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general parametric minimal point theorem for product sets endowed with abstract
(pre)ordering relationships that interrelate with the imposed quasimetric structure
of the decision space. The proof of this theorem offers a dynamical process, which is
on one hand at the mainstream of variational analysis, while on the other hand cor-
responds to the very nature of the variational rationality approach in applications
to behavioral models. From this result we derive, in particular, new set-valued
versions of the Ekeland variational principle for mappings from quasimetric into
ordering spaces with variable preferences. Furthermore, we apply the paramet-
ric minimal point theorem to obtaining another type of variational principles with
set-valued quasidistance perturbations.

The rest of the paper is organized as follows. Section 2 presents basic definitions
and preliminary material on quasimetric spaces and ordering relationships widely
used for the formulations and proofs of the main results below. Section 3 is devoted
to the parametric minimal point theorem, its various consequences, modifications,
and illustrations.

Section 4 contains applications of the parametric minimal point theorem and the
approach developed in its proof to deriving new variational principles of the Eke-
land type for the case of set-valued mappings discussed above. We given a short
overview of the major extensions of the Ekeland principle and their proofs in vector
and multiobjective settings and then show that basically all the known results of
this type follow from our theorems. Section 5 applies the parametric minimal point
theorem to deriving variational principles with set-valued quasidistance perturba-
tions. In the final Section 6 we discuss further applications of the obtained results
to some models of behavioral sciences.

2. Basic definitions and preliminaries

First we present and discuss the definitions of quasimetric spaces and the corre-
sponding notions of closedness, compactness, and completeness in such spaces; see,
e.g., [11].

Recall that (X, d) is a metric space if the distance function d : X × X → IR
satisfies the condition: (1) d(x, y) ≥ 0; (2) d(x, y) = 0 if and only if x = y; (3)
d(x, y) = d(y, x); (4) d(x, z) ≤ d(x, y) + d(y, z) on X. In this paper we deal with a
broader class of quasimetric spaces (X, q), where the quasimetric q : X × X → IR
satisfies conditions (1), (4) and (2′) d(x, x) = 0 for all x ∈ X, but not the symmetry
condition (3).

Note that considering quasimetrics is beneficial even of finite-dimensional spaces.
Furthermore, quasimetrics are common in real life. Let, e.g., X be the set of moun-
tain villages and q(x, y) stand for the walking times between elements of X. It is a
quasimetric because travel uphill takes longer than travel downhill. Another case is
a taxicab net with one-way streets, where a path from A to B comprises a different
set of streets than a path from B to A. A simple and remarkable example is the
Sorgenfrey quasimetric on IR defined by

q(x, y) :=

{
x− y if x ≥ y,
1 otherwise

(2.1)
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describing the filing down a metal stick: it is easy to reduce its size, but not to grow
it.

Classical topology tells us that every metric space (X, d) can be viewed as a
topological space on which the topology is constructed by taking as a base of the
neighborhood filter of x ∈ X given by the balls B(x, ε) := {y ∈ | d(x, y) < ε}. We
can similarly proceed with quasimetric spaces (X, q), while the absence of symmetry
for q requires considering two different topologies corresponding to the left and right
balls as

IBl(x, ε) :=
{
y ∈ X

∣∣ q(x, y) < ε
}
, IBr(x, ε) :=

{
y ∈ X

∣∣ q(y, x) < ε
}
.

Recall some notions from quasimetric spaces used in what follows:
• We say that the sequence {xn} ⊂ X (left-sequentially) converges to x̄ ∈ X and

denote it by xn → x̄ if q(xn, x∗) → 0 as k → ∞.
• {xn} ⊂ X is (left-sequential) Cauchy if for each k ∈ IN there is Nk ∈ IN such

that

q(xn, xm) < 1/k for all m ≥ n ≥ Nk.

• A quasimetric space (X, q) is (left-sequentially) complete if each left-sequential
Cauchy sequence is convergent and its limit belongs to X.

• (X, q) is Hausdorff topological if we have the implication[
lim
n→∞

q(xn, x̄) = 0, lim
n→∞

q(xn, ū) = 0
]
=⇒ x̄ = ū.(2.2)

• A quasimetric space (X, q) ordered by a preorder ⪯ (see below) satisfies the
Hausdorff decreasing condition if for every decreasing sequence {xk} ⊂ X and x̄, ū ∈
X with x̄ ⪯ ū the implication in (2.2) holds.

• A nonempty subset Ω ⊂ X of the quasimetric space (X, q) is (left-sequentially)
closed if for any convergent sequence {xn} ⊂ Ω with the limit x̄ we have x̄ ∈ Ω.

For brevity we drop mentioning “left-sequential” in what follows.

It is easy to see that the Sorgenfrey line (IR, q) in (2.1) is Hausdorff topological.
Observe that there are simple quasimetric spaces with X = IR for which Hausdorff
condition (2.2) fails. Consider, e.g., (IR, q′) with

q′(x, y) :=

{
x− y if x ≥ y,
ex−y otherwise.

(2.3)

To verify that (2.2) does not hold, it is sufficient to show that the sequence {xk}
with xk := −k has more than one limit. Fix a ∈ IR and observe that q(xk, a) =

q(−k, a) = e(−k−a) for all k > −a, i.e., the numbers xk left-sequentially converge to
a. Since a was chosen arbitrarily, this sequence has infinitely many limits.

Next we recall the definitions of binary relations and preferences taken from [45,
Definition 1.4]; cf. also [19, 28, 35, 36] and the references therein.

Given a nonempty set Z, a binary relation R on Z is a collection of ordered pairs
of elements in Z, i.e., it is defined by a subset Q ⊂ Z × Z as follows: uRz if and
only if (u, z) ∈ Q. Let us identify properties of R on Z. It is said to be:

• reflexive if zRz for all z ∈ Z;
• antisymmetric if [zRu, u Rz] =⇒ u = z for all z, u ∈ Z;
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• transitive if [zRu, uRw] =⇒ zRw for all z, u, w ∈ Z.

Now we define the major ordering relations used in this paper.

Definition 2.1 (preorders and partial orders). Consider a binary relation ⪯ on a
nonempty set Z. We say that it is:

(i) a preorder if it is reflexive and transitive;
(ii) a partial order if it is an antisymmetric preorder.

A nonempty set equipped with a preorder (respectively, a partial order) is called
a preordered (respectively, an ordered) set.

Definition 2.2 (minimal points to sets). Let Ξ be a preordered set with the pre-
order ⪯. We say that z̄ ∈ Ξ is a minimal point of Ξ with respect to ⪯ if there is
no z ∈ Ξ \ {z̄} such that z ⪯ z̄. The collection of these minimal points is denoted
by Min (Ξ;⪯).

Given a preorder ⪯, we associate with it the level-set mapping L : Z →→ Z defined
by

L (z) :=
{
u ∈ Z

∣∣ u ⪯ z
}

and observe that following descriptions of the above properties via L :
• z ∈ L (z) for all z ∈ Z if and only if the preorder ⪯ is reflexive.
• The preorder ⪯ is transitive if and only if [u ⪯ z =⇒ u − L (u) + z − L (z) ⊂

z − L (z)].
• z̄ ∈ Min (Ξ;⪯) if and only if L (z̄) = {z̄}.
Next we recall the concept of Pareto efficiency, which can be formulated in terms

of a preorder as follows. Given a real topological space Z and a nonempty convex
cone Θ ⊂ Z, denote by ⪯Θ the Pareto preference relation:

u ⪯Θ z if and only if u ∈ z −Θ.(2.4)

Then z̄ ∈ Ξ is a (Pareto) minimal point of Ξ with respect to Θ if z̄ ∈ Min (Ξ;⪯Θ),
i.e.,

Ξ ∩ (z̄ −Θ) = {z̄}.(2.5)

As usual in vector optimization, in this case we write Min (Ξ;Θ) instead of
Min (Ξ;⪯Θ).

As mentioned in Section 1, a serious attention in the literature has been recently
paid to multiobjective optimization problems with variable ordering structures, the
notion that goes back to Yu [50, 51]. In the abstract sense, a variable ordering struc-
ture is given by a set-valued mapping K : Z →→ Z, which defines a binary relation
that may not be transitive or even compatible with positive scalar multiplication.
In this paper we are interested in some special classes of variable ordering structures
that will be specified later.

In contrast to the classical vector optimization with the Pareto ordering relation
⪯Θ induced by a convex ordering cone Θ ⊂ Z, we define now two “less” ordering
relations for each variable ordering structure K. This is due to the fact that for any
u, z ∈ Z there are two different ordering cones K[u] and K[z].
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Definition 2.3 (post-less and pre-less ordering relations). Let K : Z →→ Z be a
variable ordering structure imposed on a vector space Z. Then:

(i) The post-less ordering relation ⪯post
K[·] with respect to K is defined by

z ⪯K[u] u ⇐⇒ z ∈ u−K[u].(2.6)

(ii) The pre-less ordering relation ⪯pre
K[·] is defined by

z ⪯K[z] u ⇐⇒ u ∈ z +K[z].(2.7)

If K is a constant/nonvariable ordering structure K[z] ≡ Θ for some ordering
set in Z containing the zero vector, there is no difference between the pre-less and
post-less binary relations defined in (2.6) and (2.7); they both reduce to the Pareto
ordering relation ⪯Θ in (2.4). Note also that any given ordering relation ⪯ can be

identified with the post-less binary relation ⪯post
K[·] with respect to K[z] := z−L (z).

The next proposition provides sufficient conditions ensuring that both the binary
relations (2.6) and (2.7) are preorders.

