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LOCAL CUBIC CONVERGENCE OF A FAMILY OF DEFORMED
SUPER-HALLEY METHOD

XINTAO YE* AND JINHUA WANG

ABSTRACT. The convergence problem of a family of deformed Super-Halley iter-
ations with parmeters for solving nonlinear operator equations in Banach spaces
is studied. Under the assumption that the derivative of the operator satisfies
the Lipschitz condition, the local cubical convergence of the family of deformed
Super-Halley iterations is established.

1. INTRODUCTION

Let X and Y be two real or complex Banach spaces. Let 2 C X be an open
convex subset. Let F': Q C X — Y be a second Fréchet differentiable nonlinear
operator. Consider the nonlinear equation

(1.1) F(z) =0.

Newton’s method and its variations are the most efficient methods known for solv-
ing the nonlinear equation (1.1). One of the main results on Newton’s method
is the well-known Kantorovich’s theorem (see [14]), which has the advantage that
Newton’s sequence converges to a solution under very mild conditions. Another
important result on Newton’s method is the Smale’s point estimate theory in [17]
(see also [1]). Other results on Newton’s method such as the estimates of the radii
of convergence balls were given by Traub and Wozniakowski [18] and Wang [19]
independently. A big step in this direction was made by Wang in [20,21], where
some generalized Lipschitz conditions are introduced and so Kantorovich’s theorem
and Smale’s theory were unified and extended. Newton’s method and its variations
are also explored extensively in ( [9,22,24,28] and references therein).

Several kinds of cubic generalizations for Newton’s method are introduced. The
most important two are the Euler method and the Halley method (see for example,
[2,3,25]). Another more general family of the cubic extensions is the family of Euler-
Halley type methods in Banach spaces, which includes the Euler method and the
Halley method as its special cases and has been studied extensively in ( [4,7,8,11,23]
and references therein). More precisely, the family of Euler-Halley type methods is
given as follow:
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Algorithm EH. Let a € [0,1], and let zyp € X be given. Have zg,x1,...,Z,.
Define x,, 41 by

Bt = 0 = 11+ L)l = aLp(an)] F () P (o),

where
Lp(z) = F'(z)\F"(2)F'(x) "' F(z).

In the case when o = 0 and o = %, Algorithm EH is reduced to the Euler method
and the Halley method, respectively. Furthermore, if & = 1, then Algorithm EH is
reduced to the supper-Halley method or the convex acceleration of Newton’s method
(cf. [11]).

One shortcoming of Algorithm EH is that we have to compute the second-
derivative of I’ at each step, while the computation cost of second-derivative is
very expensive. To overcome this difficulty, in [5, 6], the second-derivative operator
is replaced by a finite difference between first derivatives, while the cubic conver-
gence rate is reserved under some mild conditions (see [6,10,12,13] for more details).
More precisely,

F' @) (20 — wn) = F'(20) — F'(2),
where 2z, = 2, + Ay — zn), A € [0,1] and y, = z,, — F'(z,) ' F(2,). Our main
interests are focused on a modification of the super-Halley method introduced in
[5,6], which is given as follows:

Algorithm 1.1. Let A € (0,1], and let xg € X be given. Have xg,z1,...,Zy.
Define x,, 41 by
Yn = Tn — F’(xn)_lF(mn),

H(xnvyn) = %F,(xn)_l[F/(xn + )‘(yn - ZEn)) - F/(‘Tn)]a

1 _
Q(%uyn) = _§H(xn7yn)[l + H(xn7yn)] 17
Tn+1 :yn“‘Q(xn,yn)(yn_mn), n= 1727""

Semilocal convergence analysis of Algorithm 1.1 is provided in [5,6,26,27]. The
main purpose of the present paper is to study the local convergence analysis of
Algorithm 1.1. Under the assumption that the derivative of the operator satisfies
the Lipschitz condition, the local cubical convergence of Algorithm 1.1 is established
and the estimate of convergence radius is also presented.

2. PRELIMINARIES

Throughout the whole paper, we always assume that L,y > 0 and A € (0, 1].
Below, we will give some lemmas which will be useful in the next section.

Lemma 2.1. Let h be a function defined by
L
(2.1) h(t) == —t + %tQ + gt‘g for each t € R.
Then, there exists o € (0,+00) such that h'(rg) = 0, K'(t) < 0 for all t € (0,r0)
and h'(t) > 0 for all t > ro.
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Proof. Since h'(t) = —1 +~t + £¢? and

(2.2) h'(t) =~+ Lt >0 for each t > 0,

we get that h'(t) is increasing on (0,4o00). Note that h’'(0) = —1 and h'(+o0) > 0.

