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A COMPARISON OF DISCRETE FIXED POINT THEOREMS
VIA A BIMATRIX GAME
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Dedicated to Professor Wataru Takahashi on his 70th birthday

ABSTRACT. There are three types of discrete fixed point theorems: type M and
type C deal with monotone mappings and contraction mappings, respectively.
Type B is based on Brouwer’s fixed point theorem. The main aim of this paper
is to compare type B with type M by applying them to a bimatrix game. For this
purpose we characterize the direction preserving condition that is used in type B
in terms of the best response mappings of the bimatrix game. Further we extend
the characterization to a non-cooperative n-person game.

1. INTRODUCTION

There are three types of discrete fixed point theorems. Type M deals with mono-
tone mapping such as Tarski’s fixed point theorem [8]. Topkis [9] applied Tarski’s
fixed point theorem to a non-cooperative n-person game to show the existence of
the pure-strategy Nash equilibrium, see also Sato-Kawasaki [6]. Type C deals with
contraction mappings. Robert [5] showed that any contraction mapping from the
Boolean algebra {0, 1}" into itself has a unique fixed point. Shih-Dong [7] presented
a marvelous result that any locally contractive mapping from {0, 1}" into itself also
has a unique fixed point. Richard [4] extended Shih-Dong’s result to integer inter-
vals. Further, Kawasaki-Kira-Kira [3] obtained an extension of [5] by way of [4].
Type B is based on Brouwer’s fixed point theorem. Iimura [1] introduced an im-
portant assumption that guarantees a discrete fixed point. limura-Murota-Tamura
[2] corrected the main theorem of [1]. The basic idea of type B is as follows. Let
X C Z" be a finite set and f : X — X a mapping.

(1) Give a simplicial decomposition of the convex hull coX of X.
(2) Extend f to a piecewise linear mapping, say f, by using the simplicial
decomposition.
(3) Apply Brouwer’s theorem to f on coX, and obtain a fixed point, say y, of
f-
(4) Impose an assumption for a vertex of the simplex including y be a fixed
point of f.
The assumption introduced in [1] is called the direction preserving condition (1.1).
We say two points z, 2’ € X to be cell-connected if they belong to a same simplex of
the simplicial decomposition, and denote the binary relation by x ~ 2’. A mapping
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f=1,.-.,fn): X = X is said to be direction preserving if
(1.1) r~2 = (filzx) —x)(fi(z')—2)) >0 (i=1,...,n).
Here we note that the original definition is slightly different from (1.1), see Remark

2.4 below. Further, Yang [10] weakened the assumption as (1.2), which is called the
locally gross direction preserving condition.

(1.2) rea = S (file) - 2)(file) o) > 0.
=1

For a set-valued mapping F'(x), we call a mapping f such that f(z) € F(z) (Vz) a
selection of F. The following theorem was given by Yang [10].

Theorem 1.1. Let F be a set-valued mapping from X into itself and a simplicial
decomposition of the convex hull coX be given. If a selection f of F satisfies (1.2),
then F' has a fized point Z, that is, T € F(T).

An important application of fixed point theorems is a bimatrix game. A bimatrix
game consists of two players and m x n payoff matrices A = (a;;) and B = (b;;).
Players 1 and 2 maximize 27 Ay and z” By, respectively, where z € P, and y €
P, are probability vectors. A pair of probability vectors (Z,y) is called a Nash
equilibrium if

eTAg < zT Ay, 7By < z'Byj Va € Py, Yy € P,.

In particular, when z and  are standard unit vectors e; and e;, respectively, (Z, )
is called a pure-strategy Nash equilibrium. The set of best responses is defined as
follows:

Fi(j) = {ilaij > ap; Vi'}, Fa(i) = {j | bij > biy Vj'}.
Then a pure-strategy Nash equilibrium (e;, e;) is characterized by (i, j) € F(i,j) :=
F1(j) x F(2).

In Section 2, we characterize the direction preserving condition for the best re-
sponse mappings of a bimatrix game, and give a sufficient condition that the bi-
matrix game has a pure-strategy Nash equilibrium (Theorem 2.5). In Section 3,
we define a generalized Freudenthal decomposition in R", and characterize the di-
rection preserving condition in a non-cooperative n-person game. In Section 4, we
briefly review type M to make a comparative review of types B and M.

