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Here every fi(·) : Xi → Rni is a monotone operator; each Ai ∈ Rl×ni is a given
matrix; b ∈ Rl is a given vector; each Xi ⊂ Rni is a nonempty closed convex set,
and

∑m
i=1 ni = n. Throughout, the solution set of (1.1) is assumed to be nonempty.

It is well documented in the literature [3, 12, 14, 36] that the variational inequal-
ity theory provides a powerful unifying methodology for the study of mathematical
programming and equilibrium problems. In past several decades, the variational
inequality theory and algorithms have been developed significantly, see the mono-
graph [14]. Recently, many structured optimization problems arising from image
processing, statistical learning and transportation can be formulated and studied as
VIs, e.g., see [13, 18, 38, 40, 41] for certain applications; meanwhile, algorithms for
(1.1) have received considerable attention in the literature; the reader is referred to
[19, 21, 22, 24] for special cases where m ≤ 3 of (1.1).

Among the existing algorithms for solving general VIs, the projection-like meth-
ods are the simplest, especially when the projection onto the feasible set can be
represented explicitly. However, the mixed set Ω in (1.1c), which consists of lin-
ear constraints and simple convex sets, results in a big difficulty for computing the
projection onto Ω, thereby making the traditional projection-like methods, such as
the extragradient method [30], harder to be implemented. Indeed, the structured
VI (1.1) has some favorable structures that could be utilized. By attaching a La-
grangian multiplier λ ∈ Rl to the linear constraints, the VI (1.1) can be recast as
finding a vector u∗ ∈ U satisfying the property

(1.2a) ⟨u− u∗, H(u∗)⟩ ≥ 0, ∀u ∈ U ,
where

(1.2b) u :=

(
x
λ

)
, H(u) :=


f1(x1)−A⊤

1 λ
...

fm(xm)−A⊤
mλ∑m

i=1Aixi − b

 and U :=

m∏
i=1

Xi × Rl.

[Note: For the sake of notational simplicity, we shall, throughout the rest of this
paper, write (x, λ) for u.] Comparatively speaking, the set U in (1.2b) is easier
than the set Ω in (1.1c), and some computational benefits may occur in algorithm
implementation. In what follows, we will study the VIs in the form (1.2) which is
denoted by SVI (U ,H).

When considering a special case of (1.1) with m = 2, one of the most popular
methods is the alternating direction method of multipliers (ADMM) introduced in
[15, 16], which decomposes the subproblem of augmented lagrangian method (ALM)
[25, ?] into two smaller scaled sub-variational inequalities. Specifically, ADMM
solves (1.2) via the following procedure:

Given (xk2, λ
k) ∈ X2×Rl, find a point xk+1

1 ∈ X1 such that the following inequality
holds for all x1 ∈ X1

(1.3a)
⟨
x1 − xk+1

1 , f1(x
k+1
1 )−A⊤

1

[
λk − β

(
A1x

k+1
1 +A2x

k
2 − b

)]⟩
≥ 0.

With (xk+1
1 , λk), then seek a vector xk+1

2 ∈ X2 satisfying, for all x2 ∈ X2,

(1.3b)
⟨
x2 − xk+1

2 , f2(x
k+1
2 )−A⊤

2

[
λk − β

(
A1x

k+1
1 +A2x

k+1
2 − b

)]⟩
≥ 0.
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Finally, update the Lagrangian multiplier λk+1 via

(1.3c) λk+1 = λk − β
(
A1x

k+1
1 +A2x

k+1
2 − b

)
.

