


1462 HONG-KUN XU

(Ω,P,F ,F), where P is the risk-neutral probability measure and F = {Ft}t≥0 is the
natural filtration for the Brownian motion {Wt}t≥0.

It is known that the solution to the stochastic differential equation (2.1) is given
by

(2.2) St = S0 exp

(
σWt + (r − 1

2
σ2)t

)
, 0 ≤ t ≤ T.

Consider a powered option with expiration time T and strike price K. Recall
that the payoff of this option is

(2.3) VT := [(ST −K)+]a = (ST −K)aI{ST>K},

where a > 0 is a real number, where x+ is the positive part of a real number x ∈ R;
that is,

x+ = max{x, 0} =

{
x, if x > 0,
0, if x ≤ 0,

and where ID is the indicator function of a subset D ⊂ Ω; namely,

ID(ω) =

{
1, if ω ∈ D,
0, if ω ̸∈ D.

Let E denote the expectation under the risk-neutral probability measure P. The
risk-neutral valuation theory implies that the time-t value of the powered option is
given by the formula

(2.4) Vt = e−r(T−t)E
[
(ST −K)aI{ST>K}|Ft

]
.

Throughout the rest of this paper we use N(·) to denote the cumulative distri-
bution function of a standard normal random variable; namely,

N(x) =

∫ x

−∞

1√
2π

e−
1
2
u2
du

for x ∈ R.

2.1. The integer case. In this subsection we assume that the exponent a in the
payoff (2.3) of the powered option is an integer. Then, using the binomial formula,
we can rewrite the payoff VT as

VT =

a∑
j=0

(
a

j

)
Sa−j
T (−K)jI{ST>K}.

Then the pricing formula (2.4) becomes

(2.5) Vt = e−r(T−t)
a∑

j=0

(
a

j

)
(−K)jE

[
Sa−j
T I{ST>K}|Ft

]
.

It turns out that the evaluation of Vt is equivalent to the evaluations of the

conditional expectations E
[
Sa−j
T I{ST>K}|Ft

]
for 0 ≤ j ≤ a. The following result is

obtained in [3].
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Theorem 2.1. Assume a is a positive integer. Then the value at time t of the
powered option defined by the payoff (2.3) is

(2.6) Vt =
a∑

j=0

(
a

j

)
(−K)jSa−j

t exp

[
(a− j − 1)

(
r +

1

2
(a− j)σ2

)
τ

]
N(d(a−j)),

where

(2.7) d(a−j) =
1

σ
√
T − t

[
log

St

K
+

(
r +

(
a− j − 1

2

)
σ2

)
(T − t)

]
.

2.2. The general case. In this subsection we consider the general case; namely,
we assume that the exponent a > 0 in the payoff (2.3) of the powered option is not
necessarily an integer. We adopt the notation: [a] and {a} stand for the integer and
decimal parts of a, respectively (e.g., [2.7] = 2 and {2.7} = 0.7); thus a = [a] + {a}.

We notice that the payoff (2.3) of the powered option can be rewritten as

(2.8) VT = (ST −K)[a](ST −K){a}I{ST>K}.

For the first factor of VT in (2.8), we use the binomial expansion to get

(2.9) (ST −K)[a] =

[a]∑
j=0

(
[a]

j

)
(−K)jS

[a]−j
T .

For the middle factor of VT in (2.8), we employ the following Taylor expansion:

(1 + x)α =
∞∑
n=0

(
α

n

)
xn

for |x| < 1 and α ∈ [0, 1), where(
α

n

)
=

α(α− 1) · · · (α− n+ 1)

n!
.

It turns out that, for ST > K,

(ST −K){a} = S
{a}
T

(
1− K

ST

){a}

= S
{a}
T

∞∑
n=0

(
{a}
n

)(
− K

ST

)n

= S
{a}
T

∞∑
n=0

(
{a}
n

)
(−K)nS−n

T .(2.10)

Substituting (2.9) and (2.10) into (2.8), we get that the payoff of the powered option
is written as

(2.11) VT =

[a]∑
j=0

∞∑
n=0

(
[a]

j

)(
{a}
n

)
(−K)j+nSa−j−n

T I{ST>K}.

This expression for the payoff VT enables us to derive a closed-form pricing formula
for valuation of powered options.
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Figure 1. The time t = 0 price of powered call option (solid line)
with the strike price K = 1, exercise time T = 2, when r = 0.1 and
σ = 0.2; the price of European (vanilla) call option (dashed line)
and the intrinsic value of the considered power option (dotted line).
Two cases of the power a are considered.