2. DIRECTION PRESERVING CONDITION IN A BIMATRIX GAME

In this section we characterize the direction preserving condition in a bimatrix
game. We show that the simplicial decomposition of the rectangular grid (Figure 1-
left) is essential for the characterization. We deal with the Freudenthal decomposi-
tion in R? (Figure 1-right), its rotation, and a general simplicial decomposition of
the rectangular grid. Then we get a sufficient condition for the bimatrix game to
have a pure-strategy Nash equilibrium.

Before going any further, we remark that the column (raw) number of matrices
begins with not 1 but 0 in this paper. That is convenient because we define a
simplicial decomposition of a grid in R™ by shifting a simplicial decomposition of
the hypercube [0, 1]".
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FIGURE 1. For the rectangular grid (left), right is the Freudenthal decomposition.

First, it is clear that, for any selection f = (f1, f2) of F, (1.1) reduces to
RO = DA -1 20 oo
21 (i) — ) a) - ) 20 V03~ (0T

Theorem 2.1. When we take the Freudenthal decomposition of the rectangular grid,
a selection f = (f1, f2) of the best response F' is direction preserving if and only if

AG) < AG+HD < AG) +1 o
22 f;E{))S fgl(z'JJr 1) < f21(%>+1 (i, 7).

Proof. Taking i = f1(j) + 1 in the first inequality of (2.1), we have
hGh <i V(@50 ~ ([G) +1,5).

Since (f1(j) + 1,7 +1) ~ (1(4) +1,5), we get f1(j +1) < fi(j) + 1. Taking
i = f1(j) — 1 in the first inequality of (2.1), we have

A =8 V5 ~ (f0) = 1,5)-

+ 1) < f2(i) + 1 from the second inequality of (2.1). Conversely,
j) ~ (¢,7"). Then, we may assume that (i',5") = (i,7) + (d1,dz) for some
(d1,ds) € {0,1}2. By (2.2), there exists §; € {0, 1} such that f1(j') = f1(j) + 61, so

(2.3) (f1(G) =) (A1) =) = (A1G) = D) (f1(4) + 61 — i — d).

If fl(])—l > 0, then fl(j)+51—i—d1 > 0. Iffl(])—l < 0, then fl(j)+51—i—d1 <0.
In both cases, RHS of (2.3) is nonnegative. Similarly, we have (f2(i)—7)(f2(i')—7") >
0.

O

The following theorem is similarly proved as Theorem 2.1.

Theorem 2.2. When we take the simplicial decomposition in Figure 3-left, a se-
lection f of the best response F' is direction preserving if and only if

NG)-1<AG+1D) < A0) .
2.4 . ; : Y(i, 7).
(24) L) —12 hi+1) < p) 70D
Actually, for any simplicial decomposition of the rectangular grid, we can char-

acterize the direction preserving condition. The given simplicial decomposition can
be regarded as an undirected graph, say G (Figure 4-left). Let Gy (Gpg) be the
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i ¢ f105) :

F1GURE 2. When we take the Freudenthal decomposition, any direc-
tion preserving best response is monotone with at most 1 increment.
Double circles indicate pure-strategy Nash equilibria.

J j foi)

N \
N

O O

i > ‘ f1(5) Y‘ i

FiGURE 3. When we take a rotation of the Freudenthal decompo-
sition, any direction preserving best response is monotone with at
most 1 decrement. The double circle indicates a pure-strategy Nash
equilibrium.

graph obtained by deleting the horizontal (vertical) edges from G, see Figure 4-
center (right). The direction preserving condition is characterized in terms of Gy
and Gg.

i 116) i

FIGURE 4. For any simplicial decomposition (left), center and right
denote Gy and Gy, respectively. Double circle indicates a pure-
strategy Nash equilibrium.

Theorem 2.3. When we take an arbitrary simplicial decomposition of the rectan-
gular grid, a selection f = (f1, f2) of the best response F' is direction preserving if
and only if polygonal line (f1(0),0), (f1(1),1), ..., (fi(n),n) is a subgraph of Gy
and polygonal line (0, f2(0)), (1, f2(1)), ..., (m, fa(m)) is a subgraph of Gp.
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Proof. Necessity: (By induction on j) Assume that the polygonal line (f1(0),0),
, (f1(4),4) is a subgraph of Gy. When 0 < f1(j) < m, we see from (1.1)

(2.5) Al <i V@G ~ (AG) +1,5),
(2.6) AGN =i VGG ~ (1) = 1,5)-
Since (f1(5) +1,j+1) ~ (1(5) +1,j) and (f1(5) = 1,5+ 1) ~ (f1(4) = 1,J), we get
from (2.5) and (2.6) that f1(j) — 1< fi(j +1) < fi(y) +1