Here, β > 0 is a penalty parameter. Obviously, the ADMM fully exploits the sep-
arable structure of (1.1) and updates its iterates in a Gauss-Seidel order. In recent
years, the successful applications of ADMM in the areas of signal/image processing
and statistical learning have made it received a revived interest, we refer the reader
to [4] for a comprehensive review on ADMM. Since ADMM outperforms many classi-
cal algorithms, a straightforward extension of ADMM (1.3) to handle multiple-block
convex minimization problems attracts much attention. Furthermore, applying this
extension to solve (1.2) immediately leads to the following iterative scheme:

Given (xk+1
1 , . . . , xk+1

i−1 , x
k
i+1, . . . , x

k
m, λ

k), sequentially find the new iterate xk+1
i of

the i-th variable so that xk+1
i is a solution to the VIP:

(1.4a)
⟨
x′i − xi, fi(xi)−A⊤

i

[
λk − β

(
Aixi + pk

)]⟩
≥ 0, ∀x′i ∈ Xi.

where

pk :=
i−1∑
j=1

Ajx
k+1
j +

m∑
j=i+1

Ajx
k
j − b.

Finally, update the Lagrangian multiplier λk+1 via

(1.4b) λk+1 = λk − β

(
m∑
i=1

Aix
k+1
i − b

)
.

Unfortunately, it was well demonstrated in [11] that the extended ADMM (1.4)
is not necessarily convergent for all cases where m ≥ 3, and this holds true even
when we solve the subproblems (1.4a) simultaneously (i.e., the full Jacobian de-
composition of ALM, see [20]). To ensure the global convergence, the most mature
way is to update the output of (1.4) by adding a further correction step, e.g.,
see [18, 19, 20, 23]. However, taking a close look at the subproblems (1.3a) and
(1.3b) (or (1.4a)), we observe that ADMM (or its extension (1.4)) still solves a se-
ries of variational inequality subproblems exactly, but only reducing the problem’s
scale. Actually, solving a VIP exactly is difficult, if not impossible in many cases.
Moreover, some applications of ADMM empirically indicate that the difficulty of
subproblems may significantly affect the efficiency of the method (see [4, 10, 17] for
the numerical experiences).

In this paper, we use a projection step instead of solving a variational inequality
subproblem, and then propose a two-stage method, which consists of a prediction
step and a correction step, to solve the structured VI (1.1). A notable benefit is
that the new method is more implementable than ADMM and its variants as long
as the projections onto Xi’s are easy enough. We shall mention that an additional
correction step but with tiny computational cost is a must to guarantee the global
convergence of our method. Since the new method fully exploits the separable struc-
ture by splitting VI (1.2) into (m + 1) individual parts and inherits the simplicity
of projection-like methods, we call it projection-based splitting method and denote it
by ProjSM. Another remarkable advantage of the ProjSM is that the simultaneous
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prediction step makes it gain eligibility to parallel implementation for large-scale
problems. Finally, we introduce a generalized split equality problem (GSEP), which
includes some well-known special cases, such as split feasibility problem, split equal-
ity problem, and convex feasibility problem. Then, we formulate the GSEP and
the network resource allocation problem (NRAP) as special cases of VI (1.1) and
demonstrate the applicability of the ProjSM to these problems.

The remainder of this paper is built up as follows. In Section 2, we summarize
some notation, definitions, and well-known results that will be used in our later
analysis. In Section 3, we describe the algorithmic framework of the proposed
method. In Section 4, we establish the global convergence of the new method
under some mild assumptions. The applicability of our new algorithm to GSEP
and NRAP is demonstrated in Section 5. Finally, some concluding remarks are
provided in Section 6.

2. Preliminaries

In this section, we summarize some basic notation, concepts and well known
results that will play important roles in further discussions.

Let Rn be the n-dimensional Euclidean space and ⊤ symbolize the transpose. For
any two vectors u, v ∈ Rn, we use ⟨u, v⟩ to denote the standard inner product. Fur-

thermore, with a given symmetric positive definite matrixM , let ∥u∥M =
√

⟨u,Mu⟩
represent theM -norm, and particularly, let ∥·∥ denote the standard Euclidean norm.
For any matrix A, let ∥A∥ be its matrix 2-norm.

Throughout, let PΩ,M [·] be the projection operator from Rn onto a nonempty
closed convex set Ω under the M -norm, which is defined by

PΩ,M [v] := argmin {∥u− v∥M | u ∈ Ω} , v ∈ Rn,

and particularly, we denote by PΩ[·] the projection operator under the Euclidean
norm. It is well known from [3, p. 211] that the projection PΩ,M [·] can be charac-
terized by the following inequality:

(2.1) ⟨w − PΩ,M [v], M (v − PΩ,M [v])⟩ ≤ 0, ∀v ∈ Rn, ∀w ∈ Ω.

