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In [22], Uko established convergence analysis for the generalized Newton method
under the classical Lipschitz condition. In particular, for the special case of varia-
tional inequality problems, the convergence of the generalized Newton method has
been studied by Eaves [5], Robinson [16], Josephy [11], by Pang and Chan [13] (see
also [10]) and some recent works (see [2, 8]).

Recall that the classical Newton method is one of the most important methods
known for solving systems of nonlinear equations when they are continuously dif-
ferentiable. It has been studied and used extensively (see [12, 19–21, 24, 25, 27] and
the references therein). One of the most important results on Newton’s method is
Kantorovich’s theorem (cf. [12]). Under the mild condition that the second Fréchet
derivative of F is bounded (or more general, the first derivative is Lipschitz contin-
uous) on a proper open metric ball of the initial point x0, Kantorovich’s theorem
provides a simple and clear criterion, based on the knowledge of the first derivative
around the initial point, ensuring the existence, uniqueness of the solution of the
equation and the quadratic convergence of Newton method. Another important
result on Newton method is Smale’s point estimate theory (i.e., α-theory and γ-
theory) in [19], where the rules to judge an initial point x0 to be an approximate
zero were established, depending on the information of the analytic nonlinear op-
erator at this initial point and at a solution x∗, respectively. There are a lot of
works on the weakness and/or the extension of the Lipschitz continuity made on
the mappings; see for example, [6, 7, 9, 25] and references therein. In particular,
Wang [25] introduced the notion of Lipschitz conditions with L-average to unify
both Kantorovich’s and Smale’s criteria.

In sprit of Smale’s point estimate theory [19, 20] and Wang’s work in [25], the
purpose of the present paper is to continue the study of the generalized Newton
method for (1.1) under more generalized Lipschitz condition. Under a generalized
L-average Lipschitz condition, we give a convergence criterion ensuring the conver-
gence of the generalized Newton method around an initial point x0 for solving the
generalized equation. Moreover, we also get an estimation of uniqueness ball for the
solution of (1.1). As applications, we obtain Kantorovich type theorem under the
classical Lipschitz condition, convergence results under the γ-condition, and Smale’s
point estimate theory. Hence, our results extend some corresponding results in [22].

The paper is organized as follows. In Section 2, some notions, notations and
preliminaries are provided. In Section 3, the convergence criterion is established
under a generalized L-average Lipschitz condition, while in Section 4, we present
an estimation of uniqueness ball of the solution of (1.1). In the final section, as
applications, we get the Kantorovich type theorem under the classical Lipschitz
condition, convergence results under the γ-condition, and Smale’s point estimate
theory.

2. Notions and preliminaries

Let x ∈ H and r > 0. As usual, we useB(x, r) andB(x, r) to denote, respectively,
the open metric ball and the closed metric ball at x with radius r, that is,

B(x, r) := {y ∈ H| ∥x− y∥ < r} and B(x, r) := {y ∈ H| ∥x− y∥ ≤ r}.
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Recall that a bounded linear operator G : H → H is called a positive operator if G
is self-conjugate and ⟨Gx, x⟩ ≥ 0 for each x ∈ H (cf. [18, p. 313]). The following
lemma about properties of positive operators is taken from [23].

Lemma 2.1. Let G be a positive operator. Then the following conclusions hold:
(i) ∥G2∥ = ∥G∥2.
(ii) If G−1 exists, then G−1 also is a positive operator and

(2.1) ⟨Gx, x⟩ ≥ ∥x∥2

∥G−1∥
for each x ∈ H.

Let T : H ⇒ H be a set-valued operator. The domain domT of T is defined
as domT := {x ∈ H| T (x) ̸= ∅}. Below, we recall notions of monotonicity for
set-valued operators (see [1, 28] for details).

Definition 2.2. Let T : H ⇒ H be a set-valued operator. T is said to be

(a) monotone if the following condition holds for any x, y ∈ domT :

(2.2) ⟨u− v, y − x⟩ ≥ 0 for each u ∈ T (y) and v ∈ T (x);

(b) maximal monotone if it is monotone and the following implication holds for any
x, u ∈ H:

(2.3)
⟨u− v, x− y⟩ ≥ 0 for each y ∈ domT and v ∈ T (y) =⇒ x ∈ domT and u ∈ T (x).

Throughout the whole paper, let R be a positive constant and L(·) be a non-
negative nondecreasing integrable function on [0, R) satisfying∫ R

0
L(s)ds ≥ 1.

A generalized Lipschitz condition with L-average has been introduced in [25]. Below,
we extend generalized Lipschitz condition with L-average for operators on Hilbert
spaces which is slightly different from that in [25]. Throughout the whole paper,
for any bounded linear operator G : H → H, we always adopt the convention

that Ĝ := 1
2(G + G∗) where G∗ is the conjugate operator of G. Clearly, Ĝ is

a self-conjugate operator. Throughout the whole paper, we always assume that
T : H ⇒ H is a (set-valued) maximal monotone operator and F : H → H is a
Fréchet differentiable function.