Theorem 2.2. Let a > 0 be a given real number. Then the value at time t ∈ [0, T )
of the powered option defined by payoff (2.3) is given by

Vt =

[a]∑
j=0

∞∑
n=0

(
[a]

j

)(
{a}
n

)
(−K)j+nSa−j−n

t

× exp

(
(a− j − n− 1)τ

(
r +

1

2
σ2(a− j − n)

))
×N

(
d(a−j−n)(τ, St)

)
,(2.12)

where τ = T − t and, for x > 0,

(2.13) d(a−j−n)(τ, x) =
log x

K +
[
r + (a− j − n− 1

2)σ
2
]
τ

σ
√
τ

.

Proof. Set τ = T − t, the time to maturity. According to the risk-neutral valuation
formula (2.4) and by (2.11) we see that the value at time t of the powered option is

Vt = e−rτE [VT |Ft]

= e−rτ

[a]∑
j=0

∞∑
n=0

(
[a]

j

)(
{a}
n

)
(−K)j+nE

[
Sa−j−n
T I{ST>K}|Ft

]
.(2.14)

Hence it remains to evaluate the conditional expectations in (2.14) for 0 ≤ j ≤ [a]
and n ≥ 0.

Since

ST = Ste
σ(WT−Wt)+(r− 1

2
σ2)(T−t)

= Ste
−σ

√
τZ+(r− 1

2
σ2)τ ,(2.15)
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where

Z = −WT −Wt√
τ

∼ N(0, 1)

which is independent of Ft, we find that ST > K if and only if

(2.16) Z <
log St

K + (r − 1
2σ

2)τ

σ
√
τ

=: d2(τ, St).

We then have

(2.17) Sa−j−n
T = Sa−j−n

t e−σ(a−j−n)
√
τZ+(a−j−n)(r− 1

2
σ2)τ .

It follows from (2.17) and the independence of Z with Ft that

E
[
Sa−j−n
T I{ST>K}|Ft

]
= Sa−j−n

t e(a−j−n)(r− 1
2
σ2)τ

×E
[
e−σ(a−j−n)

√
τZI{Z<d2(τ,St)}|Ft

]
= f(τ, St),(2.18)

where f(τ, x) is given by

f(τ, x) = xa−j−ne(a−j−n)(r− 1
2
σ2)τE

[
e−σ(a−j−n)

√
τZI{Z<d2(τ,x)}

]
.

Since Z ∼ N(0, 1), we obtain

f(τ, x) = xa−j−ne(a−j−n)(r− 1
2
σ2)τ

∫ d2(τ,x)

−∞

1√
2π

e−σ(a−j−n)
√
τz− 1

2
z2dz

= xa−j−ne(a−j−n)τ [r+ 1
2
σ2(a−j−n−1)]

∫ d2(τ,x)

−∞

1√
2π

e−
1
2
(z+σ(a−j−n)

√
τ)2dz.

Applying the substitution v = z + σ(a− j − n)
√
τ and setting

d(a−j−n)(τ, x) := d2(τ, x) + σ(a− j − n)
√
τ

=
log x

K +
[
r + (a− j − n− 1

2)σ
2
]
τ

σ
√
τ

,(2.19)

we get

f(τ, x) = xa−j−ne(a−j−n)τ [r+ 1
2
σ2(a−j−n−1)]

∫ d(a−j−n)(τ,x)

−∞

1√
2π

e−
1
2
v2dv

= xa−j−ne(a−j−n)τ [r+ 1
2
σ2(a−j−n−1)]N

(
d(a−j−n)(τ, x)

)
.(2.20)

Substituting (2.20) and (2.18) into (2.14) and observing

(a− j − n)τ [r +
1

2
σ2(a− j − n− 1)]− rτ = τ(a− j − n− 1)[r +

1

2
σ2(a− j − n)],

we immediately obtain the pricing formula (2.12). □

It is easily checked that if {a} = 0 (i.e., a is a positive integer), then the formula
(2.12) is reduced to the formula (2.6).

It is also not hard to compute the delta of the powered option from the formula
(2.6).
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Figure 2. The ∆ function as a function of the stock price S. We
consider t = 0,K = 1, T = 2, r = 0.1 and σ = 0.2. Three cases of
the power a are considered (for a = 1 we obtain the ∆ function for
the European vanilla option).

Corollary 2.3. The delta of the powered option defined by payoff (2.3) is given by

∆t =

[a]∑
j=0

∞∑
n=0

(
[a]

j

)(
{a}
n

)
(−K)j+n exp

(
(a− j − n− 1)τ

(
r +

1

2
σ2(a− j − n)

))

× Sa−j−n−1
t

[
(a− j − n)N

(
d(j,n)(τ, St)

)

+
1

σ
√
2πτ

exp

(
−1

2

(
d(a−j−n)(τ, St)

)2
)]

.