Definition 2.1. An operator F (·) from Ω into Rn is said to be

a) monotone if

⟨u− v, F (u)− F (v)⟩ ≥ 0, ∀u, v ∈ Ω.

b) Lipschitz continuous if there exists a constant L > 0 such that

∥F (u)− F (v)∥ ≤ L∥u− v∥, ∀u, v ∈ Ω.

Throughout this paper, we assume that each set Xi (i = 1, . . . ,m) is simple
enough in the sense that the projection onto it is easy to compute. Moreover, every
function fi(·) (i = 1, . . . ,m) is assumed to be monotone and Lipschitz continuous
with constant Lfi > 0.

Below, we give a well-known fixed point characterization of solutions of VI (1.1)
and refer the reader to [3, p. 267] for its proof.
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Lemma 2.2. Let Ω be a closed convex set of Rn and let G be a symmetric positive
definite matrix. Then, a point x∗ ∈ Ω is a solution of VI (1.1) if and only if

x∗ = PΩ,G

[
x∗ − βG−1F (x∗)

]
, ∀β > 0.

Obviously, the above lemma can be restated as solving VI (1.1) being equivalent
to finding a zero of the mapping:

(2.2) E[β,G] (x, F,Ω) := x− PΩ,G

[
x− βG−1F (x)

]
.

Thus, ∥E[β,G] (x
∗, F,Ω) ∥ = 0 means that x∗ is a solution of VIP (1.1), and in

practice, we could use ∥E[β,G] (x, F,Ω) ∥ ≤ tol to be a termination criteria with a
preset stopping tolerance ‘tol’.

3. The algorithm

In this section, we describe the projection-based splitting method (ProjSM) and
give some important remarks on this method.

Before stating the algorithm, we first introduce some notation for simplicity. For
the index i from 1 to m, let Ini ∈ Rni×ni be the identity matrix and denote the
difference between fi(xi) and fi(x̃i) as ϕi(xi, x̃i) := fi(xi)−fi(x̃i). Furthermore, we
denote

(3.1) M :=


r1In1 . . . 0 0
...

. . .
...

...
0 . . . rmInm 0
0 . . . 0 1

β Il

 and Φ(x, x̃) :=


ϕ1(x1, x̃1)

...
ϕm(xm, x̃m)

0

 .

Note that for u := (x, λ), we have

∥u∥2M = ⟨u, Mu⟩ =
m∑
i=1

ri ⟨xi, xi⟩+
1

β
⟨λ, λ⟩ =

m∑
i=1

ri∥xi∥2 +
1

β
∥λ∥2.

Since the proposed ProjSM is a two-stage method, we divide the description of our
method into two parts. Below, we first present the details of the prediction step.

(Initialization). Given γ ∈ (0, 2), ν ∈ (0, 1), β > 0, u0 ∈ U .
(Prediction step). Generate a medium point λ̂k via

(3.2a) λ̂k = λk − β

(
m∑
i=1

Aix
k
i − b

)
.

Then, obtain (x̃k1, . . . , x̃
k
m) with appropriate ri > 0 (simultaneously, if possi-

ble):

(3.2b) x̃ki := PXi

{
xki −

1

ri

(
fi(x

k
i )−A⊤

i λ̂
k
)}

, (i = 1, . . . ,m).

Compute the predictor λ̃k via

(3.2c) λ̃k = λk − β

(
m∑
i=1

Aix̃
k
i − b

)
.
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Remark 3.1. We easily observe that the projection step (3.2b) dominates the
main computational task of the prediction step. Under the assumptions that all
Xi’s are simple convex sets, the prediction step is easily implemented. On the other
hand, the projection step (3.2b) enjoys its simultaneous implementation on parallel
computers. Hence, our method is fully eligible for solving large-scale problem.