Definition 2.3. Let r > 0 and x̄ ∈ H be such that F̂ ′(x̄)
−1

exists. Then

∥F̂ ′(x̄)
−1

∥F ′ is said to satisfy
(a) the center Lipschitz condition with L-average at x̄ on B(x̄, r) if

∥F̂ ′(x̄)
−1

∥∥F ′(x)− F ′(x̄)∥ ≤
∫ ∥x−x̄∥

0
L(u)du for each x ∈ B(x̄, r).

(b) the radius Lipschitz condition with L-average at x̄ on B(x̄, r) if

∥F̂ ′(x̄)
−1

∥∥F ′(x)− F ′(xτ )∥ ≤
∫ ∥x−x̄∥

τ∥x−x̄∥
L(u)du for each x ∈ B(x̄, r), 0 ≤ τ ≤ 1,

where xτ = x̄+ τ(x− x̄).
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(c) the center Lipschitz condition in the inscribed sphere with L-average at x̄ on
B(x̄, r) if

∥F̂ ′(x̄)
−1

∥∥F ′(x′)− F ′(x)∥ ≤
∫ ∥x−x̄∥+∥x′−x∥

∥x−x̄∥
L(u)du for each x, x′ ∈ B(x̄, r),

where ∥x− x̄∥+ ∥x− x′∥ < r.

Let r0 > 0 be such that

(2.4)

∫ r0

0
L(u)du = 1.

The following lemma is taken from [23] and is useful in the next section.

Lemma 2.4. Let r < r0. Let x̄ ∈ H be such that F̂ ′(x̄) is a positive operator and

F̂ ′(x̄)
−1

exists. Suppose that ∥F̂ ′(x̄)
−1

∥F ′ satisfies the center Lipschitz condition

with L-average at x̄ on B(x̄, r). Then, for each x ∈ B(x̄, r), F̂ ′(x) is a positive

operator and F̂ ′(x)
−1

exists. Moreover,

(2.5) ∥F̂ ′(x)
−1

∥ ≤ ∥F̂ ′(x̄)
−1

∥

1−
∫ ∥x−x̄∥

0
L(u)du

.

3. Convergence criterion

Let T : H ⇒ H be a (set-valued) maximal monotone operator. Let F : H → H
be a Fréchet differentiable function. Consider the following generalized equation:
Find x∗ ∈ H such that

(3.1) 0 ∈ F (x∗) + T (x∗).

Newton’s method for the generalized equation (3.1) is given as follows:
Algorithm 3.1. Let x0 ∈ H be given. Have x0, x1, . . . , xn. Define xn+1 such that

(3.2) 0 ∈ F (xn) + F ′(xn)(xn+1 − xn) + T (xn+1).

Remark 3.1. Have xn. If there exists a constant c > 0 such that

(3.3) ⟨F ′(xn)y, y⟩ ≥ c∥y∥2 for each y ∈ H,

then there exists a unique point xn+1 such that (3.2) holds because T is maximal
monotone (see [22, Lemma 2.2]). Hence, if for each n, there exists a constant c > 0
such that (3.3) holds, then the sequence generated by (3.2) is well defined.

The majorizing function h defined in the following, which was first introduced
and studied by Wang (cf. [25]), is a powerful tool in our study. For β > 0, define
the majorizing function h by

(3.4) h(t) = β − t+

∫ t

0
L(u)(t− u)du for each 0 ≤ t ≤ R.
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Some useful properties are described in the following proposition, see [25]. Let
r0 > 0 and b > 0 be such that

(3.5)

∫ r0

0
L(u)du = 1 and b =

∫ r0

0
L(u)udu.

Proposition 3.2. The function h is monotonic decreasing on [0, r0] and monotonic
increasing on [r0, R]. Moreover, if β ≤ b, h has a unique zero respectively in [0, r0]
and [r0, R], which are denoted by r1 and r2. They satisfy

(3.6) β < r1 <
r0
b
β < r0 < r2 < R

if β < b and r1 = r2 if β = b.

Let {tn} denote the sequence generated by Newton’s method with the initial
value t0 = 0 for h, that is,

(3.7) tn+1 = tn − h′(tn)
−1h(tn) for each n = 0, 1, . . . .

Let x0 ∈ Ω be such that F̂ ′(x0)
−1

exists. The main result of this paper is as follows.

Theorem 3.3. Suppose that β ≤ b and ∥F̂ ′(x0)
−1

∥F ′ satisfies the center Lipschitz
condition in the inscribed sphere with L-average at x0 on B(x0, r1) and F ′(x0) is a
positive operator (not necessary symmetric). Let {xn} be a sequence generated by
Newton’s method (3.2) with initial point x0 and

(3.8) ∥x1 − x0∥ ≤ β.