(2.21)

Proof. Since ∆t =
∂Vt
∂St

, we can easily find from (2.6) and (2.19) that (2.21) holds. □

2.3. Equivalent martingale measures. We provide with another approach to
evaluating the pricing formula (2.12). In order to evaluate the conditional expecta-
tions in (2.14), we employ the technique of change of equivalent martingale measures

[5, 4, 3, 8]; thus we are able to remove the factor Sa−j−n
T in the conditional expec-

tation in (2.14) which reduces the computation of this conditional expectation to
the computation of the event that the option ends in the money (under another
equivalent martingale measure). We proceed as follows.

For b ∈ R, let

(2.22) Z(b) =
Sb
T

E[Sb
T ]
.

Then Z(b) is a positive-valued random variable, FT -measurable, and E[Z(b)] = 1;

hence we can define an equivalent measure P(b) by

(2.23) P(b)(A) = E[IAZ(b)] =

∫
A
Z(b)(ω)dP(ω), A ∈ F .

Let E(b) be the corresponding expectation.
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Since Sb
T = Sb

0e
X , where

X = bσWT + b

(
r − 1

2
σ2

)
T,

we compute

E[Sb
T ] = Sb

0E[eX ]

= Sb
0 exp

(
E[X] +

1

2
Var(X)

)
= Sb

0 exp

(
b

(
r − 1

2
σ2

)
T +

1

2
(bσ)2T

)
.

Hence, by (2.22),

(2.24) Z(b) = exp

(
bσWT − 1

2
(bσ)2T

)
.

Setting

W
(b)
t = Wt − bσt.

Then by Girsanov’s theorem (cf. [6, 8]), we obtain that {W (b)
t } is a standard

Brownian motion under the measure P(b).
Furthermore, under the measure P(b), St follows the geometric Brownian motion

dSt = St((r + bσ2)dt+ σdW
(b)
t ).

It follows that

St = S0 exp

(
σW

(b)
t +

(
r +

(
b− 1

2

)
σ2

)
t

)
and

ST = St exp

(
σ(W

(b)
T −W

(b)
t ) +

(
r +

(
b− 1

2

)
σ2

)
(T − t)

)
.

Now set

Y = −
W

(b)
T −W

(b)
t√

τ
∼ N(0, 1), τ = T − t.

Then we write

(2.25) ST = St exp

(
−σ

√
τY +

(
r +

(
b− 1

2

)
σ2

)
τ

)
.

Therefore, ST > K if and only if

(2.26) Y <
1

σ
√
τ

[
log

(
St

K

)
+

(
r +

(
b− 1

2

)
σ2

)
τ

]
= d(b)(τ, St).

Consequently (noting that Y is independent of Ft),

P(b){ST > K|Ft} = P(b){Y < d(b)(τ, St)} = N(d(b)(τ, St)).

Define Z
(b)
t by

Z
(b)
t = E[Z(b)|Ft] = exp

(
aσWt −

1

2
(bσ)2t

)
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=
Sb
t

Sb
0

exp

(
−1

2
(bσ)2t−

(
r − 1

2
σ2

)
bt

)
.

Next we compute

E[Sb
T I{ST>K}|Ft] = Z

(b)
t E(b)

[
1

Z(b)
Sb
T I{ST>K}|Ft

]
= Z

(b)
t E(b)

[
E[Sb

T ]

Sb
T

Sb
T I{ST>K}|Ft

]
= Z

(b)
t E[Sb

T ]P(b){ST > K|Ft}

=
Sb
t

Sb
0

exp

(
−1

2
(bσ)2t−

(
r − 1

2
σ2

)
at

)
×Sb

0 exp

(
b

(
r − 1

2
σ2

)
T +

1

2
(bσ)2T

)
N(d(b)(τ, St)).

It follows that, for b ∈ R,

(2.27) E[Sb
T I{ST>K}|Ft] = Sb

t exp

(
1

2
(bσ)2τ +

(
r − 1

2
σ2

)
bτ

)
N(d(b)(τ, St)).

Upon setting b = a− j − n in (2.27), we immediately get

E
[
Sa−j−n
T I{ST>K}|Ft

]
= Sa−j−n

t exp

(
1

2
σ2(a− j − n)2τ

+

(
r − 1

2
σ2

)
(a− j − n)τ

)
N(d(a−j−n)(τ, St))

= f(τ, St),(2.28)

where f(τ, x) is given by (2.20).
Finally, substituting (2.28) into (2.14), we again obtain the pricing formula (2.12).

3. Capped powered options

The payoff of a powered option is capped to limit the risk for the writer of the
option. Putting another way, we have that a capped powered option has an upper
bound ĉ > 0 for the payoff to limit the possible loss of the writer. Namely, the
payoff of a capped powered option has the form

(3.1) V̂T = min{[(ST −K)+]a, ĉ} =

{
[(ST −K)+]a, if [(ST −K)+]a ≤ ĉ,
ĉ, if [(ST −K)+]a > ĉ.