Proposition 2.4 (pre-less and post-less preorders). Let K : Z →→ Z be a variable
ordering structure on a vector space Z, and let 0 ∈ K[z] for all z ∈ Z. The following
hold:

(i) If K enjoys the post-less monotonicity property[
u ⪯K[z] z

]
=⇒

[
K [u] +K [z] ⊂ K [z]

]
,

then the post-less relation ⪯post
K[·] is a preorder. Furthermore, the convexity

and cone-valuedness of K[z] ensure the inclusion K [u] ⊂ K [z].
(ii) If K enjoys the pre-less monotonicity property[

u ⪯K[u] z
]
=⇒

[
K [z] +K [u] ⊂ K [u]

]
,

then the pre-less relation ⪯pre
K[·] is a preorder.

Proof. First we prove that ⪯post
K[·] is a preorder. The reflexivity property follows from

0 ∈ K[z] ⇐⇒ z ∈ z −K[z] ⇐⇒ z ⪯K[z] z

for any z ∈ Z. To check the transitivity property, take any vectors z, z′, z′′ ∈ Z
with z ⪯K[z′] z

′ ⇐⇒ z ∈ z′ −K[z′] and z′ ⪯K[z′′] z
′′ ⇐⇒ z′ ∈ z′′ −K[z′′]. It yields

z ∈ z′′ −K[z′]−K[z′′], and so z ∈ z′′ −K[z′′](2.8)

by the post monotonicity condition for z′ ⪯K[z′′] z
′′. This verifies the transitivity

property and shows that⪯post
K[·] is a preorder. The proof of assertion (ii) is similar. □

The question arises: is there any preordering structure with nonconic values
satisfying the post-less monotonicity property? The following examples gives the
affirmative answer.
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Example 2.5 (nonconic preordering structure with the post-less monotonicity
property). Defined the variable ordering structure K : IR2 →→ IR2 by

K[z] :=

{
IR2

+ if z = 0,{
(a, b) ∈ IR2

∣∣∣ a ≥ 0, 0 ≤ b ≤
(
e+ 1

∥z∥

)a
− 1

}
otherwise.

It is obvious that 0 ∈ K[z] for all z ∈ IR2 and that u ∈ K[z] yields ∥u∥ ≥ ∥z∥.
To verify the monotonicity property, take any pairs (a, b) ∈ K[u] and (c, d) ∈ K[z],
which means that

a ≥ 0, c ≥ 0, b ≤
(
e+

1

∥z∥

)a

− 1, and d ≤
(
e+

1

∥z∥

)c

− 1.

Since c ≥ 0 and ∥u∥ ≥ ∥z∥, we have the relationships(
e+ 1

∥u∥

)a
− 1(

e+ 1
∥z∥

)a
− 1

≤ 1 ≤
(
e+

1

∥z∥

)c

⇐⇒
(
e+

1

∥u∥

)a

− 1 ≤
(
e+

1

∥z∥

)c((
e+

1

∥z∥

)a

− 1

)
⇐⇒

(
e+

1

∥u∥

)a

− 1 ≤
(
e+

1

∥z∥

)a+c

−
(
e+

1

∥z∥

)c

⇐⇒
(
e+

1

∥u∥

)a

− 1 +

(
e+

1

∥z∥

)c

− 1 ≤
(
e+

1

∥z∥

)a+c

− 1

=⇒ b+ d ≤
(
e+

1

∥z∥

)(a+c)

− 1 ⇐⇒ (a, b) + (c, d) ∈ K[z].

Since (a, b) and (c, d) were chosen arbitrarily in K[u] and K[z], we get K[u]+K[z] ⊂
K[z] verifying the monotonicity of K. It follows from Proposition 2.4 that ⪯post

K[·] is

a preorder.

Definition 2.6 (minimal points with respect to ordering structures). Let Ξ ̸= ∅ be
a subset of a vector space Z equipped with a variable ordering structure K : Z →→ Z.
Then:

(i) z̄ ∈ Ξ is a post-less minimal point of Ξ or a minimal point to Ξ with

respect to the preorder ⪯post
K[·] if there is no vector z ∈ Ξ \ {z̄} such that

z ⪯K[z̄] z̄, i.e.,

Ξ ∩
(
z̄ −K[z̄]

)
= {z̄}.(2.9)

(ii) z̄ ∈ Ξ is a pre-less minimal point to the set Ξ or a minimal point to Ξ
with respect to the preorder ⪯pre

K[·] if there is no vector z ∈ Ξ \ {z̄} such that

z ⪯K[z] z̄, i.e.,

∀ z ∈ Ξ, z ̸⪯K[z] z̄ ⇐⇒ ∀ z ∈ Ξ, z̄ ̸∈ z +K[z].(2.10)

It follows from (2.5) and (2.9) that Min (Ξ;⪯post
K[·] ) = Min (Ξ;K[z̄]). According

to [50, 51], a post-less minimal point is called an extreme point with respect to K,
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while a pre-less minimal point is called a nondominated point with respect to this
structure.

3. Parametric minimal point theorem

This section is devoted to establishing a new minimal point theorem for pre-
ordered subsets of the Cartesian product of two spaces one of which (the decision
space) is endowed with a quasimetric topological structure, while the other is an
arbitrary set of parameters. We develop a constructive dynamical approach to
prove the existence of minimal points for such sets employed to deriving set-valued
variational principles in the subsequent sections.

Theorem 3.1 (parametric minimal point theorem in product spaces). Let (X, q)
be a quasimetric space, let Z be a nonempty set of parameters, and let Ξ ⊂ X × Z
be endowed with a preorder ⪯. Given (x0, z0) ∈ Ξ, define the (x0, z0)-level set of Ξ
by

L := L (x0, z0) =
{
(u, v) ∈ Ξ

∣∣ (u, v) ⪯ (x0, z0)
}

and assume that the following conditions hold:
(A1) Convergence monotonicity condition: For any sequence {(xk, zk)} ⊂

L decreasing with respect to ⪯, we have that q(xk, xk+1) → 0 as k → ∞.
(A2) Limiting monotonicity condition: for any sequence {(xk, zk)} ⊂ L

decreasing with respect to ⪯, the Cauchy property of {xk} yields the existence of
(x̄, z̄) ∈ L with

(x̄, z̄) ⪯ (xk, zk) for all k ∈ IN.(3.1)

(A3) Hausdorff monotonicity condition: for any sequence {(xk, zk)} ⊂ L
decreasing with respect to ⪯ and any (ū, v̄) ⪯ (x̄, z̄), it follows from q(xk, x̄) → 0
and q(xk, ū) → 0 as k → ∞ that x̄ = ū.

Then there is a decreasing sequence {(xk, zk)} ⊂ Ξ starting at (x0, z0) and ending
at a “partially” minimal point (x̄, z̄) of Ξ with respect to ⪯ in the sense that if
(x, z) ∈ Ξ and (x, z) ⪯ (x̄, z̄), then x = x̄. If furthermore (x̄, z̄) satisfies the
domination condition[

(x̄, z) ⪯ (x̄, z̄) =⇒ z = z̄
]

for all (x̄, z) ∈ L ,(3.2)

then it can be chosen as a minimal point to the set Ξ with respect to ⪯.

Proof. Define the level-set mapping L : X × Z →→ X × Z by

L (x, z) :=
{
(u, v) ∈ Ξ

∣∣ (u, v) ⪯ (x, z)
}

and consider the projection of the set L (x, z) onto the space X given by

LX(x, z) := ProjX
[
L (x, z)

]
=

{
u ∈ X

∣∣ (u, v) ∈ L (x, z) for some v ∈ Z
}
.

It follows from the reflexivity and transitivity properties of ⪯ that

(a) (x, z) ∈ L (x, z) for all (x, z) ∈ X × Z;
(b) if (u, v) ⪯ (x, z), then L (u, v) ⊂ L (x, z) and thus LX(u, v) ⊂ LX(x, z).
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Denote r(a;A) := supb∈A q(a, b) and L k := LX(xk, zk) for all k ∈ IN∪{0}. Starting
from (x0, z0) ∈ Ξ, we inductively construct a sequence {(xk, zk)} ⊂ Ξ by

(3.3) (xk, zk) ⪯ (xk−1, zk−1) and q(xk−1, xk) ≥ r
(
xk−1;L k−1

)
− 2−k, k ∈ IN.

It is clear from properties (a) and (b) of L that the iterative procedure (3.3) is well
defined and that the generated sequence {(xk, zk)} is decreasing with respect to ⪯.

It follows from (A1) that q(xk, xk+1) → 0 as k → ∞. Then the inequality in (3.3)
implies that r(xk;L k) → 0. Using this and property (b) ensures that for any ε > 0
there is Nε ∈ IN such that for any m ≥ n ≥ Nε we have xm ∈ Lm ⊂ L n due to (b)
and

q(xn, xm) ≤ r
(
xn;L n

)
≤ ε whenever m ≥ n ≥ Nε,

which tells us that the sequence {xk} ⊂ X is Cauchy in (X, q). Condition (A2)
yields the existence of (x̄, z̄) ∈ Ξ satisfying (3.1), and thus we get that q(xk, x̄) → 0
as k → ∞.

To show now that (x̄, z̄) is a partial minimal point of Ξ with respect to ⪯, take
an arbitrary pair (u, v) ∈ Ξ ∩ L (x̄, z̄) and deduce from (b) and (3.1) that

(u, v) ∈ L (x̄, z̄) ⊂ L (xk, zk) and thus u ∈ L k, k ∈ IN.

This justifies the validity of the inequality

q(xk, u) ≤ r
(
xk;L k

)
for all k ∈ IN,

which implies in turn that q(xk, u) → 0 as k → ∞, i.e., u is a limit of the sequence
{xk}. The Hausdorff monotonicity condition (A3) yields u = x̄. Since (u, v) was
chosen arbitrarily, this shows that (x̄, z̄) is a partial minimal point of Ξ with respect
to ⪯.

Assume finally that condition (3.2) holds. This yields v = z̄, and hence we arrive
at

Ξ ∩ L (x̄, z̄) =
{
(x̄, z̄)

}
,

which means that (x̄, z̄) is a (fully) minimal point of Ξ with respect to ⪯. □

Remark 3.2 (on assumptions of Theorem 3.1). Let us discuss the assumptions of
this theorem that plays a crucial role in deriving variational principles in Sections 4
and 5.