Then, {xn} is well defined, and converges to a solution x∗ of (3.1) in B(x0, r1).
Moreover, there hold

(3.9) ∥xn+1−xn∥ ≤ tn+1−tn and ∥xn−x∗∥ ≤ r1−tn for each n = 0, 1, . . . .

Proof. We will use mathematical induction to prove that {xn} is well defined and

(3.10) ∥xn+1 − xn∥ ≤ tn+1 − tn

holds for each n = 0, 1, . . . . The case when n = 0 is trivial because of assumption
(3.8). Suppose that (3.10) holds for n = 0, 1, . . . , k− 1. Below, we show that (3.10)
holds for n = k. Note that

∥xk−x0∥ ≤ ∥xk−xk−1∥+ · · ·+∥x1−x0∥ ≤ tk− tk−1+ · · ·+ t1− t−0 = tk− t0 < r1.

Since F ′(x0) is a positive operator and F̂ ′(x0)
−1

exists, it follows from Lemma 2.4

that F̂ ′(xk) is a positive operator, F̂ ′(xk)
−1

exists and

(3.11) ∥F̂ ′(xk)
−1

∥ ≤ ∥F̂ ′(x0)
−1

∥

1−
∫ ∥xk−x0∥

0
L(u)du

.

Then, one obtains from Lemma 2.1(ii) that

(3.12)
∥x∥2

∥F̂ ′(xk)
−1

∥
≤ ⟨F̂ ′(xk)x, x⟩ = ⟨F ′(xk)x, x⟩ for each x ∈ H.



1490 Y. ZHANG, J. WANG, AND S.-M. GUU

Consequently, we get from Remark 3.1 that there exists a unique point xk+1 such
that

(3.13) 0 ∈ F (xk) + F ′(xk)(xk+1 − xk) + T (xk+1).

Observe from assumption that

(3.14) 0 ∈ F (xk−1) + F ′(xk−1)(xk − xk−1) + T (xk).

Since T is maximal monotone, we get from (3.14) and (3.13) that

⟨−F (xk−1)− F ′(xk−1)(xk − xk−1) + F (xk) + F ′(xk)(xk+1 − xk), xk − xk+1⟩ ≥ 0

This gives that
(3.15)
⟨F (xk)−F (xk−1)−F ′(xk−1)(xk−xk−1), xk−xk+1⟩ ≥ ⟨F ′(xk)(xk−xk+1), xk−xk+1⟩.
Observe from (3.12) that

∥xk − xk+1∥2

∥F̂ ′(xk)
−1

∥
≤ ⟨F̂ ′(xk)(xk − xk+1), xk − xk+1⟩ = ⟨F ′(xk)(xk − xk+1), xk − xk+1⟩.

Combing this with (3.15) yields that

(3.16) ∥xk − xk+1∥ ≤ ∥F̂ ′(xk)
−1

∥∥F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)∥.
Note that

F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)

=

∫ 1

0
F ′(xk−1 + t(xk − xk−1))(xk − xk−1)dt− F ′(xk−1)(xk − xk−1)

=

∫ 1

0
(F ′(xk−1 + t(xk − xk−1))− F ′(xk−1))(xk − xk−1)dt

(3.17)

Since ∥F̂ ′(x0)
−1

∥F ′ satisfies the center Lipschitz condition in the inscribed sphere
with L-average at x0 on B(x0, r1), we get from (3.11), (3.16) and (3.17) that

∥xk − xk+1∥

≤ ∥F̂ ′(x0)
−1

∥

1−
∫ ∥xk−x0∥

0
L(u)du

∫ 1

0
∥F ′(xk−1 + τ(xk − xk−1))− F ′(xk−1)∥∥xk − xk−1∥dτ

≤ 1

1−
∫ ∥xk−x0∥

0
L(u)du

∫ 1

0

∫ ∥xk−1−x0∥+τ∥xk−xk−1∥

∥xk−1−x0∥
L(u)du∥xk − xk−1∥dτ

≤ 1

1−
∫ tk−t0

0
L(u)du

∫ 1

0

∫ tk−1−t0+τ(tk−tk−1)

tk−1−t0

L(u)du(tk − tk−1)dτ

= tk+1 − tk.

Hence, (3.10) holds for n = k. So {xk} is a Cauchy sequence which has a limit

x∗ ∈ B(x0, r1). Since F is a C1 mapping and T is maximal monotone, we get that
x∗ solves (3.1). □
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4. Uniqueness ball of a solution around initial point

In this section, we give an estimation of uniqueness ball of solution around initial
point. Let

(4.1) tn+1 = tn + h(tn) for each n = 0, 1, . . . ,

where t0 = 0. Note that the function t 7→ t + h(t) increases monotonically on
[0, r1] and t0 = 0 < t1 = β < r1. It’s easy to verify that the sequence {tn} increases
monotonically and limn→∞ tn = r1.