Remark 3.2. For the choice of each ri (i = 1, . . . ,m), we shall seek an appropriate
ri by setting a constant or a line search procedure such that

riν
∥∥∥xki − x̃ki

∥∥∥2 ≥ m+ 2

4
β
∥∥∥Aix

k
i −Aix̃

k
i

∥∥∥2(3.3)

+
⟨
xki − x̃ki , fi(x

k
i )− fi(x̃

k
i )
⟩
, 1 ≤ i ≤ m,

where ν ∈ (0, 1) is a given constant. Using the Cauchy-Schwarz inequality together
with the Lipschitz continuity of fi(·), it is easy to derive that every

ri ≥
(
Lfi +

m+ 2

4
β∥A⊤

i Ai∥
)
/ν

always ensures inequality (3.3). Notice that the choice of ri (condition (3.3)) will
play a key role in the coming convergence analysis.

Now, we describe the correction step of the new ProjSM as follows.

(Correction step I). Update uk+1 := (xk+1, λk+1) via

(3.4a) uk+1 := uk − γαkd(u
k, ũk),

where the step size αk is defined by

(3.4b) αk :=
φ(uk, ũk)

∥d(uk, ũk)∥2M
,

with

(3.4c) d(uk, ũk) := (uk − ũk)−M−1Φ(uk, ũk),

and

(3.4d) φ(uk, ũk) :=
⟨
uk − ũk, Md(uk, ũk)

⟩
+

⟨
λk − λ̃k,

m∑
i=1

Ai(x
k
i − x̃ki )

⟩
.

Remark 3.3. Notice that the correction step (3.4) only involves some simple
matrix-vector products, and the matrix M defined in (3.1) is a block scalar ma-
trix so that it is trivial to compute its inverse. Thus, the computational cost of the
correction step is relatively cheap. In addition, we can also get a variant of (3.4)
without matrix inverse as follows:
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(Correction step II). Update uk+1 := (xk+1, λk+1) via

(3.5a) uk+1 := uk − γα̂kd̂(u
k, ũk),

where the step size α̂k is defined by

(3.5b) α̂k :=
φ(uk, ũk)

∥d̂(uk, ũk)∥2
,

with φ(uk, ũk) given by (3.4d) and

(3.5c) d̂(uk, ũk) :=M(uk − ũk)− Φ(uk, ũk).
The main distinction between (3.4) and (3.5) comes from the definitions of

d(uk, ũk) and d̂(uk, ũk). It is clear that d̂(uk, ũk) = Md(uk, ũk). Then, we can
similarly prove the global convergence of the variant (3.5).

In summary, our ProjSM is computationally attractive due to its simplicity.

4. Convergence analysis

This section aims mainly at the establishment of the global convergence of the
ProjSM (see (3.2) and (3.4)), leaving skipped the analogous analysis of its variant
(see (3.2) and (3.5)). In the subsequent analysis, we further denote by

A := (A1, A2, . . . , Am, 0) ∈ Rl×(n+l)

a block matrix for notational convenience.

Lemma 4.1. Suppose that u∗ := (x∗, λ∗) is a solution of SVI (U ,H). Then the
sequences {uk} and {ũk} generated by the proposed ProjSM satisfy that⟨

uk − u∗, Md(uk, ũk)
⟩
≥ φ(uk, ũk),

where d(uk, ũk) and φ(uk, ũk) are given by (3.4c) and (3.4d), respectively.

Proof. By setting w := x∗i , v := xki − 1
ri

(
fi(x

k
i )−A⊤

i λ̂
k
)
, M := Ini and Ω := Xi in

(2.1), it follows from (3.2b) that⟨
x∗i − x̃ki , x

k
i −

1

ri

(
fi(x

k
i )−A⊤

i λ̂
k
)
− x̃ki

⟩
≤ 0.