Hence, there exists ro € (0,+00) such that h'(rg) = 0, h'(t) < 0 for all t € (0,79)

and h/(t) > 0 for all t > ro. O
Let A € (0,1]. Define

LA

2

Lemma 2.2. Let h,U be given by (2.1) and (2.3), respectively. Then, U is monotone

decreasing on (0,79) and there exists r1 € (0,79) such that U(r1) = 0.

Proof. Note by (2.3) that

(2.3)  U(t) =1+ W @) 2ht)[R"(t) + = (W (t)"h(t))] for each t € [0, 7).

! —  P@2=2hOR ) LA (7 (-1
(2.4) U= e " (t)Lt(hg(t()?,(lf()t)h/’f(bt)t)))]
+ h’(t)*2h(t) [h”/(t) + SR ]
Let ¢ € (0,7o). Then, A(t) < 0,//(t) < 0 and h”(t) > 0. This implies that
W (t)? — 2h(t)R"(t) ., , LA, , 4
OE [W"(t) + =~ (W () h(B)] <O,
L/\(h/(t%zag(;)h//(t)) > (0 and h’(t)*Qh(t) < 0. Note further that h///(t) — L > 0. Thus,

it follows from (2.4) that U’(¢) < 0 which implies that U(-) is monotone decreasing
on (0,r9). As U(0) = 1 and U(t) — —oo if t — 79, we obtain that there exists

r1 € (0,79) such that U(r1) = 0. O
Define S(t) := w for each t € (0,7p) and
L LA ()Y | (2" @)W ()72 (t)  LAS(t)3h/(t)~?!
Py(t) (.2 5; {——%—+ ’y+2h”(t) 2 - 100
. T\ —2 ]! ol " LX /()1
L POTRS0( ;fig)[h O+5 (W () h(t))])}t:s for each t € (0,71).

Lemma 2.3. Let Py be given by (2.5). Then, the following two assertions hold:
i) the two functions t — PA—B@ and t — Bt are monotone increasing on (0,r1);
t t

(ii) Py has a unique fized point ry € (0,71), that is, Px(ry) = 7.

Proof. (i). Note by definition that the functions h”, —h'~1, A’=2 and h’~'h are mono-
tone increasing on (0,71). Note further that

S(t) = WO “'h) _1-st— 5t N 3+ 52
t 1—yt— L2 1— oyt — L2
It’s easy to verify by definition that S is monotone increasing on (0,71). As U is
monotone decreasing on (0,71), it’s easy to show that the two functions ¢t — P;@

Pr()

and t — ~%~ are monotone increasing on (0,71).

(if). Note that lim_q+ {2 = 0 and lim, - {1
on (0,71), we get from (i) that there exists a unique point ) € (0,7r1) such that
Palra) _ q 0

LY

Py(t) - .
= 400. As % is continuous
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3. CONVERGENCE OF THE ALGORITHM

Let X be a Banach space. Let z € X, and let » > 0. We use B(x,r) and B(z, r)
to denote, respectively, the open metric ball and the closed metric ball at x with
radius r, that is,

B(z,r)={yeX: lz—yl| <r} and B(z,r)={yeX: lz—y| <r}
Recall that we assume that L,y > 0 and A € (0, 1].
Lemma 3.1. Let x* € X. Suppose that

(3.1) [F' (%)~ " (2%)] <

and

(3.2) HF’(x*)_l[F”(:r’) — F'(2)]|| £ L||2" — || for each x,2' € B(z*,rp).
Then for all x € B(z*,ro),

(3.3) 1F/ ()" F" ()| < B'(8),

F'(x)~! exists and

(3.4) |F ()" F' ()| < =R/ (1),

where t = || — x*||.
Proof. Tt follows from (3.1) and (3.2) that
IF' (@) " (@) < 1 @) T @)+ (L () THE () — P ()]
< v+ Lljz —z*|| = K" ().
Hence, (3.3) is seen to hold. Since

1
Fl(z) = F'(2*)+ F"(2*)(z — 2*) + /0 (F"(x* +7(x — %)) — F"(2"))dr(x — 2%),

we have
IF (z*) 7 F' () — I|| < ||F' (%) F ()|« — =

/ 1F" (%) "H(E" (2" + 7(x — 2¥)) — F"(a"))|ld7 |« — 2*]).
Combining this with (3.1) and (3.2) yields that
1
IF" (@) F' (@) = I < Alle =27 +/O Lrllz — a™|[dr|lz — 27|
* L *

< Ao =2 + Sl — 2|

* L * (12
= Lt (Tl -2 + S - )

= 141 (1).