Theorem 4.1. Let β ≤ b. Let r1 ≤ r < r2 if β < b, and r = r1 if β = b. Suppose

that ∥F̂ ′(x0)
−1

∥F ′ satisfies the center Lipschitz condition with L-average at x0 on

B(x0, r) and F ′(x0) is a positive operator (not necessary symmetric). Let x1 ∈ H
be such that

0 ∈ F (x0) + F ′(x0)(x1 − x0) + T (x1)

and ∥x1 − x0∥ ≤ β. Then, there exists a unique solution x∗ of (3.1) in B(x0, r).

Proof. Let {tn} be a sequence given by (4.1). Let {xn} be a sequence generated by
the following algorithm with initial point x0:

0 ∈ F (xn) + F ′(x0)(xn+1 − xn) + T (xn+1).

Since F̂ ′(x0)
−1

exists and F ′(x0) is a positive operator, {xn} is well defined because
of Lemma 2.1(ii) and Remark 3.1. Below, we show that

(4.2) ∥xn+1 − xn∥ ≤ tn+1 − tn for each n = 0, 1, . . . .

Granting this, {xn} is a Cauchy sequence and converges to a solution x∗ of (3.1)
due to the fact that F is Fréchet differentiable and T is maximal monotone. The
case when n = 0 is trivial because of assumption that ∥x1 − x0∥ ≤ β = t1 − t0. To
proceed, assume that (4.2) holds for n = 0, 1, . . . , k − 1. Observe that

0 ∈ F (xk−1) + F ′(x0)(xk − xk−1) + T (xk)

and
0 ∈ F (xk) + F ′(x0)(xk+1 − xk) + T (xk+1).

Since T is maximal monotone, it follows that

⟨F (xk) + F ′(x0)(xk+1 − xk)− F (xk−1)− F ′(x0)(xk − xk−1), xk − xk+1⟩ ≥ 0

and so
(4.3)
⟨F (xk)−F (xk−1)−F ′(x0)(xk−xk−1), xk−xk+1⟩ ≥ ⟨F ′(x0)(xk−xk+1), xk−xk+1⟩.
Using Lemma 2.1(ii), we get

∥xk − xk+1∥2

∥F̂ ′(x0)
−1

∥
≤ ⟨F̂ ′(x0)(xk − xk+1), xk − xk+1⟩

= ⟨F ′(x0)(xk − xk+1), xk − xk+1⟩.
Combing this with (4.3) yields that

(4.4) ∥xk − xk+1∥ ≤ ∥F̂ ′(x0)
−1

∥∥F (xk)− F (xk−1)− F ′(x0)(xk − xk−1)∥.
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Note that

F (xk)− F (xk−1)− F ′(x0)(xk − xk−1) =

∫ 1

0
(F ′(xk−1 + τ(xk − xk−1))

−F ′(x0))(xk − xk−1)dτ.

This, together with (4.4) and the assumption that ∥F̂ ′(x0)
−1

∥F ′ satisfies the center

Lipschitz condition with L-average at x0 on B(x0, r), implies that

∥xk − xk+1∥ ≤ ∥F̂ ′(x0)
−1

∥
∫ 1

0
∥F ′(xk−1 + τ(xk − xk−1))− F ′(x0)∥∥xk − xk−1∥dτ

≤
∫ 1

0

∫ ∥xk−1−x0∥+τ∥xk−xk−1∥

0
L(u)du∥xk − xk−1∥dτ

≤
∫ 1

0

∫ tk−1+τ(tk−tk−1)

0
L(u)du(tk − tk−1)dτ

=

∫ tk

0
L(u)(tk − u)du−

∫ tk−1

0
L(u)(tk−1 − u)du

= tk+1 − tk.

Hence, (4.2) holds for n = k.

Let x′0 ∈ B(x0, r), and let t′0 = ∥x′0 − x0∥. Set

t′n+1 = t′n + h(t′n) for each n = 0, 1, . . . .

Then, it’s easy to verify that {t′n} converges to r1. Consider the following algorithm
with initial point x′0:

0 ∈ F (x′n) + F ′(x0)(x
′
n+1 − x′n) + T (x′n+1).

Since F̂ ′(x0)
−1

exists and F ′(x0) is a positive operator, it follows from Lemma 2.1(ii)
and Remark 3.1 that {x′n} is well defined. Below, we show that

(4.5) ∥x′n − xn∥ ≤ t′n − tn for each n = 0, 1, . . . .