Case 1: When (f1(4),7 +1) ~ (f1(4) + 1,7), we see from (2.5) that f1(j +1) <
fi1(9). Case 2: When (f1(j),7+1) # (f1(4)+1,4), (f1(5), )must be cell-connected

to (f1(4)+ 1,5 +1). Case 3: When (f1(5),7+1) ~ (f1(j) — 1,7), we see from (2.6)
1

that f1(j +1) > f1(j). Case 4: When (f1(j),j + 1) # (f1(j) — 1,4), (f1(j),J) must
be cell-connected to (f1(j) — 1,7+ 1). Since f1(j + 1) € Z,

f1(5) Case 1 and Case 3,
) C 1 and Case 4,

(2.7) AG41) = fi(g) or f1(4) ase 1 and Case
fi(g) or fi(4) +1 Case 2 and Case 3,

fi(d) =1, f1(4), or f1i(j) +1 Case 2 and Case 4.

Figure 5 indicates four patterns of simplicial decompositions around (f1(7),7). In
any case, {(fl(])7])7 (fl(] + 1)7.7 + 1)} is an edge of GV-

hHG) =1 f[0)

(f15). ) (f1(3). 5)

FIGURE 5. Simplicial decompositions around (f1(j), 7).

When fi(j) = 0 or m, it is similarly prove that the edge joining (fi(j),J
(fi(j +1),5 + 1) belongs to Gy. Hence polygonal line (f1(0),0), ..., (fi(4),7)
(f1(+1),7+1) is a subgraph of Gy . Similarly, polygonal line (0, f2( )), (1, f2(1)),

.., (m, fa(m)) is also a subgraph of Gy.

Sufficiency: We have to show that

(2.8) (f1(G) = )(A() =) =0 V(T j") ~ (i)

Case A: when j' = j+1, since the edge joining (f1(j),4) and (f1(j+1),j+1)is an
edge of Gy, we have |f; (] +1)— f1(45)] < 1. Since |[i —i| <1, (2.8) trivially holds
when |f1(j) —¢| > 2. Case Al: When fi(j) —i =1, (2.8) reduces to fi(j+1) >4
Since (7,7) = (f1(4) — 1, ) is the lower-left vertex of each pattern in Figure 5, any
(i7" = (&',5+1) ~ (i,j) satisfies f1(j + 1) > 4'. Case A2: when fi(j) —i = —1,
(2.8) reduces to f1(j+ 1) <4'. Since (i,7) = (fl( )+ 1,7) is the lower-right vertex
of each pattern in Figure 5, any (i/,j') = (¢/,j + 1) ~ (i, 7) satisfies f1(j +1) <
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Hence (2.8) holds in Case A. Case B: when j' = j — 1, (2.8) is similarly proved.
Case C: when j' = j, (2.8) trivially holds.

It is also proved that (f2(i) — 7)(f2(i') — j') > 0 for any (i, j') ~ (i,7) as well as
(2.8). O

Remark 2.4. The original definition of the direction preserving condition in [1]
adopted ||z — x||oc < 1 instead of  ~ 2/ in (1.1). In that case, the original
direction preserving condition is characterized as follows.

[0 +1) = fi(4), f26i+1) = f2(i) Vi, j,

which is too strict, see Figure 6.

i fold)

f1 i

FIGURE 6. If we adopt ||2'—2||c < 1 instead of z ~ 2/, any direction
preserving best response must be constant.

Theorem 2.3 is restated in terms of Nash equilibrium as below.

Theorem 2.5. If there exists a simplicial decomposition of the rectangular grid and
a selection f = (f1, f2) of the best response F such that polygonal line (f1(0),0),

(f1(1),1), .., (f1(n),n) is a subgraph of Gy and polygonal line (0, £>(0)), (1, fo(1)),
.o, (m, fa(m)) is a subgraph of Gy, then there exists a pure-strategy Nash equilib-
UM,

3. DIRECTION PRESERVING CONDITION IN AN n-PERSON GAME

In this section, we consider the direction preserving condition for best responses
in non-cooperative n-person games. Let X; = {0,1,...,m;} be the set of pure
strategies of player 4, X :=[[; X;, and X_; := [[},; X;. Any element of X_; is
denoted as z_;. So x € X is expressed as © = (z;,x_;). Let r;(x) be the reward
function of player i for z € X,