This implies that ||[F’(z*)"*F'(x) — I|| < 1 because t € (0,79) and h/(t) € ( 1,0)
by Lemma 2.1. Thus, by the well known Banach lemma, one has that F'(x)~! and

1F" () F (2)]| < =1/ (8) 7
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O
Let z* € X. Below, we always assume that
F(z*) =0.
Write
2l =x"+7(x—2*) foreach 0 <7 <1,
Since

F(z) = F(x) — F(z*) + F'(z)(z — 2*) — F'(2)(z — 2%)
1
=F(z)(x—a")— [ 7F"(a")(z — 2*)2%dr
= F@)a=a) = [ P e o Par
it follows that
1
(3.5) F'(z)'F(z) = <I—/O TF (2) " F" (27 dr (x — x*)) (x — ™).

Lemma 3.2. Suppose that (3.1) and (3.2) hold. Then, for each x € B(x*,ro), the
following assertions hold:

(3.6) |/ ()" F ()| < W'(8) " h(t),
(3.7) |F' ()" F" ()| < =R (8)"'R" (1)
and

(3.8) [H(z,y)|| <1-U(t),

where t = || — x*||.

Proof. By (3.5), we get
(3.9)
IF" ()~ F ()|

1
< (14 [ Ar@  F e @) e - 2 ) - )l

0
Combing this with (3.4) and (3.3) yields that

|F'(z) " F(z)]| = <1—h’(1&)—1 /OlTh”(tT)th>t

h(t) — h(0)

< L= - T

= K@) th).

Hence, (3.6) is seen to hold. As ||F'(x) LF"(z)|| < ||F'(z) " F'(a*)|||F'(z*) "L F" ()],
it follows from (3.4) and (3.3) that

1F" () T F" ()| < =R/ (6) 7 R (¢)
and so (3.7) holds. Note that y = 2 — F'(x)"'F(z). Then, by definition,

) )t
(

Hiry) = F@)[F(e - AF() " F(x) - F/(2)
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= —F’(:c)l/o1 F'(x — 7AF'(2) ' F(2))F'(z) ' F(x)dr
= —F'(2)'F"(2)F'(z)"'F(x)
+ Fl(x)7! /OI[FU(LE) — F"(x — 7AF'(z) " F(2))|F'(2) " F(z)dr.
This gives that
[H(z, o)l < || = F(z) ' F'@)|||[F'(2)" Fa)|
| F' ()T E () /01 |F (%)~ [F" ()
—F"(x — TAF () F (2)]||dr || F' () T F ().
Thus, it follows from (3.2) that
|H@, )l < = F@) " F@)||F' (@) Fo)
+HF’(w)1F’($*)I!/01LIMTF’(9:)1F(9¢)HdTIIF'(w)1F(w)H
< = Fl@)  F (@) || F'(2) " F ()|
+%HF’($)‘1F’($*)IIIIF’(fC)‘lF(fc)IIQ-
Combing this with (3.7) and (3.6) implies that
P00 he) = 1- UG,
Therefore, (3.8) holds. O

1H (2, y)l| < =R (&) "2h(&)[R" () +

Lemma 3.3. Let {z,,} and {y,} be the sequences generated by Algorithm 1.1. Then
(3.10)

Qe o)t = 0) = —5 F'(ea) ™ F () = )2

4 G o) F ) o — 27— F ) F () (2~ 2°)

S F )™ F ) P )™ F )T 4 H ()]

. (H(xn, Yn)(xp — ) + 2 — 2% — F’(xn)_lF(mn))

+ %F'(mn)_l /Ol[F”(g;n) — F"(xy — M1 = 7)F'(2) " F(2,)|d7F' (2,,) " F(2,)
L+ H(wn, o)~ F (o) F ().