Grating this, we have

lim
n→∞

x′n = lim
n→∞

xn = x∗,

which implies that x∗ is a unique solution of (3.1) in B(x0, r). The case when n = 0
is trivial because of assumption that ∥x′0 − x0∥ = t′0 − t0. To proceed, assume that
(4.5) holds for n = 0, 1, . . . , k. Observe that

0 ∈ F (x′k) + F ′(x0)(x
′
k+1 − x′k) + T (x′k+1)

and

0 ∈ F (xk) + F ′(x0)(xk+1 − xk) + T (xk+1).

Since T is maximal monotone, it follows that

⟨F (x′k) + F ′(x0)(x
′
k+1 − x′k)− F (xk)− F ′(x0)(xk+1 − xk), xk+1 − x′k+1⟩ ≥ 0

and so
(4.6)
⟨F (x′k)−F (xk)−F ′(x0)(x

′
k−xk), xk+1−x′k+1⟩ ≥ ⟨F ′(x0)(xk+1−x′k+1), xk+1−x′k+1⟩.
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Using Lemma 2.1(ii), we get

∥x′k+1 − xk+1∥2

∥F̂ ′(x0)
−1

∥
≤ ⟨F̂ ′(x0)(xk+1 − x′k+1), xk+1 − x′k+1⟩

= ⟨F ′(x0)(xk+1 − x′k+1), xk+1 − x′k+1⟩.

Combing this with (4.6) yields that

(4.7) ∥xk+1 − x′k+1∥ ≤ ∥F̂ ′(x0)
−1

∥∥F (x′k)− F (xk)− F ′(x0)(x
′
k − xk)∥.

Note that

F (x′k)− F (xk)− F ′(x0)(x
′
k − xk) =

∫ 1

0
(F ′(xk + τ(x′k − xk))− F ′(x0))(x

′
k − xk)dτ.

This, together with (4.7) and the assumption that ∥F̂ ′(x0)
−1

∥F ′ satisfies the center

Lipschitz condition with L-average at x0 on B(x0, r), implies that

∥xk+1 − x′k+1∥ ≤ ∥F̂ ′(x0)
−1

∥
∫ 1

0
∥F ′(xk + τ(x′k − xk))− F ′(x0)∥∥x′k − xk∥dτ

≤
∫ 1

0

∫ ∥xk−x0∥+τ∥x′
k−xk∥

0
L(u)du∥x′k − xk∥dτ

≤
∫ 1

0

∫ tk+τ(t′k−tk)

0
L(u)du(t′k − tk)dτ

=

∫ t′k

0
L(u)(t′k − u)du−

∫ tk

0
L(u)(tk − u)du

= t′k+1 − tk+1.

Hence, (4.5) holds for n = k + 1. The proof is completed. □

5. Applications

This section is devoted to the application of our previous results for some special
cases such as the classical Lipschitz condition and the γ-condition.

5.1. The classical Lipschitz condition. Let L > 0 be a constant, and let r > 0.

Let x0 ∈ H be such that F̂ ′(x0)
−1

exists. Then ∥F̂ ′(x0)
−1

∥F ′ is said to satisfy the
Lipschitz condition on B(x0, r) if

∥F̂ ′(x0)
−1

∥∥F ′(x)− F ′(x′)∥ ≤ L∥x− x′∥ for each x, x′ ∈ B(x0, r),

where ∥x− x0∥+ ∥x′ − x∥ < r.
Since L(·) ≡ L, the majorizing function h is reduced to

h(t) = β − t+
1

2
Lt2.

Furthermore, it follows from (3.5) that

r0 =
1

L
and b =

1

2L
.
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If λ = Lβ ≤ 1
2 , h has two zeroes

r1 =
1−

√
1− 2λ

L
and r2 =

1 +
√
1− 2λ

L
.

Moreover,

β ≤ r1 ≤ 2β ≤ 1

L
≤ r2 ≤

2

L
.

Let {tn} denote the sequence generated by Newton’s method with the initial value
t0 = 0 for h. Then,

tn =
1− q2

n−1

1− q2n
r1,

where q = 1−
√
1−2λ

1+
√
1−2λ

.

Hence, the following two corollaries follow directly from Theorems 3.3 and 4.1,re-
spectively.

Corollary 5.1. Suppose that β ≤ 1
2L and ∥F̂ ′(x0)

−1
∥F ′ satisfies the Lipschitz con-

dition on B(x0, r1) and F ′(x0) is a positive operator (not necessary symmetric). Let
{xn} be a sequence generated by Newton’s method (3.2) with initial point x0 and

∥x1 − x0∥ ≤ β.

Then, {xn} is well defined, and converges to a solution x∗ of (3.1) in B(x0, r1).
Moreover, there holds

∥xn − x∗∥ ≤ 1− q

1− q2n
q2

n−1r1 ≤ q2
n−1r1.

Corollary 5.2. Let β ≤ 1
2L . Let r1 ≤ r < r2 if β < 1

2L , and r = r1 if β = 1
2L .