(i) Condition (A1) holds automatically in all the results on variational principles
established below. At the same time this condition is essential in general for the
existence of minimal points in the case of Pareto preorders on IR2; see Example 3.4.

(ii) In contrast to (A1), condition (A2) is very instrumental for the proofs of the
set-valued extensions of the Ekeland variational principle developed in [1, 2].

(iii) Condition (A3) is automatic if (X, q) is a Hausdorff topological space.
(iv) Associating with Ξ the set-valued mapping Ξ: X →→ Z defined by Ξ(x) :=

{z ∈ Z| (x, z) ∈ Ξ}, the domination condition (3.2) says that z̄ ∈ Min (Ξ(x̄);⪯x̄),
i.e., z̄ is a minimal point of Ξ(x̄) with respect to the preorder ⪯x̄ defined by

u ⪯x̄ z if and only if (x̄, u) ⪯ (x̄, z).

As a direct consequence of Theorem 3.1, we formulate now a nonparametric ver-
sion of the minimal point theorem, which is an extension of the well-recognized
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result by Dancs, Hegedüs and Medvegyev [12, Theorem 3.2] to the case of quasi-
metric spaces.

Corollary 3.3 (nonparametric quasimetric version of the minimal point theorem).
Let (X, q) be a quasimetric space preordered by ⪯. Impose the following assumptions:

(A1′) For any sequence {xk} ⊂ X decreasing with respect to ⪯, we have q(xk, xk+1)
→ 0.

(A2′) If the sequence {xk} ⊂ X is decreasing with respect to ⪯ and Cauchy, then
there exists x̄ ∈ X such that x̄ ⪯ xk for all k ∈ IN .

(A3′) For any sequence {xk} ⊂ X decreasing with respect to ⪯, the conditions
q(xk, x̄) → 0, q(xk, ū) → 0, and ū ⪯ x̄ imply that x̄ = ū.

Then X has a minimal point with respect to ⪯.

Proof. It is straightforward from Theorem 3.1 with Z = {z̄}, Ξ = X ×{z̄}, and the
preorder (x, z̄) ⪯ (u, z̄) on Ξ induced by x ⪯ u. □

We are not familiar with any example in the literature showing that condition
(A1′) is essential for the existence of the minimal point. Let us construct such an
example.

Example 3.4 (convergence monotonicity is essential for the existence of minimal
points). Consider the square Ξ := [−1, 1]× [−1, 1] ⊂ IR2 in the standard Euclidean
metric q and the Pareto preorder ⪯Θ defined by (2.4) with Θ := IR+× IR. It is easy
to check that for any point (x̄, z̄) ∈ Ξ we have

{x̄} × [−1, 1] ⊂ L (x̄, z̄) =
{
(x, z) ∈ Ξ

∣∣ (x, z) ⪯Θ (x̄, z̄)
}
,

and so Ξ has no minimal point with respect to ⪯Θ. Let us show that condition
(A1′) does not hold here. Indeed, we have a := (−1, 1) ∈ Ξ and b := (−1,−1) ∈ Ξ
satisfying a ⪯Θ b and b ⪯Θ a. Form the deceasing sequence {xk} by x2k := b and
x2k+1 := a and observe that q(xk, xk+1) ≡ 2 for all k ∈ IN .

Let us explore which kind of minimality can be obtained if condition (A1′) is not
satisfied.

Proposition 3.5 (weak form of the minimal point theorem). Let (X, d) be a com-
plete Hausdorff metric space preordered by ⪯. In addition to (A2′), impose the
boundedness condition: there is x0 ∈ X such that the level set L (x0) := {x ∈
X| x ⪯ x0} is bounded, i.e., d(x0, x) ≤ ℓ for all x ∈ L (x0) with some ℓ > 0. Then
there exists x̄ ∈ L (x0) satisfying

d(x0, x̄) = r
(
x0,L (x̄)

)
:= sup

{
d(x0, x)

∣∣ x ∈ L (x̄)
}
.(3.4)

Proof. We proceed similarly to the proof of Theorem 3.1 while using a different
iterative scheme. Observe first that the level-set mapping L (x) = {u ∈ X| u ⪯ x}
enjoys properties (a) and (b) listed in the previous theorem. Construct the sequence
of iterations by

(xk, zk) ⪯ (xk−1, zk−1) with d(x0, xk) ≥ r
(
x0;L (xk−1)

)
− 2−k.(3.5)

Since L (xk) ⊂ L (xk−1) ⊂ L (x0) and L (x0) is bounded by ℓ < ∞, the numerical
sequence {rk} defined by rk := r(x0;L (xk)), k ∈ IN ∪ {0}, is decreasing and thus
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converges to some number r̄. It follows from the inequality in (3.5) that d(x0, xk) →
r̄ as k → ∞. Furthermore, it is easy to check that {xk} is a Cauchy sequence in
X, and so it converges to some x̄ ∈ X with d(x0, x̄) = r̄ due to the completeness
of X. Employing (A2′) tells us that x̄ ⪯ xk and therefore L (x̄) ⊂ L (xk). It yields
r(x0;L (x̄)) ≤ rk for all k ∈ IN . Hence we have r̄ ≤ r(x0;L (x̄)) ≤ r̄, which verifies
(3.4) and completes the proof of the theorem. □

Let us illustrate Proposition 3.5 for the case of Example 3.4. If x0 = (a, b) ∈
Ξ = [−1, 1]× [−1, 1] with b ̸= 0, then x̄ =

(
−1, −b

sign(b)

)
satisfies (3.4) with L (x̄) =

{−1} × [−1, 1]. Otherwise, either x̄ = (−1, 1) or x̄ = (−1,−1) satisfies (3.4) with
the same set L (x̄).

The next result gives an extension from metric spaces to quasimetric spaces the
minimal point theorem obtained by Tammer and Zălinescu [48, Theorem 1]. It is
derived below as a consequence of the main Theorem 3.1.

Corollary 3.6 (minimal point theorem in product spaces with quasimetrics). Let
(X, q) be a complete Hausdorff topological quasimetric space, let Z be a real topo-
logical vector space, and let Θ ⊂ Z be a proper convex cone. Consider a set-valued
quasimetric D : X ×X →→ Θ satisfying the following conditions:

(D1) D(x1, x2) ⊂ Θ for all x1, x2 ∈ X.
(D2) 0 ∈ D(x, x) for all x ∈ X.
(D3) D(x1, x2) +D(x2, x3) ⊂ D(x1, x3) + Θ for all x1, x2, x3 ∈ X.

Associate with this quasimetric a preorder ⪯D on X × Z defined by

(x1, z1) ⪯D (x2, z2) ⇐⇒ z2 ∈ z1 +D(x1, x2) + Θ.

Given ∅ ̸= Ξ ⊂ X × Z, suppose that it satisfies the limiting monotonicity condition
(A2) with respect to⪯D and that there is z∗∈ Θ+:= {z∗∈ Z∗| ⟨z∗, z⟩ ≥ 0 as z ∈ Θ}
such that

η(δ) := inf
{
z∗(z)

∣∣∣ z ∈
∪

q(x,x′)≥δ

D(x, x′)
}
> 0(3.6)

for any δ > 0 and that the boundedness from below condition holds:

inf
{
z∗(z)

∣∣ ∃ x ∈ X with (x, z) ∈ Ξ
}
> −∞.(3.7)

Then for any (x0, z0) ∈ Ξ there exists (x̄, z̄) ∈ Ξ for which (x̄, z̄) ⪯D,z∗ (x0, z0) and
(x̄, z̄) is a minimal point of Ξ with respect to the partial order ⪯D,z∗ defined by

(x1, z1) ⪯D,z∗ (x2, z2) ⇐⇒
{

either (x1, z1) = (x2, z2), or
(x1, z1) ⪯D (x2, z2) and z∗(z1) < z∗(z2).

Proof. It is easy to check that ⪯D is a preorder; see [48] for more details. Applying
Theorem 3.1 in this setting requires checking first that assumption (A1) holds by
taking into account that the other assumptions (A2) and (A3) are imposed in this
corollary.

To check (A1) for the set Ξ with respect to the preorder ⪯D, pick any se-
quence {(xk, zk)} decreasing with respect to ⪯D and show that q(xk, xk+1) → 0
as k → ∞. Following [48] and arguing by contradiction, suppose that the se-
quence {q(xk, xk+1)} does not converge to zero and then find δ > 0 and Nδ such
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that q(xk, xk+1) > ε for k ≥ Nδ. Since (xk+1, zk+1) ⪯D (xk, zk) meaning that
zk+1 ∈ zk +D(xk, xk + 1) + Θ, we get

z∗(zk)− z∗(zk+1) ≥ inf
{
z∗(v)

∣∣ v ∈ D(zk+1, zk)
}
≥ η(δ), k ≥ Nδ.

It follows from η(δ) > 0 by (3.6) that the sequence z∗(zk) tends to −∞ as k → ∞,
which contradicts the boundedness condition (3.7) and thus verifies (A1).