Multiplying the above inequality by ri and using the formulas (3.2a) and (3.2c)
together with the notation in (3.1), we arrive at

(4.1)

⟨
x∗i − x̃ki , fi(x̃

k
i )−A⊤

i λ̃
k + ri(x̃

k
i − xki ) + ϕi(x

k
i , x̃

k
i )
⟩

−
⟨
x∗i − x̃ki , βA

⊤
i

(∑m
j=1Aj(x̃

k
j − xkj )

)⟩
≥ 0.

Additionally, reformulating (3.2c) as 1
β (λ

k − λ̃k) =
(∑m

i=1Aix̃
k
i − b

)
immediately

yields

(4.2)

⟨
λ∗ − λ̃k,

(
m∑
i=1

Aix̃
k
i − b

)
+

1

β

(
λ̃k − λk

)⟩
= 0.
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Consequently, upon summing up (4.1) from i = 1 to m and (4.2) and recalling the
definitions ofM and A, we can rewrite the resulting inequality into a compact form
as follows: ⟨

u∗ − ũk, H(ũk)−Md(uk, ũk) + βA⊤A(uk − ũk)
⟩
≥ 0.

Equivalently,

(4.3)
⟨
ũk − u∗, Md(uk, ũk)

⟩
≥
⟨
ũk − u∗, H(ũk) + βA⊤A(uk − ũk)

⟩
.

Observe that the monotonicity of fi(·) for 1 ≤ i ≤ m implies that the operator H(u)
defined in (1.2b) is also monotone. Therefore, for any solution u∗ of SVI (U ,H), it
follows from the definition of VIP (1.2) that⟨

ũk − u∗, H(ũk)
⟩
≥
⟨
ũk − u∗, H(u∗)

⟩
≥ 0.

This together with (4.3) further implies that⟨
ũk − u∗, Md(uk, ũk)

⟩
≥
⟨
ũk − u∗, H(ũk) + βA⊤A(uk − ũk)

⟩
=
⟨
ũk − u∗, H(ũk)

⟩
+
⟨
ũk − u∗, βA⊤A(uk − ũk)

⟩
≥
⟨
ũk − u∗, βA⊤A(uk − ũk)

⟩
= β

⟨
m∑
i=1

Ai(x̃
k
i − x∗i ),

m∑
i=1

Ai(x
k
i − x̃ki )

⟩

=

⟨
λk − λ̃k,

m∑
i=1

Ai(x
k
i − x̃ki )

⟩
,(4.4)

where the third equality comes from the fact
∑m

i=1Aix
∗
i = b and (3.2c).

On the other hand, from the definition of φ(uk, ũk) and (4.4) it follows that⟨
uk − u∗, Md(uk, ũk)

⟩
=
⟨
ũk − u∗, Md(uk, ũk)

⟩
+
⟨
uk − ũk, Md(uk, ũk)

⟩
≥

⟨
λk − λ̃k,

m∑
i=1

Ai(x
k
i − x̃ki )

⟩
+
⟨
uk − ũk, Md(uk, ũk)

⟩
= φ(uk, ũk).

The assertion is proved. □
The following result, which plays a central role in the global convergence analysis,

implies that −d(uk, ũk) is a descent direction of the distance function 1
2∥u − u∗∥2

at uk, where u∗ is a solution of SVI (U , H).

Lemma 4.2. Suppose that ν ∈ (0, 1), β > 0 and each ri from i = 1 to m satisfies
condition (3.3). Then, there exists a constant c > 0 such that

(4.5) φ(uk, ũk) ≥ c
∥∥∥uk − ũk

∥∥∥2 , ∀k ≥ 1.
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Proof. First, an application of the well-known inequality

2 ⟨a, b⟩ ≥ −τ∥a∥2 − 1

τ
∥b∥2, ∀a, b ∈ Rn, τ > 0,

implies that ⟨
λk − λ̃k,

m∑
i=1

Ai(x
k
i − x̃ki )

⟩
(4.6)

≥ −
m∑
i=1

(m+ 1)β

4

∥∥∥Ai(x
k
i − x̃ki )

∥∥∥2 − m∥λk − λ̃k∥2

(m+ 1)β
.