Suppose that ∥F̂ ′(x0)
−1

∥F ′ satisfies the Lipschitz condition at x0 on B(x0, r) and
F ′(x0) is a positive operator (not necessary symmetric). Let x1 ∈ H be such that

0 ∈ F (x0) + F ′(x0)(x1 − x0) + T (x1)

and ∥x1 − x0∥ ≤ β. Then, there exists a unique solution x∗ of (3.1) in B(x0, r).

Remark 5.3. Note that Corollary 5.1 has been given in [22, Theroem 2.11], while
Corollary 5.2 extends corresponding results in [22, Theroem 2.10] by bigger radius
of uniqueness ball.

5.2. The γ-condition. Let r > 0 and γ > 0 be such that γr ≤ 1. In this sub-
section, we always assume that F : H → H is a C2 function. The γ-conditions
for operators in Banach space were first presented by Wang [27] for the study of
Smale’s point estimate theory. Below, it’s an analogue of γ-condition for operators,
which has been given in [23] and is slightly different from the one given in [27].

Definition 5.4. Let x0 ∈ H be such that F̂ ′(x0)
−1

exists. F is said to satisfy the
γ-condition at x0 in B(x0, r), if

(5.1) ∥F̂ ′(x0)
−1

∥ · ∥F ′′(x)∥ ≤ 2γ

(1− γ∥x− x0∥)3
for each x ∈ B(x0, r).
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The following proposition shows that the γ-condition implies the radius Lipschitz
condition with L-average, where the function L is defined by

(5.2) L(u) :=
2γ

(1− γu)3
, ∀u ∈ [0, r).

Proposition 5.5. Let x0 ∈ H be such that F̂ ′(x0)
−1

exists. Suppose that F satisfies

the γ-condition at x0 in B(x0, r). Then ∥F̂ ′(x0)
−1

∥F ′ satisfies the center Lipschitz
condition in the inscribed sphere with L-average at x0 on B(x0, r), where L is given
by (5.2).

Proof. Let x, x′ ∈ B(x0, r) be such that ∥x− x0∥+ ∥x′ − x∥ < r. Then

F ′(x′)− F ′(x) =

∫ 1

0
F ′′(x+ s(x′ − x))(x′ − x)ds.

Hence, it follows

∥F̂ ′(x0)
−1

∥∥F ′(x′)− F ′(x)∥ ≤
∫ 1

0
∥F̂ ′(x0)

−1
∥∥F ′′(x+ s(x′ − x))∥∥x′ − x∥ds

≤
∫ 1

0

2γ∥x′ − x∥
(1− γ(∥x− x0∥+ s∥x′ − x∥))3

ds

=

∫ ∥x−x0∥+∥x′−x∥

∥x−x0∥

2γ

(1− γu)3
du.

Thus, the conclusion follows. □

For L(·) given by (5.2), the majoring function h is reduced to

(5.3) h(t) = β − t+
γt2

1− γt
for each 0 ≤ t <

1

γ
.

Furthermore, it follows from (3.5) that

r0 =
2−

√
2

2γ
and b =

3− 2
√
2

γ
.

Let {tk} denote the sequence generated by Newton’s method with the initial value
t0 = 0 for h, that is,

(5.4) tk+1 = tk − h′(tk)
−1h(tk) for each k = 0, 1, . . . .

Then we have the following proposition which was proved in [24,26].

Proposition 5.6. Suppose that α = γβ ≤ 3− 2
√
2. Then the zeros of h are

(5.5) r1 =
1 + α−

√
(1 + α)2 − 8α

4γ
, r2 =

1 + α+
√

(1 + α)2 − 8α

4γ

and satisfy

(5.6) β ≤ r1 ≤ (1 +
1√
2
)β ≤ (1− 1√

2
)
1

γ
≤ r2 ≤

1

2γ
.



1496 Y. ZHANG, J. WANG, AND S.-M. GUU

Moreover,

(5.7) tk =
1− µ2k−1

1− µ2k−1η
r1

and

(5.8) tk+1 − tk =
(1− µ2k)

√
(1 + α)2 − 8α

2α(1− ηµ2k−1)(1− ηµ2k+1−1)
ηµ2k−1β, k = 0, 1, . . . ,

where

(5.9) µ =
1− α−

√
(1 + α)2 − 8α

1− α+
√

(1 + α)2 − 8α

and

(5.10) η =
1 + α−

√
(1 + α)2 − 8α

1 + α+
√

(1 + α)2 − 8α
.

Lemma 5.7 below was known in [24,26].

Lemma 5.7. Suppose that α < 3− 2
√
2. Then

(5.11)
(1− µ2k)

√
(1 + α)2 − 8α

2α(1− ηµ2k−1)(1− ηµ2k+1−1)
η ≤ 1, k = 0, 1, . . . .