Employing now Theorem 3.1 to the preordered set (Ξ;⪯D) we find a “partial”
minimal point (x̄, z̄) of Ξ with respect to ⪯D. To complete the proof, it remains
to show that (x̄, z̄) is a (full) minimal point of Ξ with respect to ⪯D,z∗ , which is in
fact a partial order; see [48] for the verification of the reflexivity, transitivity, and
antisymmetry properties of the latter ordering relation. Arguing by contradiction,
suppose that (x̄, z̄) is not a minimal point of Ξ with respect to ⪯D,z∗ and then find
(x, z) ∈ Ξ \ {(x̄, z̄)} such that (x, z) ⪯D,z∗ (x̄, z̄), i.e.,

(x, z) ⪯D,z∗ (x̄, z̄) and z∗(z) < z∗(z̄)

⇐⇒ z̄ ∈ z +D(x, x̄) + Θ and z∗(z) < z∗(z̄)

=⇒ z̄ ∈ z +Θ and z∗(z) < z∗(z̄)

⇐⇒ ∃ θ ∈ Θ, z̄ ∈ z + θ and z∗(z) < z∗(z̄)

⇐⇒ ∃ θ ∈ Θ, z∗(z̄) = z∗(z + θ) = z∗(z) + z∗(θ) and z∗(z) < z∗(z̄)

=⇒ z∗(z̄) ⪯ z∗(z) and z∗(z) < z∗(z̄),

where the first implication holds due to D(x, x̄) ⊂ Θ and the convexity of the
cone Θ, and the second one is satisfied by z∗ ∈ Θ+. The obtained contradiction
verifies the minimality of (x̄, z̄) for Ξ with respect to ⪯D,z∗ and thus completes the
proof. □

Another consequence of the obtained minimal point results (now of Corollary 3.3)
is the following preorder principle recently established by Qui [39, Theorem 2.1].

Corollary 3.7 (preorder principle). Let (X,⪯) be a preordered set, and let η : X →
IR := IR∪{∞} be an extended-real-valued function monotone with respect to ⪯, i.e.,

u ⪯ x =⇒ η(u) ≤ η(x) for any x, u ∈ X.

Suppose that the following conditions hold:

(Q1) −∞ < inf
{
η(x)

∣∣ x ∈ X
}
< ∞.

(Q2) For any sequence {xk} ⊂ X decreasing with respect to ⪯, i.e., such that

η(xk)− ηk → 0 as k → ∞ with ηk := inf
{
η(x)

∣∣ x ⪯ xk
}
,

there is x̄ ∈ X satisfying x̄ ⪯ xk for all k ∈ IN .

Then there exists a point x̄ ∈ X minimal for X with respect to the preorder ⪯.

Proof. Condition (Q1) tells us that dom η ̸= ∅, and we may assume without loss of
generality that dom η = X. Define the function q : X ×X → [0,∞) by

q(x, u) := |η(x)− η(u)| for all x, u ∈ X

and check easily that q is a quasimetric on X and that

u ⪯ x =⇒ η(u) ≤ η(x) =⇒ q(x, u) = η(x)− η(u).(3.8)



1522 T. Q. BAO, B. S. MORDUKHOVICH, AND A. SOUBEYRAN

Let us now verify that the imposed condition (Q1) and (Q2) ensure the fulfilment
of all the assumptions (A1′), (A2′), and (A3′) in Corollary 3.3.

To proceed with (A1′), take a sequence {xk} ⊂ X decreasing with respect to ⪯.
It follows from the relations in (3.8) that

q(xk, xk+1) = η(xk)− η(xk+1) for all k ∈ IN.(3.9)

Summing up these equalities from k = 1 to m gives us
m∑
k=1

q(xk, xk+1) = η(x1)− η(xm+1) ≤ η(x1)− ℓ with ℓ := inf
x∈X

η(x).

We get further by passing to the limit as m → ∞ that
∞∑
k=1

q(xk, xk+1) ≤ η(x1)− ℓ.

The boundedness from below of η in (Q1) ensures that this series is convergent, and
thus q(xk, xk+1) → 0 as k → ∞, which justifies (A1′).

It follows directly from the construction in (3.9) that (Q2) implies the limiting
monotonicity condition (A2′) in the quasimetric space (X, q) under consideration.

To verify (A3′), take a sequence {xk} ⊂ X decreasing with respect to ⪯ such
that q(xk, x̄) → 0, q(xk, ū) → 0, and ū ⪯ x̄. It follows from (3.8) that

q(xk, x̄)− q(xk, ū) = η(xk)− η(x̄)−
(
η(xk)− η(ū)

)
= η(ū)− η(x̄) for all k ∈ IN.

Since q(xk, x̄)−q(xk, ū) → 0 as k → ∞, we clearly have x̄ = ū, which justifies (A3′).
To complete the proof, it remains to apply the result of Corollary 3.3 to the

setting under consideration and arrive at the claimed conclusion for (X,⪯). □

4. Set-valued variational principles with variable ordering

The discovery of the new variational principle by Ivar Ekeland [15, 16] (called
now the Ekeland variational principle, abbr. EVP) has been a major achievement
in nonlinear analysis, especially in its variational aspects. Roughly speaking, it
says that every lower semicontinuous function bounded from below on a complete
metric space allows a slight perturbation of the distance type so that the perturbed
function attains its strict global minimum at a point near the reference one. Since
its appearance the EVP has founded numerous applications in analysis and other
areas of mathematics. Over the last four decades many authors developed various
extensions of this important principle and its equivalent formulations; e.g., Caristi’s
fixed point theorem, Takahashi’s existence theorem, minimal point theorems, the
petal and drop theorems, etc. We refer the reader to [8, 12, 17, 23, 19, 36, 40, 46,
47] and the bibliographies therein for more details, discussions, and applications.
Among major extensions of the EVP to vector and set-valued mappings we mention
the following.

• In [21, 22], Ha established new versions of the EVP for set-valued mappings that
ensures the existence of a strict minimizer for a perturbed set-valued optimization
problem, where the concept of optimality is understood in terms of Kuroiwa’s set
optimization criterion [33]. Further extensions of Ha’s results has been recently
obtained by Qiu [38, 39].
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• Bednarczuk and Zagrodny [7] proved an extension of the EVP for vector map-
pings under a certain monotone semicontinuity assumption, which justifies the ex-
istence of the so-called H-near-to-minimal solution (in the sense of Németh [37]) of
a perturbed mapping with the perturbation factor given by a convex subset H of
the ordering cone multiplied by the distance function. This type of perturbation
can also be founded in [20, 48].
• Gutiérrez, Jiménez and Novo [20] introduced a set-valued metric, which takes
values in the family of all subsets of the ordering cone and satisfies the triangle
inequality. By using it, they developed a new approach to extending the scalar EVP
to vector mappings, where the perturbation contains a set-valued metric. Note that
vector-valued metrics and the corresponding extensions of the EVP were earlier
suggested by Khanh [30].
• Göpfer, Tammer and Zălinescu [18] and Tammer and Zălinescu [48] obtained
minimal point theorems in product spaces with applications to vector and set-valued
versions of the EVP, extending in this way the previous results by Isac and Tammer
[27] and Ha [22].
• Bao and Mordukhovich [1, 2] derived enhanced extensions of the EVP to set-
valued mappings under the limiting monotonicity condition with respect to a closed
and convex ordering cone of the image space without any pointedness and solidness
(nonempty interior) assumptions. In the subsequent development, Khanh and Quy
[31] further extended these versions to the case of more general perturbations.
• Quite recently in [5, 6], Bao, Mordukhovich and Soubeyran developed varia-
tional principles of the Ekeland type for multiobjective problems with variable or-
dering structures, where each vector in the image space has its own ordering cone.
Soleimani and Tammer [42] obtained, based on a scalarization technique, another
vectorial version of the EVP for problems with solid variable ordering cones de-
pending on points in the domain space.

In this section, we formulate and verify new (pre-less and post-less) versions of
the Ekeland variational principle for set-valued mappings from quasimetric spaces to
(real topological) vector spaces equipped with some variable ordering structure. Our
proof involves the development of the dynamical approximation technique suggested
in [1, 2] for problems with no variable structures and the application of the minimal
point results of Section 3 whose derivation is also largely based on this technique.
Note that this approach can be considered as a vector/set-valued counterpart (in
the domain space) of the inductive procedure to prove the classical EVP suggested
by Michael Crandall; see [17] and also [36, Theorem 2.26] with the commentaries
therein. It is significantly different from the original transfinite induction arguments
used by Ekeland [15, 16] and their vectorial modifications as well as from other
techniques (e.g., scalarization, which requires nonempty interiority assumptions)
developed by many authors to derive multiobjective versions of the EVP. We refer
the reader to the survey in [20] and more recent publications [7, 31, 34, 38, 42, 48]
with the bibliographies therein. Employing our technique, we are able to cover the
vast majority of known results in this direction obtained by other methods.

In what follows we consider a general set-valued mapping F : X →→ Z from a
quasimetric space X into a (real topological) vector space Z equipped with some
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variable ordering structure K : Z →→ Z. As discussed in Section 2, there are two
distinct preorders induced by K: the post-less and pre-less preorders with respect
to K denoted by ⪯post

K[·] and ⪯pre
K[·], respectively. If no confusion arises, for simplicity

we use the notation ⪯K[·] for both preorders while emphasizing those results, which
are specific for one or another structure.

Denote the domain and graph of F by, respectively,

domF :=
{
x ∈ X

∣∣ F (x) ̸= ∅
}

and gphF :=
{
(x, z) ∈ X × Z

∣∣ z ∈ F (x)
}

and define some relevant notions regarding the variable ordering structure K, which
are broadly used in set-valued analysis and vector optimization for problems with
constant ordering structures; cf. [1, 2, 28, 35, 36]. We say that:

• F is (left-sequentially) level-closed if its z-level sets

Lev (z;F ) :=
{
x ∈ domF

∣∣ ∃ v ∈ F (x) with v ⪯K[·] z
}

are (left-sequentially) closed in X for all z ∈ Z. Correspondingly, a set Ξ ⊂ Z is
level-closed if the function IΞ(z) ≡ z on Ξ has this property.

• F is level-decreasingly-closed on domF with respect to ⪯K[·] if for any sequence
{(xk, zk)} ⊂ gphF such that xk → x̄ ∈ X as k → ∞ and {zk} is a sequence
decreasing with respect to ⪯K[·], there is z̄ ∈ Min

(
F (x̄);⪯K[·]

)
satisfying z̄ ⪯K[·] zk

for all k ∈ IN .
• F is quasibounded from below with respect to Θ if there is a bounded subset

M ⊂ Z such that F (X) ⊂ M +Θ, where F (X) := ∪x∈X F (x). Correspondingly, a
set Ξ ⊂ Z is quasibounded from below if the constant mapping F (x) ≡ Ξ has this
property.