Fi(x_;) :=={zi € Xi | r(zi,z—;) > r(yi,x—i) Yy; € X},

F(z) =[] Fi(z_).
=1

Then x € X is a pure-strategy Nash equilibrium if and only if x € F(x). Let
f=(f1,..., fn) be aselection of F, that is, fi(z_;) € F;(z_;) for any = and i. Then
the direction preserving condition (1.1) reduces to

(3.1) (filz—i) —x)(filx",) —25) >0 Vo ~a', Vi
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The Freudenthal decomposition of the grid of [] ,{0,1,...,m;} is defined as
follows. For any permutation 7 € &,, on {1,...,n}, put

Or = C0{07 €r(1)s €n(1) + €r(2)y -5 Ex(1) + €r(2) +eeet eﬂ(n)}'

Then {0, | 7 € &,,} gives a simplicial decomposition of the hypercube [0, 1]". We
shift this decomposition to the whole grid to obtain the Freudenthal decomposition
in R™.

3 72 3 2

/

gl . . Tl

FIGURE 7. Left is the Freudenthal decomposition of [0, 1]3. Right is
the Freudenthal decomposition of the whole grid.

Theorem 3.1. When we take the Freudenthal decomposition in R™, a selection f
of the best response F' is direction preserving if and only if

(3.2) filz—y) < file—y +d—y) < filx—;))+1 Vexe X, Vd e {0,1}", Vi.
Proof. Theorem 3.1 is a special case of Theorem 3.3 below. g

As well as Theorem 2.2, we can take a rotation of the Freudenthal decomposition
and obtain an extension of Theorem 3.1. Namely, let ¢/ be either e; or —e;. For any
permutation m € &, put

o = co{0, €} yy, €n1) + €nays - €y F €y o b
Then {07 | m € &,} gives a simplicial decomposition of a hypercube co{}_, ; €’
J CA{1,...,n}}, sothat {J;+Ze,_:_ej ej | ™€ &,} gives a simplicial decomposition
J
of [0,1]™. We define the generalized Freudenthal decomposition by shifting the latter

decomposition to the whole grid.
Next, we equip the integer lattice {3_,c;ej | J C N :={1,...,n}} with a partial

order < by
/ !
S e e
jeI jeJ

and extend it to Z™ by parallel translation.

Lemma 3.2. For any generalized Freudenthal decomposition,  ~ 2’ if and only if
they are comparable (z <z’ or z = ') and ||z — 2|0 < 1.

Proof. When x ~ 2/, they are vertices of a same n-simplex. Hence it is clear that

’ . . . ! .
||z — 2'||oo < 1. Since the simplex is expressed as o = o7, + Zengej ej + z for some
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e G, and z € Z", we have
=gyttt Y, etz =e gt te gt Y etz
5;:_%‘ e;=—€j
for some k and [. If £ <, then < 2/. If £ > [, then z > 2'.

Conversely, when z < 2/ and ||z — 2/|| < 1, there exists some z € Z™ such that
xz, 2" € [0,1]" + z and x — z < 2/ — z. Hence there exist I C I’ C N such that
x—z=) jce;and 2’ —z =3 e} Taking a permutation 7 satisfying

I={r(),....,=n(|I))}, I'={x1),...,x(1]),...,=(|I'])},
we see that x — z, ' — z € o], so that x ~ 2/. O
Theorem 3.3. When we take a generalized Freudenthal decomposition in R", a

selection f of the best response F is direction preserving if and only if (3.3) holds
foranyxz € X andd € {>_;c;¢€; | J C N}

(3.3) filz—i) < filemi+d—y) < filz—i) + 1 if e = ey,
’ file—i) > file—i +d=i) > filz—) =1 if e} = —e;.
So, if f satisfies (3.3), then there exists T € X such that fi(z_;) = Z; for any

i1=1,...,n. Namely, T is a pure-strateqgy Nash equilibrium.

Proof. Necessity: For any z € X andd := 3, ;€ (I C N), we see from Lemma 3.2

that y := (fi(z—;) + L,z—;) ~ ¢ = (fi(z—;) + 1,2—; + d—;). Since y_; = x_; and
Yy, =x_; +d_;, we have by (3.1)

0 < (fily=i) — v (i) = vi) = filw—i) + 1 = filw—i +dy).
Since y == (file—i) — L o) ~y ==y + 3 ;e €j = (fila—i) — Lo +d—y), we
have by (3.1)

0 < (fily—i) =) (fily"s) — i) = filw—i +dy) = filw—s) + 1.
In the case of €, = e;, we have, by Lemma 3.2 and (3.1),

2= (filz) —Lz) ~ 2 i=2z+d=(filr_i),z_i +dy),
0 < (fi(z—i) = 2)(fi(zLy) — 21) = filw—i + di) = filz ).