Recall that F is a C2 mapping. In the remainder of this section, let x0 ∈ H be

such that F̂ ′(x0)
−1

exists and define α := γβ.
Then, the following corollary follows directly from Propositions 5.5 and 5.6, and

Theorem 3.3.

Corollary 5.8. Let

α = βγ ≤ 3− 2
√
2.

Suppose that F satisfies the γ-condition at x0 in B(x0, r1) and F ′(x0) is a positive
operator (not necessary symmetric). Let {xn} be a sequence generated by Newton’s
method (3.2) with initial point x0 and

∥x1 − x0∥ ≤ β.

Then, {xn} is well defined, and converges to a solution x∗ of (3.1) in B(x0, r1).
Moreover, there holds

∥xk+1 − xk∥ ≤
(1− µ2k)

√
(1 + α)2 − 8α

2α(1− ηµ2k−1)(1− ηµ2k+1−1)
ηµ2k−1∥x1 − x0∥

for all k = 0, 1, 2, . . . , where µ, η are given by (5.9) and (5.10) respectively.

By (5.11), we arrive at the following corollary from Theorem 3.3.
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Corollary 5.9. Let
α = βγ < 3− 2

√
2.

Suppose that F satisfies γ-condition at x0 in B(x0, r1) and F ′(x0) is a positive
operator (not necessary symmetric). Let {xn} be a sequence generated by Newton’s
method (3.2) with initial point x0 and

∥x1 − x0∥ ≤ β.

Then, {xn} is well defined, and converges to a solution x∗ of (3.1) in B(x0, r1).
Moreover,

∥xk+1 − xk∥ ≤ µ2k−1∥x1 − x0∥, k = 0, 1, . . . ,

where µ is defined by (5.9).

The following corollary follows directly from Propositions 5.5 and 5.6, and The-
orem 4.1.

Corollary 5.10. Let β ≤ 3−2
√
2

γ . Let r1 ≤ r < r2 if β < 3−2
√
2

γ , and r = r1 if

β = 3−2
√
2

γ . Suppose that F satisfies the γ-condition at x0 in B(x0, r) and F ′(x0)

is a positive operator (not necessary symmetric). Let x1 ∈ H be such that

0 ∈ F (x0) + F ′(x0)(x1 − x0) + T (x1)

and ∥x1 − x0∥ ≤ β. Then, there exists a unique solution x∗ of (3.1) in B(x0, r).

5.3. Analytic cases. In the remainder of this section, we assume that F is analytic

on B(x0, r). Let x ∈ B(x0, r) be such that F̂ ′(x)
−1

exists. Define

γ(F, x) := ∥F̂ ′(x)
−1

∥ sup
k≥2

∥∥∥∥F k(x)

k!

∥∥∥∥
1

k−1

. (6.1)

Also we adopt the convention that γ(F, x) = ∞ if F̂ ′(x) is not invertible. Note that

this definition is justified, and in the case when F̂ ′(x) is invertible, by analyticity,
γ(F, x) is finite. The following lemma shows that if F is analytic , then F satisfies
the γ-condition. Its proof is easy and so is omitted here (see also [24,25]).

Lemma 5.11. Let x0 ∈ Ω and let γ := γ(F, x0). Let 0 < r ≤ 2−
√
2

2γ . Then F

satisfies γ-condition at x0 in B(x0, r).

Let x0 ∈ H be such that F̂ ′(x0)
−1

exists, and let γ := γ(F, x0). Define α := γβ.

Corollary 5.12. Let
α = βγ < 3− 2

√
2.

Suppose that F ′(x0) is a positive operator (not necessary symmetric). Let {xn} be
a sequence generated by Newton’s method (3.2) with initial point x0 and

∥x1 − x0∥ ≤ β.

Then, {xn} is well defined, and converges to a solution x∗ of (3.1) in B(x0, r1).
Moreover, there holds

∥xk+1 − xk∥ ≤ µ2k−1∥x1 − x0∥
for all k = 0, 1, 2, . . . , where µ, η are given by (5.9) and (5.10) respectively.
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Proof. By Lemma 5.11, F satisfies γ-condition at x0 in B(x0, r1). Thus, Corollary
5.9 is applicable and the conclusion follows. □

Corollary 5.13. Let β ≤ 3−2
√
2

γ . Suppose that F ′(x0) is a positive operator (not

necessary symmetric). Let x1 ∈ H be such that

0 ∈ F (x0) + F ′(x0)(x1 − x0) + T (x1)

and ∥x1 − x0∥ ≤ β. Then, there exists a unique solution x∗ of (3.1) in B(x0, r1).

Proof. By Lemma 5.11, F satisfies γ-condition at x0 in B(x0, r1). Thus, Corollary
5.10 is applicable and the conclusion follows. □

References

[1] F. E. Browder, ulti-valued monotone nonlinear mappings and duality mappings in Banach
spaces, Trans. Am. Math. Soc. 118 (1965), 338–351.