• F has the domination property at x̄ ∈ domF if for every vector z ∈ F (x̄) there
is v ∈ Min

(
F (x̄);⪯K[·]

)
such that v ⪯K[·] z. Correspondingly, a set Ξ ⊂ Z has the

domination property if it holds for constant mapping F (x) ≡ Ξ.

Remark 4.1 (on properties of sets and mappings). Observe the following:
(i) When F (x) ≡ Ξ for some Ξ ⊂ Z, the level-decreasing-closedness of F says

that every decreasing sequence in Ξ has a lower bound in Min
(
Ξ;⪯K[·]

)
. This is

more restrictive than the domination property of Ξ. Indeed, the union Ξ := (AB)∪
(BC) ∪ (CA) involving the three intervals without the ending points A := (1, 1),
B := (1, 0), C := (0, 1) and ordered by the usual Pareto partial order ⪯IR2

+
has the

domination property while not the decreasing lower-bound one since the decreasing
sequence {(k−1, 1)} ⊂ Ξ converges to (0, 1) /∈ Ξ.

(ii) Let F = f : X → Z single-valued. It is clear that the level-closedness of f
implies the level-deceasing-closedness. However, the converse implication does not
hold in general. Indeed, define the vector function f : IR → IR2 by

f(x) :=

{
(x,−x) if x < 0,
(x,−x+ 2) if x ≥ 0,

and consider a constant Pareto ordering structure K[z] ≡ IR2
+. It is easy to check

that f is level-decreasingly-closed since for any deceasing sequence {f(zk)} with re-
spect to ⪯IR2

+
we have f(x2) = f(x3) = . . . = f(xk−1) = f(xk) = . . .. Nevertheless,

f is not level-closed since the (1, 1)-level set of f is [−1, 0) ∪ {1}.
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(iii) When K[z] ≡ Θ for some convex cone Θ ⊂ Z, the level-decreasing-closedness
of F : X →→ Z reduces to the limiting monotonicity property of F from [2] and the
sequential submonotonicity property from [37] in the case of single-valued mappings.

Now we are ready to derive new versions of the EVP for problems with variable
preference structures. Consider first the post-less setting.

Theorem 4.2 (set-valued Ekeland variational principle with variable post-less pre-
orders). Let F : X →→ Z be a set-valued mapping between a complete Hausdorff
quasimetric space (X, q) and a vector space Z, let K : Z →→ Z be a variable or-

dering structure on Z with the post-less preorder ⪯K[·]=⪯post
K[·] defined by (2.6), let

∅ ̸= Θ ⊂ Z be a nontrivial (i.e., Θ ̸= Z) convex cone, and let ξ ∈ Z. Assume that:

(H1) For every z ∈ Z we have that 0 ∈ K[z], the cone K[z] is closed in Z, and

K[z] + cone (ξ) ⊂ K[z].

(H2) The ordering structure K satisfies the postmonotonicity condition: for all
z, v ∈ Z we have the implication

v ⪯K[z] z =⇒ K[v] +K[z] ⊂ K[z].

(H3) F is quasibounded from below with respect to Θ.
(H4) F satisfies the level-deceasing-closedness condition on domF with respect to

the post-less preorder ⪯K[·].

(H5) ξ ̸∈ cl
(
−Θ− cone (K[z0])

)
.

Then for every γ > 0 and every (x0, z0) ∈ gphF there is a pair (x̄, z̄) ∈ gphF with
z̄ ∈ Min

(
F (x̄);K [z̄]

)
satisfying the conditions

z̄ + γq(x0, x̄)ξ ⪯K[z0] z0,(4.1)

z + γq(x̄, x)ξ ̸⪯K[z̄] z̄ for all (x, z) ∈ gphF \ {(x̄, z̄)}.(4.2)

If furthermore, given arbitrary numbers ε > 0 and λ > 0, the starting point (x0, z0)
is an εξ–approximate minimizer of F with respect to K[z0], i.e.,(

F (x) + εξ
)
∩
(
z0 −K[z0]

)
= ∅ for all x ∈ domF,(4.3)

then x̄ can be chosen so that in addition to (4.1) and (4.2) with γ = ε/λ we have

q(x0, x̄) ≤ λ.(4.4)

Proof. Without loss of generality, assume that γ = 1, observing that the general
case can be easily reduced to the special one by applying the latter to the equivalent
quasimetric q̃(x, x′) := γ q(x, x′). Define now a binary/ordering relation ⪯ on
gphF ⊂ X × Z by

(x′, z′) ⪯ (x, z) ⇐⇒ z′ + q(x, x′)ξ ⪯K[z] z.

Using this together with (H1) allows us to conclude that

z′ + q(x, x′)ξ ∈ z −K[z] =⇒ z′ ∈ z −K[z] ⇐⇒ z′ ⪯K[z] z.
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Let us check that ⪯ is a preorder. Indeed, the reflexivity property follows from
z + q(x, x)ξ = z ⪯[z] z. To verify the transitivity property, pick any (x, z), (x′, z′),
and (x′′, z′′) in gphX × Z so that (x′′, z′′) ⪯ (x′, z′) and (x′, z′) ⪯ (x, z), i.e.,

z′′ + q(x′, x′′)ξ ⪯K[z′] z
′ and z′ + q(x, x′)ξ ⪯K[z] z.

Then we get, by taking into account the triangle inequality for the quasimetric and
using the condition K [z] +K [z′] + cone (ξ) ⊂ K [z] by (H2), that

z′′ + q(x, x′′)ξ =
(
z′ + q(x, x′)ξ

)
+

(
z′′ + q(x′, x′′)ξ

)
+

(
q(x, x′′)− q(x, x′)− q(x′, x′′)

)
ξ − z′

∈
(
z −K [z]

)
+

(
z′ −K

[
z′
] )

− cone (ξ)− z′ ⊂ z

−
(
K [z] +K

[
z′
]
+ cone (ξ)

)
⊂ z −K [z] ,

which implies that z′′ + q(x, x′′)ξ ≤K[z] z, i.e., (x
′′, z′′) ⪯ (x, z) and thus ⪯ is a

preorder.
Consider next the (x0, z0)-level set of gphF with respect to ⪯ given by

Ξ := Lev ((x0, z0);⪯) =
{
(x, z) ∈ gphF

∣∣ (x, z) ⪯ (x0, z0)
}

and verify the validity for (Ξ,⪯) assumptions (A1) and (A2) of Theorem 3.1 in our
setting, remembering that assumption (A3) holds automatically.

(A1) To justify the convergence monotonicity condition, take an arbitrary se-
quence {(xk, zk)} in Ξ decreasing with respect to ⪯, i.e.,

(xk, zk) ⪯ (xk−1, zk−1) ⇐⇒ zk + q(xk−1, xk)ξ ⪯K[zk−1] zk−1, k ∈ IN,(4.5)

and show that q(xk, xk+1) → 0 as k → ∞. By (H2) we get from zk ⪯K[zk−1] zk−1

that K [zk] +K [zk−1] ⊂ K [zk−1] for all k ∈ IN , and thus

m∑
k=0

K [zk] ⊂ K [z0] for all m ∈ IN ∪ {0}.(4.6)

Summing up the inequality in (4.5) from k = 0 to m gives us that

tmξ ∈ z0 − zm+1 −K [z0] ⊂ z0 −M −Θ−K [z0] , m ∈ IN ∪ {0},(4.7)

where tm :=
∑m

k=0 q(xk, xk+1), and where M ⊂ Z is the bounded set in the defini-
tion of the quasiboundedness from below assumed in (H3).

Let us next prove by passing to the limit in (4.7) as m → ∞ that

∞∑
k=0

q(xk, xk+1) < ∞.(4.8)

Arguing by contradiction, suppose that (4.8) does not hold, i.e., tm ↑ ∞ as m → ∞.
By the inclusion in (4.7) and the boundedness of the set M therein, we find a
bounded sequence {wm} ⊂ z1 −M satisfying the condition

(4.9) tmξ − wm ∈ −Θ−K [z1] , i.e., ξ − wm/tm ∈ −Θ−K [z1] , m ∈ IN ∪ {0}.
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Passing now to the limit as m → ∞ and taking into account the boundedness of
{wm} and that tm ↑ ∞, we arrive at ξ ∈ cl

(
− Θ − K[z0]

)
, which contradicts the

choice of ξ in (H5). Thus (4.8) holds, and we get q(xk, xk+1) → 0 as k → ∞.

(A2) To verify the limiting monotonicity condition on Ξ, take an arbitrary se-
quence (xk, zk) ⊂ Ξ decreasing with respect to ⪯ so that xk → x̄ ∈ Ξ and

(xk, zk) ⪯ (xk−1, zk−1) =⇒ zk ≤K[zk−1] zk−1, k ∈ IN.

By the level-decreasing-closedness assumption (H4), there exists z̄∈Min
(
F (x̄);⪯post

K[·]
)

= Min
(
F (x̄);K[z̄]

)
satisfying

z̄ ⪯K[zk] zk ⇐⇒ z̄ ∈ zk −K[zk], k ∈ IN.

Invoking now conditions (H1) and (H2) gives us K[zk+n]+K[zk]+cone (ξ) ⊂ K[zk]
for all n, k ∈ IN . It is easy to check that

z̄ + q(xk, x̄)ξ ∈ zk+n −K[zk+n] + q(xk, x̄)ξ

= zk+n + q(xk, xk+n)ξ −K[zk+n] +
(
q(xk, x̄)− q(xk, xk+n)

)
ξ

⊂ zk −K[zk]−K[zk+n] + q(xk+n, x̄)ξ − cone (ξ)

⊂ zk + q(xk+n, x̄)ξ −K[zk].