Theorem 3.1. Let a > 0 be a given real positive number. The value at time
t ∈ [0, T ), V̂t, of the capped powered option defined by the payoff (3.1) is

V̂t =

[a]∑
j=0

∞∑
n=0

(
[a]

j

)(
{a}
n

)
(−K)j+nSa−j−n

t

× exp

(
(a− j − n− 1)τ

(
r +

1

2
σ2(a− j − n)

))
×
[
N

(
d(a−j−n)(τ, St)

)
−N

(
d̂(a−j−n)(τ, St)

)]
+ ĉN

(
d̂2(τ, St)

)
,(3.2)



VALUATION OF POWERED OPTIONS 1469

Figure 3. The time t = 0 price of capped powered call option (solid
line) with ĉ = 0.7, the strike price K = 1, exercise time T = 2, when
r = 0.1 and σ = 0.2; its intrinsic payoff function (dotted); and the
price of related not-capped powered option (dashed line).

where τ = T − t, and for b ∈ R and x > 0,

d(b)(τ, x) =
1

σ
√
τ

[
log

( x

K

)
+

(
r +

(
b− 1

2

)
σ2

)
τ

]
,

d̂(b)(τ, x) =
1

σ
√
τ

[
log

(
x

K̂

)
+

(
r +

(
b− 1

2

)
σ2

)
τ

]
,

and

d̂2(τ, x) =
1

σ
√
τ

[
log

(
x

K̂

)
+

(
r − 1

2
σ2

)
τ

]
= d̂(0)(τ, x).

Proof. By the risk-neutral valuation formula, the time-t value of the capped powered
option is given by

V̂t = e−r(T−t)E[V̂T |Ft]

= e−r(T−t)E
[
min{[(ST −K)+]a, ĉ}|Ft

]
Notice that we can express the payoff V̂T in another way as follows:

V̂T = min
{
(ST −K)aI{ST>K}, ĉ

}
= (ST −K)aI{ĉ1/a+K>ST>K} + ĉI{ST≥ĉ1/a+K}

= (ST −K)aI{ST>K} − (ST −K)aI{ST≥K̂} + ĉI{ST≥K̂},

where K̂ = ĉ1/a +K. It then follows that

V̂t = e−r(T−t)E
[
(ST −K)aI{ST>K}|Ft

]
−e−r(T−t)E

[
(ST −K)aI{ST≥K̂}|Ft

]
+ĉE

[
I{ST≥K̂}|Ft

]
≡ I1 − I2 + I3.(3.3)



1470 HONG-KUN XU

We have that the first term I1 in (3.3) is precisely the time-t value of the powered
option which is determined in Theorem 2.2; namely,

I1 =

[a]∑
j=0

∞∑
n=0

(
[a]

j

)(
{a}
n

)
(−K)j+nSa−j−n

t

× exp

(
(a− j − n− 1)τ

(
r +

1

2
σ2(a− j − n)

))
×N

(
d(a−j−n)(τ, St)

)
.(3.4)

The second term I2 is similar to the first term I1 except that theK in the indicator
function of I1 is replaced with K̂ in the indicator function of I2. So, repeating the
proof of Theorem 2.2 we get

I2 =

[a]∑
j=0

∞∑
n=0

(
[a]

j

)(
{a}
n

)
(−K)j+nSa−j−n

t

× exp

(
(a− j − n− 1)τ

(
r +

1

2
σ2(a− j − n)

))
×N

(
d̂(a−j−n)(τ, St)

)
,(3.5)

where, for x > 0,

(3.6) d̂(a−j−n)(τ, x) =
log x

K̂
+

[
r + (a− j − n− 1

2)σ
2
]
τ

σ
√
τ

.

To compute I3, we use (2.15) and replace the K in (2.16) with K̂ to find that

ST ≥ K̂ if and only if

(3.7) Z ≤
log St

K̂
+ (r − 1

2σ
2)τ

σ
√
τ

= d̂2(τ, St).

Since Z ∼ N(0, 1) and is independent of Ft, it turns out that

I3 = ĉE
[
I{ST≥K̂}|Ft

]
= ĉP{Z ≤ d̂2(τ, St)}

= ĉN
(
d̂2(τ, St)

)
.(3.8)

Finally, substituting (3.4), (3.5) and (3.8) into (3.3), we obtain (3.2). □

4. Conclusion

We have obtained a closed-form solution formula for the price of a powered option
in the general case where the exponent a is an arbitrary positive real number. In the
derivation of this formula, we have employed two approaches. In the first approach,
we have utilized the risk-neutral valuation formula, and in the second approach,
we have applied the trick of change of equivalent martingale measures, which is a
technique used widely in option pricing theory [5, 3, 8]. We have then computed the
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delta of a powered option. Moreover, we have also derived a closed-form solution
formula for the pricing of a capped powered option.
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