[2] D. C. Chang, J. H. Wang, J.-C. Yao, Newton’s method for variational inequality problems:
Smale’s point estimate theory under the γ-condition, Appl. Anal., (2015), to appear.

[3] M. Chipot, Variational Inequalities and Flaw in Porous Media, Springer, New York, 1984.
[4] G. Duvuat and J. L. Lions, Inequalities in Physics and Mechanics, Springer, Berlin, 1976.
[5] B. C. Eaves, A locally quadratic algorithm for computing stationary points, Technical Report,

Department of Operations Research, Stanford University, Stanford, CA, 1978.
[6] J. A. Ezquerro and M. A. Hernández, Generalized differentiability conditions for Newton’s

method, IMA J. Numer. Anal. 22 (2002), 187–205.
[7] J. A. Ezquerro and M. A. Hernández, On an application of Newton’s method to nonlinear

operators with w-conditioned second derivative, BIT. 42 (2002), 519–530.
[8] D. Fu, L. Niu and Z. Wang, Extensions of the Newton-Kantorovich theorem

to variational inequality problems, (2009), preprint, see http://math.nju.edu.cn/
zywang/paper/KantorovichV IP .pdf, .

[9] J. M. Gutiérrez and M. A. Hernández, Newton’s method under weak Kantorovich conditions,
IMA J. Numer. Anal. 20 (2000), 521–532.

[10] P. T. Harker and J. S. Pang, Finite-dimensional variational inequality and nonlinear comple-
mentarity problems: A survey of theory, algorithms and applications, Math. Programming 48
(1990), 161–220.

[11] N. H. Josephy, Newton’s method for generalized equations, Technical Report, No. 1965, Math-
ematics Research Center, University of Wisconsin, 1979 (in Madison, W1).

[12] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Oxford, Pergamon, 1982.
[13] J. S. Pang and D. Chart, Iterative methods for variational and complementarity problems,

Math Program. 24 (1982), 284–313.
[14] S. M. Robinson, Extension of Newton’s Method to Nonlinear Functions with Values in a Cone,

Numer. Math. 9 (1972), 341–347.
[15] S. M. Robinson, Generalized equations and their solutions, part 1: basic theory, Mathematical

Programming Study. 10 (1979), 128–141.
[16] S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43-62.
[17] S. M. Robinson, Generalized equations, in: A. Bachem, M. Gretschel and B. Korle, eds. Math

Program., the State of the Art, Springer, Berlin, 1982, pp. 346–367.
[18] W. Rudin, Functional Analysis, Mc Graw-Hill, Inc., 1973.
[19] S. Smale, Newton’s method estimates from data at one point, The Merging of Disciplines: New

Directions in Pure, Applied and Computational Mathematics (R. Ewing, K. Gross and C.
Martin, eds.) Springer, New York, 1986, pp. 185–196.

[20] S. Smale, Complexity theory and numerical analysis, Acta. Numer. 6 (1997), 523–551.
[21] J. F. Traub and H. Wozniakowski, Convergence and complexity of Newton iteration, J. Assoc.

Comput. Math. 29 (1979), 250–258.



GENERALIZED NEWTON METHOD FOR SOLVING A GENERALIZED EQUATION 1499

[22] L. U. Uko, Generalized equations and the generalized Newton method, Math. Program. 73
(1996), 251-268.

[23] J. H. Wang, Convergence ball of Newton’s method for inclusion problems and uniqueness of
the solution, J. Nonlinear Convex Anal. (2015) to appear.

[24] X. H. Wang, Convergence of Newton’s method and inverse function theorem in Banach space,
Math. Comput. 68 (1999), 169–186.

[25] X. H. Wang, Convergence of Newton’s method and uniqueness of the solution of equations in
Banach space, IMA J. Numer. Anal. 20 (2000), 123–134.

[26] X. H. Wang and D. F. Han, On the dominating sequence method in the point estimates and
Smale’s theorem, Science in China (Series A). 33 (1990), 135–144.

[27] X. H. Wang and D. F. Han, Criterion α and Newton’s method, Chinese J. Numer. Appl. Math.
19 (1997), 96–105.

[28] E. Zeidler, Nonlinear Functional Analysis and Applications II B, Nonlinear Monotone Opera-
tors, Springer, Berlin, 1990.

Manuscript received October 30, 2014

revised December 15, 2014

Yan Zhang
Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China
E-mail address: zhangyan198421@163.com

Jinhua Wang
Department of Mathematics, Zhejiang University of Technology, Hangzhou 310032, P. R. China

E-mail address: wjh@zjut.edu.cn

Sy-Ming Guu
Graduate Institute of Business and Management, College of Management, Chang Gung University
and Medical Research Division, Chang Gung Memorial Hospital, Taiwan, R. O. C.

E-mail address: iesmguu@gmail.com