Passing there to the limit as n → ∞ with taking into account the closedness of
K[zk] and the convergence q(xk+n, x̄) → 0 as n → ∞, we arrive at the equivalence

z̄ + q(xk, x̄)ξ ∈ zk −K[zk] ⇐⇒ z̄ + q(xk, x̄)ξ ≤K[zk] zk ⇐⇒ (x̄, z̄) ⪯ (xk, zk).

Since k ∈ IN was chosen arbitrarily and since z̄ ∈ Min
(
F (x̄);K[z̄]

)
, it follows that

(x̄, z) ⪯ (x̄, z̄) ⇐⇒ z = z + q(x̄, x̄)ξ ⪯K[z̄] z̄ ⇐⇒ z = z̄,

which justifies the validity of assumption (A2) in Theorem 3.1.

After checking the assumptions, we can apply the first conclusion of Theorem 3.1
to the preordered set (Ξ,⪯). This gives us (x̄, z̄) ∈ gphF such that (x̄, z̄) ⪯ (x0, z0)
and (x̄, z̄) ∈ Min (Ξ;⪯), which clearly yields (4.1) and (4.2). It remains to estimate
the quasidistance q(x0, x̄) by (4.4) when (x0, z0) is chosen as an approximate εξ-
minimizer of F with γ = (ε/λ). Arguing by contradiction, suppose that q(x0, x̄) > λ.
Since (x̄, z̄) is “better” than (x0, z0) and since K [z0] + cone (ξ) ⊂ K [z0], we get

z̄ ∈ z0 − ϵξ −K [z0] ⊂ z0 − (ϵ/λ)q(x0, x̄)ξ −K [z0] ,

which contradicts the choice of (x0, z0) and completes the proof of the theorem. □

When the variable ordering structure K : Z →→ Z is cone-valued, conditions (H1)
and (H2) reduce, respectively, to:

(K1) ξ ∈ ΘK := ∩z∈ZK[z] and K[z] is a proper, closed, and convex subcone of
Z.
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(K2) The ordering structure K enjoys the following postmonotonicity condition:
if v ⪯K[z] z, then K[v] ⊂ F [z].

In this case the obtained Theorem 4.2 agrees with our previous result in [6, Theo-
rem 3.1].

Next we deduce several corollaries of Theorem 4.2. The first one is [2, Theo-
rem 3.4] when K[x] ≡ Θ for some closed convex cone Θ. Note that we do not
require anymore that the spaces in question are Banach and the mapping F is
level-closed with respect to ⪯Θ.

Corollary 4.3 (enhanced version of EVP for set-valued mappings with constant
preferences). Let F : (X, q) →→ Z be a set-valued mapping from a complete and
Hausdorff topological quasimetric space to a vector space equipped with a preorder
⪯Θ induced by a proper, closed, and convex cone Θ ⊂ Z. Assume that F is quasi-
bounded from below with respect to Θ and level-decreasingly-closed on domF with
respect to ⪯Θ. Then for any γ > 0, ξ ∈ Θ \ (−Θ), and (x0, z0) ∈ gphF there is
(x̄, z̄) ∈ gphF satisfying

z̄ + γq(x0, x̄)ξ ⪯Θ z0, z̄ ∈ Min
(
F (x̄);⪯Θ

)
,(4.10)

(4.11) z + γ q(x̄, x)ξ ̸⪯Θ z̄ for all (x, z) ∈ gphF \ {(x̄, z̄)}.

If furthermore, given arbitrary numbers ε > 0 and λ > 0, the starting point (x0, z0)
is an εξ-approximate minimizer of F with respect to Θ, i.e.,(

F (x) + εξ
)
∩
(
z0 −Θ

)
= ∅ for all x ∈ domF,

then x̄ can be chosen so that in addition to (4.10) and (4.11) with γ = ε/λ we have
(4.4).

Proof. It is straightforward from Theorem 4.2. □

The next corollary is a specification of Theorem 4.2 for the case when the map-
ping F has a particular structure studied in [5, Theorem 3.4] with applications in
behavioral sciences. Let (X, q) be a quasimetric, let Ω ⊂ Y be a compact subset
Ω ⊂ Y of a Banach space, and let Z be a vector space equipped with a variable or-
dering structure K : Z →→ Z and the post-less preorder ⪯post

K[·] . Given a single-valued

mapping f : X × Y → Z and a set-valued mapping Ω : X →→ Ω, define F : X →→ Z
by

F (x) := f
(
x,Ω(x)

)
=

∪{
f(x, ω) ∈ Z

∣∣∣ ω ∈ Ω(ω)
}
.(4.12)

Corollary 4.4 (specification of EVP for mappings of type (4.12))). In the setting
described above, suppose the validity of conditions (K1) and (K2) with the common
cone ΘK defined therein. Impose in addition the following assumptions:

(B1) f is quasibounded from below on gphΩ with respect Θ.
(B2) f is level-decreasingly-closed with respect to ⪯K[·] on gphΩ; this condition is

automatic provided that f is level-closed with respect to the same preorder.
(B3) f(x, ·) is continuous for each x ∈ domΩ.
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Then for any γ > 0, (x0, ω0) ∈ gphΩ, ξ ∈ ΘK \−cl (Θ+K[f0]), and f0 := f(x0, ω0)
there is a pair (x̄, ω̄) ∈ gphΩ with f̄ := f(x̄, ω̄) ∈ Min

(
F (x̄);K

[
f̄
] )

satisfying the
relationships

f̄ + λ q(x0, x̄)ξ ≤K[f0] f0, and(4.13)

(4.14) f + λ q(x̄, x)ξ ̸⪯K[f̄] f̄ for all (x, ω) ∈ gphΩ with f := f(x, ω) ̸= f̄ .

If furthermore, given arbitrary numbers ε > 0 and λ > 0, the starting point (x0, ω0)
is an εξ-approximate minimizer of f over gphΩ with respect to K [f0], then (x̄, ω̄)
can be chosen so that (4.4) holds together with (4.13) and (4.14) as γ = ε/λ .

Proof. It is easy to see that the conclusions of this corollary are induced by those in
Theorem 4.2 for mappings F in form (4.12). Thus it remains to check that all the
assumptions of Theorem 4.2 hold in the setting of the corollary. In fact, we only
need to verify the validity of conditions (H3) and (H4) for F given in (4.12).

The quasiboundedness from below in (H3) for (4.12) obviously follows from (B1).
To check the validity of the level-decreasing-closedness condition (H4), take an
arbitrary sequence {(xk, fk)} ⊂ gphF with fk := f(xk, ωk) ∈ F (xk) for some
ωk ∈ Ω(xk) satisfying xk → x̄ as k → ∞ and fk+1 ⪯K[fk] fk for all k ∈ IN . We need

to justify the existence of ω̄ ∈ Ω(x̄) such that f̄ = f(x̄, ω̄) ∈ Min
(
F (x̄),K

[
f̄
] )

and

f̄ ⪯K[fk] fk, k ∈ IN . Since the set Ω is compact, the sequence {ωk} ⊂ Ω has a

subsequence converging to ω̄ ∈ Ω. Then the level-decreasing-closedness of f over
gphΩ in (B2) ensures that f(x̄, ω) ⪯K[fk] fk.

Denoting fω̄ := f(x̄, ω̄) and forming the fω̄-level set of f(x̄, ·) over Ω(x̄) by

Ξ :=
{
ω ∈ Ω(x̄)

∣∣ fω := f(x̄, ω) ⪯K[fω̄ ] f(x̄, ω̄) =: fω̄
}
,(4.15)

we get from the continuity of f(x̄, ·) that Ξ is compact with ω̄ ∈ Ξ. Employ now
the result by Luc [35, Corollary 3.8(c)], which ensures in our setting the existence
of ω̄ ∈ Ξ such that

f̄ = f(x̄, ω̄) ∈ Min
(
f(x̄,Ξ),K [fω̄]) with f(x̄,Ξ) :=

∪
ω∈Ξ

{fω := f(x̄, ω) ∈ Z} .

This means by the definition of minimality that(
f̄ −K [fω̄]

)
∩ f(x̄,Ξ) =

{
f̄
}
.

Since f̄ ⪯K[fω̄ ] fω̄, we have K
[
f̄
]
⊂ K [fω̄] by condition (B2). Thus we get

(f̄ −K
[
f̄
]
) ∩ f(x̄,Ξ) =

{
f̄
}
, i.e., f̄ ∈ Min (f(x∗,Ξ),K

[
f̄
]
).

Actually the following stronger conclusion holds:

f̄ ∈ Min (F (x̄),K
[
f̄
]
) with F (x̄) = f

(
x̄,Ω(x̄)

)
⊃ f(x̄,Ξ).(4.16)

To verify this, we argue by contradiction and suppose that (4.16) does not hold.
It gives us ω ∈ Ω(x̄) \ Ξ such that fω ⪯K[f̄] f̄ . Since ω̄ ∈ Ξ, we get f̄ ⪯K[fω̄ ] fω̄.

The transitivity property of the preorder ⪯K[·] yields fω ⪯K[fω̄ ] fω̄, and thus ω ∈ Ξ
contradicting the choice of ω ∈ Ω(x̄) \ Ξ and hence justifying (4.16).
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By f̄ ⪯K[fω̄ ] fω̄ and fω̄ ⪯K[fk] fk we deduce from the preorder transitivity that

f̄ ⪯K[fk] fk for all k ∈ IN . Thus the mapping F from (4.12) satisfies condition (H4)
of Theorem 4.2, which completes the proof of the corollary. □

The last result of this section presents a pre-less version of the EVP for problems
with variable preferences, which is derived from Theorem 3.1 similarly to the post-
less case above.

Theorem 4.5 (set-valued Ekeland variational principle with variable pre-less pre-
orders). Consider the framework of Theorem 4.2 with replacing the post-less preorder
by its pre-less counterpart ⪯K[·]=⪯pre

K[·] defined in (2.7) and replacing assumptions

(H2), (H4), and (H5) by, respectively, the following ones:

(H2′) The ordering structure K enjoys the premonotonicity condition: if v ⪯K[v] z,
then K [z] +K [v] ⊂ K [v].