Consequently, it is immediately clear from condition (3.3) that

φ(uk, ũk)

=
⟨
uk − ũk, Md(uk, ũk)

⟩
+

⟨
λk − λ̃k,

m∑
i=1

Ai(x
k
i − x̃ki )

⟩

=
∥∥∥uk − ũk

∥∥∥2
M

−
m∑
i=1

⟨
xki − x̃ki , ϕi(x

k
i , x̃

k
i )
⟩
+

⟨
λk − λ̃k,

m∑
i=1

Ai(x
k
i − x̃ki )

⟩

≥
m∑
i=1

(1− ν)ri

∥∥∥xki − x̃ki

∥∥∥2 + 1

(m+ 1)β

∥∥∥λk − λ̃k
∥∥∥2 + m∑

i=1

β

4

∥∥∥Aix
k
i −Aix̃

k
i

∥∥∥2
≥ c

∥∥∥uk − ũk
∥∥∥2 ,

where c := min
{
min1≤i≤m {(1− ν)ri} , 1

(m+1)β

}
. Hence proved. □

The above assertion implies that φ(uk, ũk) > 0 if uk ̸= ũk. This together with
Lemma 4.1 clearly shows that −d(uk, ũk) is a descent direction at uk. Of course,
uk = ũk means that we have got a solution of SVI (U ,H) and we can employ
∥uk − ũk∥ ≤ tol to be the termination criteria for the algorithm’s implementation.

Next, we state the rationale for the choice of the step size αk in (3.4b). We first
denote by

uk+1(α) := uk − αd(uk, ũk)

the function of step size α dependent on uk and ũk. Let u∗ be an arbitrary solution
of SVI (U ,H) and let

Θ(α) :=
∥∥∥uk − u∗

∥∥∥2
M

−
∥∥∥uk+1(α)− u∗

∥∥∥2
M

be a progress-function to measure the improvement obtained at the k-th iteration
of the method. Clearly, large Θ(α) means that more improvement is obtained.
Therefore, we hopefully maximize Θ(α) for seeking an optimal improvement. Un-
fortunately, an unknown u∗ involved in Θ(α) results in a difficult (even impossible)
task to maximize Θ(α) directly. Actually, by invoking the result of Lemma 4.1, it
is easy to derive that

Θ(α) =
∥∥∥uk − u∗

∥∥∥2
M

−
∥∥∥uk+1(α)− u∗

∥∥∥2
M
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=
∥∥∥uk − u∗

∥∥∥2
M

−
∥∥∥uk − αd(uk, ũk)− u∗

∥∥∥2
M

= 2α
⟨
uk − u∗, Md(uk, ũk)

⟩
− α2

∥∥∥d(uk, ũk)
∥∥∥2
M

≥ 2αφ(uk, ũk)− α2
∥∥∥d(uk, ũk)

∥∥∥2
M

=: ψ(α).(4.7)

Note that ψ(α) in (4.7) is a quadratic function of α without the unknown u∗.
Therefore, we can alternatively maximize the lower bound function ψ(α) to find an
optimal step size α. Obviously, ψ(α) achieves its maximum at

αk =
φ(uk, ũk)

∥d(uk, ũk)∥2M
,

which is exactly (3.4b). Thanks to the inequality used in (4.7), it is natural to
compensate Θ(α) by introducing a relaxation factor γ for αk, i.e.,

Θ(γαk) ≥ 2γαkφ(u
k, ũk)− γ2α2

k

∥∥∥d(uk, ũk)
∥∥∥2
M

= γ(2− γ)αkφ(u
k, ũk).

We shall restrict γ ∈ (0, 2) so that the right-hand side in the above relation is
positive, that is, an improvement can be obtained at each iteration. Below, we
further prove that the optimal step size αk is uniformly lower bounded away from
a positive number.

Lemma 4.3. Suppose that ν ∈ (0, 1), β > 0 and each ri from i = 1 to m satisfies
condition (3.3). Then, the step size αk defined by (3.4b) is lower bounded away from
zero; that is, infk≥1 αk ≥ αmin > 0 for some positive constant αmin.