Proof. By definition of Algorithm 1.1, we get
1
Q(zn, Yn)(Yn — Tn) = _5}7/(&:”)71[1;/(%”) — F'(xp — /\Fl(mn)ilF(xn))]
I+ H(xnvyn)]ilF/(xn)ilF(mn)
1 1

= _5117'(3;,1)*1 i F' 2y — M1 = 7)F'(z,) Y F(2,))drF' (2,) " F(z,)
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: [I+ H(J;myn)]_lFl(l‘n)_lF(l'n)

= _%F,(l'n)_IF”(l‘n)F/(xn)_lF(xn)[I+ H("Enayn)}_lF,(xn)_lF(l‘”)

1
+ %F’(l’n)_l /0 [F"(zn) — F" (2, — N1 — 7)F'(2,) " F (xp))|d7F' (2,) " F (2)
I+ H(wn, yn)) " F ()7 F ().
Hence, it follows that
Qs ) — 20) = =5 F'(n) " " () (0 — 2°)?

g F ) F ) — " — F(a0) () (an — 2°)

O @) F ) () F )+ H ()]
(H(zn, yn) (@0 — %) + 2n — 2* — F'(2,) 7 F(22))

1 1
+ P (! /0 (F" (@) — F" (2 — M1 — 1) ()~ F (@) ]dr F ()~ F ()

2
T+ H(zp, yn)]  F () F ()
and so (3.10) is seen to hold. O

Now we are ready to have the main theorem about convergence of sequences
generated by Algorithm 1.1.

Theorem 3.4. Suppose that (3.2) holds for all x,2’ € B(xz*,ry) and that (3.1)
holds. Let xo € B(x*,7)). Then the sequence {x,} generated by Algorithm 1.1 is
well defined and converges cubically to x*. Furthermore,

(3.11) |l — 2*(| < ¢®" 7 flzg — 2| ,n = 0,1,
where
Py (t
(3.12) q= /\t(O) <1, to=llzo— || <rx.
0
Proof. Since ty = ||xg — z*|| < r), it follows from Lemma 2.3(ii) that g = %oto) <

1. Below, we will use mathematical induction to show that the sequence {z,,} is well
defined, {z,} C B(z*,ry) and (3.11) holds. Clearly, the case when n = 0 is trivial.
Now we assume that z, € B(z*,r)) and (3.11) holds for n. Below, we show that
Zpy1 is well defined, x,41 € B(2*,r)) and (3.11) holds for n + 1. To do this, since
r, € B(x*,r)), it follows from Lemma 3.1 that F'(x,) ! exists. Let t, = ||z, — 2*].
Then, by Lemma 3.2, we have

H(zp,yn) <1 —=U(ty).
This implies that
1+ H(zn,yn)|| 2 1= [|H(zn, yn)l| 2 U(tn) > Ulra) > U(r1) =0
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because by Lemma 2.2 that U is monotone increasing on (0,79), U(r;) = 0 and
thn < 7y < 71 < r9. Consequently, we obtain that (I + H(x,,y,)) ! exists and so
Zn1 is well defined. Thus, to complete the proof, it’s sufficient to show that (3.11)
holds for n + 1. By the definition of Algorithm 1.1, we have

Tn+1 — = Tn — - F/(xn)ilF(xn) + Q(xnvyn)(yn - xn)
Then, it follows from (3.5) and (3.10) that

1
it — 3 = —F' ()" /0 A" (@) — F"(20)]dr (am — 27)?

1
+ %F’(:cn)_lF”(xn) /0 FF ()" F (27 )dr (2 — 3
g F )™ ) ) )+ H )]
(3'13) * ! / 1o/ T *\2
: <H(xn,yn)(:vn —x )—i—/o TF (2,) " F"(x])d7 (2, — ™) >
1
+ 5P [ (P
P (= A1 — ) F (@) F (2)|Ar F () F ()
[+ H(%@:yn)]_lF/(wn)_lF(xn)-
Write

x; =a" +71(xy, —2%) foreach 0 <7 <1.
Then, it follows from (3.13) that

1
lns1 — 2| <[ F' () = F' (2] /0 TIF (@) " () — P (@)l dr|lzn — 2|

1 - ! - T *
+ 51 (@) 1F”(93n)H/O TIF (@) P (@) A7 Jam — 27

+ 1" () = F" (@) [[1F () ™ F () |

1
2(1 - ”H(xm yn)”)

1
~<||H<xn,yn>||+ / I () F @ )HdTHxn—x*ll) —
|F/ () F / ,
+ | E' () HE" (2
20— [ H(mm )] ()
P — ML= ) ()" 1F<xn>>1udTHF%mnrlF(mn)n?.
Combing this with (3.2) yields that

1
lons1 — 2|l < ' (2n) 7 F'(27)] / TL|jan = aplldr |z, — 2|
0

1 _ 1 _ .
+§HF’(xn) 1F”(xn)H/0 T F'(x) " F (a)||d 7|2 — ¥

+ 1E" ()~ " () | F (20) T F (2n) |

1
2(1 - HH(.’L‘n, yn)”)
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1
~ (rmxmyn)r n /0 P () F () |7 —x*r) T