(H4′) F satisfies the level-decreasing-closedness condition on domF with respect to
the pre-less preorder ⪯K[·] formulated as follows: for any decreasing sequence
of pairs {(xk, zk)} ⊂ gphF with xk → x̄ as k → ∞ and zk+1 ⪯K[zk+1] zk for

all k ∈ IN there is z̄ ∈ Min
(
F (x̄);K[z̄]

)
such that z̄ ⪯K[z̄] zk, k ∈ IN .

(H5′) ξ ̸∈ cl (−Θ− cone (ΘK)) with ΘK := ∪z∈ZK[z].

Then for any number γ > 0 and any starting point (x0, z0) ∈ gphF there is a pair
(x̄, z̄) ∈ gphF with z̄ ∈ Min

(
F (x̄);K [z̄]

)
satisfying the relationships

z̄ ⪯K[z̄] z0 − γ q(x0, x̄)ξ ⇐⇒ z0 − γq(x0, x̄)ξ ∈ z̄ +K[z̄].(4.17)

z ̸⪯K[z] z̄ − γq(x̄, x)ξ for all (x, z) ∈ gphF \ {(x̄, z̄)}.(4.18)

If furthermore, given arbitrary numbers ε, λ > 0 the starting pair (x0, z0) is an
εξ–approximate minimizer of F with respect to K[z̄] (in particular, with respect to
ΘK), i.e., (

F (x) + εξ
)
∩
(
z0 −K[z̄]

)
= ∅ for all z ∈ domF,

then x̄ can be chosen so that in addition to (4.17) and (4.18) with γ = ε/λ we have
(4.4).

Proof. We proceed in the proof lines of Theorem 4.2 while skipping some details.
Let us highlight below the major differences.

Define the ordering relation ⪯pre on gphF ⊂ X × Z by

(u, v) ⪯pre (x, z) ⇐⇒ v ⪯K[v] z − q(x, u)ξ(4.19)

and denote Ξ := Lev ((x0, z0);⪯pre) = {(x, z) ∈ gphF | (x, z) ⪯pre (x0, z0)}. It is
easy to check that ⪯pre is a preorder on gphF under assumptions (H1) and (H2′).
To justify the boundedness condition (A1) in Theorem 3.1, we replace (4.7) by

q(x0, xk)ξ ∈ z0 − zk −K [zk] ⊂ z0 −M −Θ− cone (ΘK),

which leads by the similar proof to a contradiction with (H5′). The fulfilment
of condition (A2) in Theorem 3.1 is guaranteed by the level-decreasing-closedness
condition (H4′). The rest of the proof is the same as given in Theorem 4.2. □

Observe finally that Theorem 4.5 reduces to Corollary 4.3 (cf. also [2, Theo-
rem 3.4]) provided that K is a constant ordering structure.
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5. Variational principles with set-valued quasidistances

The main result of this section provides a new extension of the EVP concerning
set-valued cost mappings with set-valued quasidistance perturbations. We derive
this result by employing the minimal point theorem for preordered sets in product
spaces established above in Corollary 3.3. Similarly to the previous variational
principles given in this direction [20, 48, 38, 39], it is possible to deduce from the
obtained result various new consequences in both cases of one-direction and multi-
direction perturbations. However, we skip such consequences due to the size of the
paper.

Recall first the definition of a set-valued Θ-quasimetric with respect to a convex
subcone Θ ⊂ Z of a (real topological) vector space that was introduced in [20,
Definition 3.1].

Definition 5.1 (set-valued Θ-quasimetrics). Let X be a nonempty set, and let Θ
be a convex subcone of a vector space Z. A mapping D : X ×X →→ Θ is said to be
a set-valued Θ-quasimetric if it satisfies conditions (D1)–(D3) of Corollary 3.6.

If in addition to (D1)–(D3) the mapping D satisfies the symmetry property, i.e.,
D(x1, x2) = D(x2, x1) for all x1, x2 ∈ X, then D is called a set-valued Θ-metric.
Note also that in all the previous publications in this direction a stronger version
of condition (D2) was imposed:

0 ∈ D(x1, x2) =⇒ x1 = x2 for all x1, x2 ∈ X.

It is important to emphasize that the usage set-valued quasidistances allows us to
unify two kinds of perturbations known in various extensions of the EVP. Precisely,
given a quasimetric space (X, q), one-directional and multi-directional perturbations
are understood, respectively, in the following sense:

D1(x1, x2) = q(x1, x2)ξ, D1(z1, z2) = q(x1, x2)H =
{
q(x1, x2)h

∣∣ h ∈ H
}
,

where ξ ∈ Θ is some positive direction in Z while H ⊂ Θ is a convex subset of
Z with 0 ̸∈ clH. For brevity we skip further discussions on such perturbations
referring the reader to the recent papers [38, 48]. Here is our main result involving
set-valued perturbations.

Theorem 5.2 (variational principle with Θ-quasidistance perturbations). Let (X, q)
be a complete Hausdorff topological quasimetric space, Z be a vector space, Θ be a
closed and convex cone of Z, D : X × X →→ Θ be a Θ-quasimetric from Defini-
tion 5.1, and F : X ×X →→ Z be another set-valued mapping satisfying conditions
(D2) and (D3) formulated above and the following assumptions:

(F1) Boundedness condition: Given any vector x ∈ X, the mapping F (x, ·)
is quasibounded from below with respect to Θ.

(F2) Limiting monotonicity condition: For any decreasing sequence {xk} ⊂
X, in the sense that (F (xk, xk+1)+γD(xk, xk+1))∩(−Θ) ̸= ∅ for all k ∈ IN ,
there is some x̄ ∈ X such that (F (xk, x̄) + γD(xk, x̄)) ∩ (−Θ) ̸= ∅.
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(F3) Convergence comparison condition: Given any decreasing sequence
{xk} ⊂ X in the sense of (F2), the upper boundedness of the series

(5.1)

∞∑
k=1

D(xk, xk+1) ⊂ M −Θ

with some bounded set M ⊂ Z ensures that q(xk, xk+1) → 0 as k → ∞.

Then for every γ > 0 and every x0 ∈ X we find x̄ ∈ X satisfying the relationships[
F (x0, x̄) + γD(x0, x̄)

]
∩ (−Θ) ̸= ∅,(5.2)[(

F (x̄, x) + γD(x̄, x)
)
∩ (−Θ) ̸= ∅

]
=⇒

[
x = x̄ for all x ∈ X \ {x̄}

]
.(5.3)

Proof. Suppose without loss of generality that γ = 1 and define ⪯F,D by

x1 ⪯D x2 if and only if
[
F (x1, x2) +D(x1, x2)

]
∩ (−Θ) ̸= ∅.(5.4)

Let us show that the ordering relation (5.4) is a preorder on X.
To verify the ordering reflexivity of ⪯F,D, fix x ∈ X and sum up the two imposed

conditions 0 ∈ F (x, x) and D(x, x) = {0}. This gives us 0 ∈ F (x, x) +D(x, x) and
so 0 ∈ [F (x, x) +D(x, x)] ∩ (−Θ), which justifies x ⪯F,D x and thus the reflexivity
of ⪯F,D.

To check the ordering transitivity of ⪯F,D, pick any vectors x1, x2, x3 ∈ X satis-
fying x1 ⪯F,D x2 and x2 ⪯F,D x3, i.e., so that[
F (x1, x2) + γD(x1, x2)

]
∩ (−Θ) ̸= ∅ and

[
F (x2, x3) + γD(x2, x3)

]
∩ (−Θ) ̸= ∅.

This allows us to find directions θ1, θ2 ∈ Θ for which

−θ1 − θ2 ∈ F (x1, x2) + F (x2, x3) + γ
(
D(x1, x2) +D(x2, x3)

)
.

Taking into account the triangle inclusion for the quasimetric D and the assumption
(D3) on F , we get θ3, θ4 ∈ Θ such that

F (x1, x2)+F (x2, x3)− θ3 ⊂ F (x1, x3) and D(x1, x2)+D(x2, x3)− θ4 ⊂ D(x1, x3).

Substituting these inclusions into the previous ones yields

−(θ1 + θ2 + θ3 + θ4) ∈ F (x1, x3) + γD(x1, x3).

Since Θ is a convex cone, it follows that (θ1 + θ2 + θ3 + θ4) ∈ Θ and hence

−(θ1 + θ2 + θ3 + θ4) ∈
[
F (x1, x3) + γD(x1, x3)

]
∩ (−Θ) ̸= ∅,

which shows that x1 ⪯F,D and thus justifies the transitivity of the relation ⪯F,D.
Next we check the validity of all the assumption (A1′), (A2′), and (A3′) of the

minimal point result of Corollary 3.3 for the x0-level set Ξ := {x ∈ X| x ⪯F,D x0}
and the preorder ⪯D. There is nothing to check for (A3′) by the Hausdorff property
of X, while (A2′) is equivalent to (F2) due to the completeness of X. It remains
to verify the limiting monotonicity condition (A1′). To proceed, pick an arbitrary
decreasing sequence {xk} with respect to ⪯F,D and by (5.4) find {θk} ⊂ Θ such
that

−θk ∈ F (xk, xk+1) +D(xk, xk+1) for all k ∈ IN.
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Summing up these inclusions from k = 1 to m and using the transitive of F yield

−θm ∈ F (x1, xm+1) +

m∑
k=1

D(xk, xk+1) with θm :=

m∑
k=1

θk ∈ Θ.(5.5)

Sincem was chosen arbitrarily, it follows from (F1) and the convexity of Θ that there
is a bounded setM so that (5.1) holds. This tells us by (F3) that

∑∞
k=1 q(xk, xk+1) <

∞ and hence q(xk, xk+1) → 0 as k → ∞, which justifies (A1′) for the preorder
(Ξ,⪯FD).