Proof. Recalling the definition of d(uk, ũk) in (3.4c), it follows from the monotonic-
ity of Φ and the Lipschitz continuity of each fi that∥∥∥d(uk, ũk)

∥∥∥2
M

=
∥∥∥uk − ũk

∥∥∥2
M

− 2
⟨
uk − ũk, Φ(xk, x̃k)

⟩
+
∥∥∥Φ(xk, x̃k)

∥∥∥2
M−1

≤
∥∥∥uk − ũk

∥∥∥2
M

+
∥∥∥Φ(xk, x̃k)

∥∥∥2
M−1

≤
m∑
i=1

(r2i + L2
fi
)

ri

∥∥∥xki − x̃ki

∥∥∥2 + 1

β

∥∥∥λk − λ̃k
∥∥∥2

≤ C
∥∥∥uk − ũk

∥∥∥2 ,
where

C := max

{
max
1≤i≤m

{
(r2i + L2

fi
)

ri

}
,
1

β

}
.

Combining with the inequality (4.5), we immediately get αk ≥ αmin := c/C. □
Theorem 4.4. Assume ν ∈ (0, 1), β > 0 and condition (3.3). Let u∗ := (x∗, λ∗)
be an arbitrary solution of SVI (U ,H). Then, the sequence {uk} generated by the
proposed ProjSM satisfies the property

(4.8)
∥∥∥uk+1 − u∗

∥∥∥2
M

≤
∥∥∥uk − u∗

∥∥∥2
M

− γ(2− γ)cαmin

∥∥∥uk − ũk
∥∥∥2 .
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Proof. By (3.5a) and Lemmas 4.1-4.3, we deduce that∥∥∥uk+1 − u∗
∥∥∥2
M

=
∥∥∥uk − γαkd(u

k, ũk)− u∗
∥∥∥2
M

=
∥∥∥uk − u∗

∥∥∥2
M

− 2γαk

⟨
uk − u∗, Md(uk, ũk)

⟩
+ γ2α2

k

∥∥∥d(uk, ũk)
∥∥∥2
M

≤
∥∥∥uk − u∗

∥∥∥2
M

− 2γαkφ(u
k, ũk) + γ2α2

k

∥∥∥d(uk, ũk)
∥∥∥2
M

=
∥∥∥uk − u∗

∥∥∥2
M

− γ(2− γ)αkφ(u
k, ũk)

≤
∥∥∥uk − u∗

∥∥∥2
M

− γ(2− γ)cαmin

∥∥∥uk − ũk
∥∥∥2 .

The assertion of this lemma is proved. □

Remark 4.5. If we consider the variant correction step (3.5), we can similarly
prove the Fejér monotonicity of the sequence {uk} as follows:∥∥∥uk+1 − u∗

∥∥∥2 ≤ ∥∥∥uk − u∗
∥∥∥2 − γ(2− γ)ĉα̂min

∥∥∥uk − ũk
∥∥∥2 .

Here ĉ and α̂min are some positive constant, which can be deduced in similar ways
used in Lemmas 4.2 and 4.3, respectively.

With the above results, we are now in a position to establish the global conver-
gence of the proposed method.

Theorem 4.6. Assume ν ∈ (0, 1), β > 0 and condition (3.3). Then the sequence
{uk} generated by the proposed ProjSM converges to a solution of SVI (U ,H).

Proof. Let u∗ be an arbitrary solution of SVI (U ,H). It is immediately clear from
(4.8) that

(4.9)
∥∥∥uk+1 − u∗

∥∥∥2
M

≤
∥∥∥uk − u∗

∥∥∥2
M

≤ · · · ≤
∥∥u0 − u∗∥∥2

M
<∞,

which implies that the sequence {∥uk − u∗∥M} is decreasing, and particularly, it is
bounded and moreover,

(4.10) lim
k→∞

∥uk − u∗∥M exists.

