗JF (Axk − PDAxk)∥2

+ r⟨Axk − PDAxk + PDAxk −Az, JF (Axk − PDAxk)⟩
= −r2∥A∗JF (Axk − PDAxk)∥2

+ r∥Axk − PDAxk∥2 + r⟨PDAxk −Az, JF (Axk − PDAxk)⟩
≥ −r2∥A∥2∥Axk − PDAxk∥2 + r∥Axk − PDAxk∥2

= r(1− r∥A∥2)∥Axk − PDAxk∥2

≥ 0.

Then, C∩A−1D ⊂ Ck+1. We have by mathematical induction that C∩A−1D ⊂ Cn

for all n ∈ N. This implies that {xn} is well defined.
Let C0 =

∩∞
n=1Cn. Since C0 ⊃ C ∩ A−1D ̸= ∅, C0 is nonempty. Since C0 =

M-limn→∞Cn and xn = PCnx1 for every n ∈ N, by Lemma 2.5 we have

xn → z0 = PC0x1.

Since z0 ∈ C0 ⊂ Cn+1 and zn = PCn+1xn, we have ∥xn − zn∥ ≤ ∥xn − z0∥ for all
n ∈ N. Tending n → ∞, we get that xn − zn → 0.

On the other hand, we know that

∥xn − zn∥ = ∥JE(xn − zn)∥ = ∥rA∗JF (Axn − PDAxn)∥.
Since ∥xn−zn∥ → 0 and 0 < r∥A∥2 < 1, we have that ∥A∗JF (Axn−PDAxn)∥ → 0.
Then we get from (3.4) that

lim
n→∞

∥Axn − PDAxn∥ = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging
weakly to w. Note that w ∈ C. Since A is bounded and linear, we also have that
{Axni} converges weakly to Aw. It follows from limn→∞ ∥Axn − PDAxn∥ = 0 that
PDAxni ⇀ Aw and ∥JF (Axn − PDAxn)∥ = ∥Axn − PDAxn∥ → 0. Since PD is the
metric projection of F onto D, we have that ⟨PDAxn−PDAw, JF (Axn−PDAxn)⟩ ≥
0 and

⟨PDAw − PDAxn, JF (Aw − PDAw)⟩ ≥ 0

and hence

⟨PDAxn − PDAw, JF (Axn − PDAxn)− JF (Aw − PDAw)⟩ ≥ 0.

Since PDAxni ⇀ Aw and ∥JF (Axn − PDAxn)∥ → 0, we have that

−∥Aw − PDAw∥2 = ⟨Aw − PDAw,−JF (Aw − PDAw)⟩ ≥ 0

and hence Aw = PDAw. This implies that w ∈ C ∩A−1D.
Since C∩A−1D is nonempty, closed and convex, there exists z1 ∈ C∩A−1D such

that z1 = PC∩A−1Dx1. From xn+1 = PCn+1x1, we have that

∥x1 − xn+1∥ ≤ ∥x1 − y∥
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for all y ∈ Cn+1. Since z1 ∈ C ∩A−1D ⊂ Cn+1, we have that

(3.5) ∥x1 − xn+1∥ ≤ ∥x1 − z1∥.
From z1 = PC∩A−1Dx1, w ∈ C ∩A−1D and (3.5), we have that

∥x1 − z1∥ ≤ ∥x1 − w∥ ≤ lim inf
i→∞

∥x1 − xni∥

≤ lim sup
i→∞

∥x1 − xni∥ ≤ ∥x1 − z1∥.

Then we get that

lim
i→∞

∥x1 − xni∥ = ∥x1 − w∥ = ∥x1 − z1∥.

From the Kadec-Klee property of E, we have that x1 − xni → x1 − w and hence

xni → w = z1.

Therefore, we have xn → w = z1. This completes the proof. □
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