Now we apply the assertions of Corollary 3.3 to (X,⪯F,D) and, given any point
x0 ∈ X, find x̄ ∈ X so that x̄ ⪯F,D x0 and that x̄ is a minimal point of Ξ with
respect to ⪯F,D. This is equivalent to (5.2) and (5.2), respectively, and completes
the proof of the theorem. □

Note that if F : X × X →→ Z is separable, i.e., F (x1, x2) = G(x2) − G(x1) for
some G : X →→ Z, then F satisfies both conditions (D2) and (D3) imposed above.

The concluding result of this section provides effective sufficient conditions for
the validity of the major convergence comparison condition (F3) of Theorem 5.2.

Theorem 5.3 (sufficient conditions for convergence comparison in the variational
principle with quasimetric perturbations). Each of the following conditions ensures
the validity of (F3) in the setting of Theorem 5.2:

(a) Dξ(x1, x2) = q(x1, x2)ξ for some direction ξ ∈ Θ \ (−Θ).
(b) DH(x1, x2) = q(x1, x2)H for some convex set H ⊂ Θ with 0 ̸∈ cl (H +Θ).
(c) There exist z∗ ∈ Θ+ and η : IR+ → IR+ such that

inf
{
z∗(z)

∣∣∣ z ∈
∪

q(x1,x2)≥δ

D(x1, x2)
}
≥ η(δ) > 0 for all δ > 0.(5.6)

(d) Z is a normed space and the cone Θ satisfies the relationships

∥θ1 + θ2∥ ≥ (1 + γ)max
{
∥θ1∥, ∥θ2

}
for some γ > 0.(5.7)

inf
{
∥v∥

∣∣ v ∈ D(x1, x2)
}
≥ λq(x1, x2) for all x1, x2 ∈ X.(5.8)

Proof. We proceed case by case in verifying condition (F3).

(a) Arguing by contradiction, assume that (F3) does not hold and then find a
sequence {xk} ⊂ X and a bounded set M ⊂ Z such that

∞∑
k=1

Dξ(xk, xk+1) ⊂ M −Θ and q(xk, xk+1) ≥ δ > 0 for all k ∈ IN.(5.9)

By the definition of Dξ we get the equality

∞∑
k=1

Dξ(xk, xk+1) =
( ∞∑

k=1

q(xk, xk+1)
)
ξ,
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which ensures by (5.9) due to the boundedness of M and the conic structure of Θ
that ξ ∈ cl (−Θ) = −Θ. This contradicts the choice of ξ and thus verifies (F3) in
this case.

(b) Arguing by contradiction as in case (a), suppose that (5.9) holds for DH and
then find, by the structure of DH , a sequence {hk} ⊂ H and a bounded sequence
{vk} ⊂ M such that

vk ∈
m∑
k=1

q(xk, xk+1)hk +Θ for all m ∈ IN.

Condition (5.9) allows us to form

hm :=

m∑
k=1

q(xk, xk+1)

tm
hk with tm :=

m∑
k=1

q(xk, xk+1) > 0

and conclude by the convexity of H that
vk
tm

∈ hm +Θ ⊂ H +Θ for all m ∈ IN.

Passing to the limit as m → ∞ while taking into account (5.9) and the boundedness
of {vm}, we deduce that 0 ∈ cl (H + Θ), which contradicts the choice of H and
justifies (F3).

(c) Suppose by contradiction that there are {xk} ⊂ X and M ⊂ Z such that (5.9)
holds for the quasimetric D. Using (5.6) for any dk ∈ D(xk, xk+1) and k ∈ IN gives
us

z∗(dk) ≥ inf
{
z∗(v)

∣∣ v ∈ F (xk, xk+1)
}

≥ inf
{
z∗(z)

∣∣∣ z ∈
∪

q(x1,x2)≥δ

D(x1, x2)
}

≥ η(δ) > 0.

Fixing now a sequence {dk}, we get z∗(
∑∞

k=1 dk) = ∞ and

z∗
( ∞∑

k=1

dk

)
≤ sup

{
z∗(v − θ) = z∗(v)− z∗(θ)

∣∣ v ∈ M, θ ∈ Θ
}

≤ sup
{
z∗(v)

∣∣ v ∈ M
}
< ∞,

where the first estimate holds due to
∑∞

k=1 dk ⊂ M − Θ in (5.9), the second one
holds due to z∗ ∈ Θ+, and the last is valid since M is bounded in Z. The obtained
contradiction justifies that q(xk, xk+1) → 0 as k → ∞ in this case.

(d) As in case (c), suppose that there are {xk}, {dk}, M , and δ > 0 satisfying
(5.9). It follows from (5.8) that ∥dk∥ ≥ λq(xk, xk+1) ≥ λδ, k ∈ IN . We claim that
the statement

∥sn∥ ≥ λδ(1 + γ)n with sn :=
n∑

k=0

dk(5.10)

holds for all n ∈ IN when (5.7) is fulfilled. Indeed, we have it for n = 1 since

∥s1∥ = ∥d0 + d1∥ ≥ (1 + γ)max
{
∥d0∥, ∥d1∥

}
≥ (1 + γ)max

{
λδ, λδ

}
≥ λδ(1 + γ).
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Assume now that (5.10) holds for n = k and derive from it the relationships

∥sk+1∥ = ∥sk + dk+1∥ ≥ (1 + γ)max
{
∥sk∥, dk+1

}
≥ (1 + γ)max

{
δλ(1 + γ)k, δλ

}
= (1 + γ)δλ(1 + γ)k = δλ(1 + γ)k+1.

It shows that (5.10) is satisfied for n = k + 1 and hence for any n ∈ IN . Passing
there to the limit as n → ∞ tells us that limn→∞ ∥sn∥ = ∞, which contradicts (5.9)
and thus justifies that q(xk, xk+1) → 0 in this case as well. □

Note that the sufficient condition (5.6) in case (c) is required in [20, 31, 38, 48] to
establish a version of the Ekeland variational principle with perturbations containing
multiple directions in the ordering cone Θ. The other conditions of Theorem 5.3 as
well as the main one (F3) in Theorem 5.2 are new.

6. Concluding remarks

As mentioned in Section 1, our study of variational principles involving set-valued
mappings on quasimetric spaces to topological spaces ordered by variable preference
structures has been largely motivated by applications to adaptive dynamical models
of behavioral sciences via the recent variational rationality approach of [43, 44].
Our previous results obtained in this direction [5, 6] were applied to goals systems
in psychology and capability theory of human behavior. The new mathematical
results established in this paper make a bridge to further applications; in particular,
to building dynamical models in the reference dependent theory of psychological
preferences developed earlier by Kahneman and Tversky [29, 49] and their numerous
followers in static frameworks.
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[25] F. Heyde, A. Löhne and Chr. Tammer, Set-valued duality theory for multiple objective linear

programs and application to mathematical finance, Math. Methods Oper. Res. 69 (2009), 159-
179.

[26] G. Isac, Nuclear cones in product spaces, Pareto efficiency and Ekeland-type variational prin-
ciples in locally convex spaces, Optimization 53 (2004), 253–268.

[27] G. Isac and Chr. Tammer, Nuclear and full nuclear cones in product spaces: Pareto efficiency
and an Ekeland type variational principle, Positivity 9 (2005), 511–539.

[28] J. Jahn, Vector Optimization: Theory, Applications and Extensions, Springer, New York, 2004.
[29] D. Kahneman and A. Tversky, Prospect theory: an analysis of decision under risk, Economet-

rica 47 (1979), 263–291.
[30] P. Q. Khanh, On Caristi-Kirk’s theorem and Ekeland’s variational principle for Pareto ex-

trema, Bull. Polish Acad. Sci. Math. 37 (1989), 33–39.
[31] P. Q. Khanh and D. H. Quy, Versions of Ekeland’s variational principle involving set pertur-

bations, J. Global Optim. 49 (2013), 381–396.
[32] A. Kruglanski et al., A theory of goal systems, in Advances in Experimental Social Psychology,

Vol. 34, M. P. Zanna (ed.), Academic Press, New York, 2002, pp. 331–378.
[33] D. Kuroiwa, On set-valued optimization, Nonlinear Anal. 47 (2001), 1395–1400.
[34] C. G. Liu and K. F. Ng, Ekeland’s variational principle for set-valued functions, SIAM J.

Optim. 21 (2011), 41–56.
[35] D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989.
[36] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory,

II: Applications, Springer, Berlin, 2006.
[37] A. B. Németh, A nonconvex vector minimization problem, Nonlinear Anal. 10 (1986), 669–678.
[38] J. H. Qui, Set-valued quasimetrics and a general Ekeland’s variational principle in vector

optimization, SIAM J. Control Optim. 51 (2013), 1350–1371.
[39] J. H. Qui, A preorder principle and set-valued Ekeland’s variational principle, arXiv, 2013.
[40] R. T. Rockafellar and J-B. Wets, Variational Analysis, Springer, Berlin, 1998.
[41] A. Sen, Commodities and Capabilities, North Holland, Amsterdam, 1985.
[42] B. Soleimani and Chr. Tammer, Scalarization of approximate solutions of vector optimization

with variable order structure based on nonlinear scalarization, Report No. 3. Martin-Luther-
University of Halle-Wittenberg, Germany, 2013.



MINIMAL POINTS 1537

[43] A. Soubeyran, Variational rationality, a theory of individual stability and change, worthwhile
and ambidextry behaviors, Preprint, GREQAM, Aix-Marseille University, France, 2009.

[44] A. Soubeyran, Variational rationality and the unsatis ed man: routines and the course pursuit
between aspirations, capabilities and beliefs, Preprint, GREQAM, Aix-Marseille University,
France, 2010.

[45] W. Stadler, Preference optimality in multicriteria control and programming problems, Nonlin-
ear Anal. 4 (1980), 51–65.

[46] W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings,
in Fixed Point Theory and Applications, J. B. Baillon and M. Théra (eds.), Pitman Res. Notes
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