In the case of €, = —e;, we have, by Lemma 3.2 and (3.1),
zi=(filzo)+ o) ~ 2 =z+d=(fi(z_i),z_i + d_y),
0 < (filz=i) = 2)(fi(zL3) — 1) = filw—) = filw—i + d).

Sufficiency: Assume that x ~ z’. Then it follows from Lemma 3.2 that 2’ = z+d
or x =1’ +d for somed =73, e (I CN). It suffices to consider the first case.
Case 1: When e} = e;, we have d; € {0,1}. It follows from the first half of (3.3)

that fi(2" ;) = fi(r—i +d—;) = fi(x_;) + &; for some ¢; € {0,1}. So

(3.4) (filw—i) —z)(fi(z];) — ai) = (filz—s) — zi)(filw—i) + 6 — x5 — ;).

If fz(l'_z) > x;, then fz(.l‘_z) + 51 —x;—d; > 0. If fl(x_z) < x;, then fz(x_l) + 5@ —
x; —d; < 0. RHS of (3.4) is nonnegative in either case.
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Case 2: When ¢, = —e;, we have d; € {0, —1}. It follows from (3.3) that fi(z" ;) =
fi(z—;) — 0; for some 0; € {0,1}. So

(3.5) (filw—i) —z)(fi(z];) — a}) = (filz—s) — wi)(filw—i) — 6 — x5 — dy).

If fi(x—;) > x4, then fi(x_;) — 0; —x; —d; > 0. If fi(x—;) < @4, then fi(x_;) — 0; —
x; —d; < 0. RHS of (3.5) is nonnegative in either case. O

4. DISCRETE FIXED POINT THEOREM FOR MONOTONE MAPPINGS

Topkis [9] derived a discrete fixed point theorem (Theorem 4.1) for monotone
mappings from Tarski’s fixed point theorem [8]. In this section, we apply The-
orem 4.1 to a bimatrix game, and make a comparative review of type B (Theo-
rems 2.1, 2.2) and type M (Theorem 4.1).

Let X;, X, X_;, F, and f be same with those in Section 3. We assume that each
X, is equipped with an order 0 <1 =X --- <m;orm; < m; —1 < ... 2 0. They
induce a component-wise partial order < in X and X_;.

Theorem 4.1 ([9]). If mappings fi: X_; — X; (i =1,...,n) satisfy
(4.1) v 22, = filv_) =X fi(xl),

then there exists & € X such that fi(Z_;) = Z; for anyi=1,...,n. Namely, T is a
pure-strateqy Nash equilibrium.

In the following we consider a bimatrix game. When we define (z1,z2) < (2, 25)
by 1 <z} and 29 < 2, (4.1) reduces to (4.2) below, which implies that f; and fo
are nondecreasing, see Figure 8.

(4.2) z2 <@y = filze) < fulzy), 11 <ah = faw) < falah).

When we define (z1,z2) < (2], 24) by 21 < 2} and z9 > 2}, then (4.1) reduces
to (4.3) below, which implies that f; and fs are nonincreasing.

(4.3) xg > wy = fi(z2) < fiey), =1 <2y = falz1) > faz)).
8 Jdo0° Nash equilibria .70 ®
O o|e e o O
[@) D D @)
[@) @)
@) D ®
@) . ¢ O
@) D e

FIGURE 8. If best response mappings f1 and fo are nondecreasing,
there exists a pure-strategy Nash equilibrium.

As we have seen in Sections 2, 3 and 4, if a best response f = (f1, f2) satisfies one
of the following conditions for a bimatrix game, there exists a pure-strategy Nash
equilibrium.

(a) Both f1 and f2 are nondecreasing.
(b) Both f; and fo are nonincreasing.
(c) Both f; and f, are monotone with at most 1 increment.
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(d) Both f; and fo are monotone with at most 1 decrement.
(e) The polygonal line connecting (f1(j),7) ( =0,...,n) is a subgraph of Gy,
and the polygonal line connecting (i, f2(i)) (i = 0,...,m) is a subgraph of
Gh.
It should be noted that (e) does not require any monotonicity. Type M (Theo-
rem 4.1) can deal with (a)-(d), and Type B (Theorems 2.1, 2.2, 3.1, and 3.3) can
deal with (c)-(e).
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