/ =1t (% 1
s S LA = 1 ) ) F ) Pl P
This, together with (3.4), (3.7) and (3.6) (where ¢ is replaced by t,), gives that
LI (t,) 7' | W (ta) 2R () (v + 20" (tn))
6 + 12

LR (tn) "' (' (tn) "' h(tn))®
- 4(12— 1H (@, yn))

B () 2R (tn)h(tn
S g (sl
Thus, it follows from (3.8) (with t replaced by t,,) that
LI (t) 715 (v + 20" (80) )P (82) 20" (ta) 15,

6 + 12
LK (tn) " h(tn))* B (tn)
41+ 1/ (tn) "2h(ta) [ (tn) + 5 (W (t0) ~ h(t0)))])
)R ) ot (HG D+ () ) [
201+ 1 (tn) ~2h(ta) [W (tn) + 5 (W

_l’_

L,

[Zn1 — 27| <

—h (tp) " (v + 20" (tn))tn
),

[€n1 —2*| < =

= Py(tn).
Hence, we obtain that
Py (tn P, n_
lensr =l < Palta) = 2l < P (@@ )|z — 2P
< ¢ g —a7).

Then, (3.11) is seen to hold for n + 1. The proof is completed. O

4. APPLICATION TO A NONLINEAR INTEGRAL EQUATION OF HAMMERSTEIN TYPE

In this section, we provide an application of the main result to a special nonlinear
Hammerstein integral equation of the second kind (cf. [15]). Letting u € R, we
consider

(4.1) / G(s,t)[z(t)® + px(t)?)dt, s € [a,b],

where [ is a continuous function such that I(s) > 0 for all s € [a,b] and the kernel
G is a non-negative continuous function on [a, b] x [a, b].
Note that if G is the Green function defined by

(b—s)(t—a) 1 <s
G(s,t) = b G s -
>0 { L=l=8) - 5 <,

equation (4.1) is equivalent to the following boundary value problem (cf. [16]):

{JU”:—SUB—WC
(a) = v(a), x(b) = v(b).
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To apply Theorem 3.4, let X =Y = Cla,b], the Banach space of real-valued
continuous functions on [a,b] with the uniform norm, and let = Cfa,b]. Define
F :Q — Cla,b] by

@2 [F@)](s) = / Gls, D[z + pa(®)2dt, s € [a,b)]

Then solving equation (4.1) is equivalent to solving equation (1.1) with F' being
defined by (4.2).
We start by calculating the parameters v and L in the study. Firstly, we have

b
[F'(z)u](s) = u(s) —/ G(s,t)[32(t)? + 2uz()]u(t)dt, s € [a,b]
and
b
[F"(z)uz](s) = —/ G(s,t)[6x(t) + 2u]u(t)z(t)dt, s € [a,b].
Let z* € , be fixed. Then
T = F'(2)]| < M(3||2*[* + 2ullz*[]),
where

—max/|Gst]dt

s€la,b

By the Banach Lemma, if
(4.3) M3z + 2pllz*) < 1

one has
1

M3l + 2pall (1)

IF(z*) 71| < .
Since
[ F" ()| < M(6]|lz"|| + 24),
it follows that

= . M(6][z*[| 4 2p)
(4.4) | () F" (%) < " IS
1— M@3|z*]* + 2ullz*|)
Therefore,
M 1| + 2
ws) (61| + 20)

— M3z + 2ullz*)

is estimated.
On the other hand, for z, y € €,

[(F"(z) — F"(y)) =6 / Gs,t)(z(t) — y())u()z(t)dt, s € [a,b]

and consequently,

| (@) (" () — F"(3)) 60

I'= ; :
1= M3z + 2plla*])

Hx_y”a x?l/GQ'
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This means that
6M
L= M@3||z*[|? + 2plz*|)

Thus, we can establish the following result from Theorem 3.4.

(4.6) L=

Theorem 4.1. Let x* be a solution of F(x) = 0 with F being defined by (4.2).
Suppose that (4.3) holds. Let v and L be given by (4.5) and (4.6), respectively. Let
xo € B(z*,7)). Then the sequence {x,} generated by Algorithm 1.1 is well defined
and converges cubically to x*. Furthermore,

2n — 2| < ¢®" 1 ||lzg — 2*||,n =0,1,...,

where
Py (to)

qg=+——=<1, t0:||$0—$*H<7‘)\.
to
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