On the other hand, rewriting (4.8) as

γ(2− γ)cαmin

∥∥∥uk − ũk
∥∥∥2 ≤ ∥∥∥uk − u∗

∥∥∥2
M

−
∥∥∥uk+1 − u∗

∥∥∥2
M

and summing up over k, we arrive at

γ(2− γ)cαmin

( ∞∑
k=0

∥∥∥uk − ũk
∥∥∥2) ≤

∞∑
k=0

{∥∥∥uk − u∗
∥∥∥2
M

−
∥∥∥uk+1 − u∗

∥∥∥2
M

}
≤
∥∥u0 − u∗∥∥2

M
.
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We immediately conclude that

lim
k→∞

∥∥∥uk − ũk
∥∥∥2 = 0.

It turns out that the sequences {uk} and {ũk} have the same cluster points. To
prove the convergence of the sequence {uk}, let u∞ be a cluster point of {uk} and
let {ukj} be a subsequence converging to u∞; hence the subsequence {ũkj} of {ũk}
also converges to u∞. Now, taking the limit as j → ∞ over the subsequence {kj}
in (3.2a)–(3.2c), we obtain{

x∞i = PXi

{
x∞i − 1

ri

(
fi(x

∞
i )−A⊤

i λ
∞)} ( for i = 1, . . . ,m),∑m

i=1Aix
∞
i = b.

Equivalently, E[1,M ] (u
∞,H,U) = 0 with the block diagonal matrix M given in

(3.1). It then follows from Lemma (2.2) that u∞ is a solution of SVI (U ,H).
However, since u∗ := (x∗, λ∗) is an arbitrary solution of SVI (U ,H), we can

substitute u∞ for u∗ in (4.9) and (4.10) to result in

lim
k→∞

∥uk − u∞∥M = lim
j→∞

∥ukj − u∞∥M = 0.

This shows that the full sequence {uk} converges to u∞, a solution of SVI (U ,H).
The proof is complete. □

5. Applications

As we have mentioned in Section 1, variational inequality problem is a fundamen-
tal model for treating a wide range of real world problems. In this section, we study
some special cases of VIP (1.1) and demonstrate the applicability of the proposed
ProjSM to these problems.

5.1. Generalized split equality problem. We first consider the generalized split
equality problem (GSEP) which is stated as

(5.1) finding x := (x1, . . . , xm) ∈
m∏
i=1

Xi satisfying

m∑
i=1

Aixi = b,

where each Xi (i = 1, . . . ,m) is a nonempty closed convex subset of Rni ; Ai : Xi → Rl

(i = 1, . . . ,m) is a bounded linear operator and b ∈ Rl is a given vector. Note that
the GESP is an extension of the recently introduced split equality problem (SEP) in
[6, 34], and it has widespread applications in decomposition method in PDEs, game
theory and intensity-modulated radiation therapy. On the other hand, the GSEP
(5.1) further provides us with a model for unifying some classical problems. Here,
we summarize several well-known examples as follows:

5.1.1. Split feasibility problem. The split feasibility problem (SFP), which was first
introduced in [8] for modeling inverse problems arising from phase retrievals and
medical image reconstruction [7], can be mathematically characterized as finding a
point x1 ∈ Rn with the property

(5.2) x1 ∈ C and Ax1 ∈ Q,
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where C and Q are nonempty closed convex subsets of Rn and Rm, respectively, and
A : Rn → Rl is a bounded linear operator. In the past decades, the SFP (5.2) and its
special case of multiple-set split feasibility problem have been received considerable
attention in terms of numerical algorithm, e.g., see [5, 31, 39, 42, 43, 45, 46]. By
introducing an auxiliary variable x2 ∈ Rm, the SFP (5.2) can be immediately recast
as:

(5.3) finding x1 ∈ C, x2 ∈ Q such that Ax1 = x2,

which is an intuitive special case of GSEP (5.1) by taking m = 2, X1 := C, X2 := Q,
A1 := A, A2 := −I, and b := 0.

5.1.2. Split equality problem. The SEP is a newly introduced model to find two
points satisfying a linear equality, that is,

(5.4) finding x1 ∈ C, x2 ∈ Q such that Ax1 = Bx2.

Clearly, setting B := In in (5.4) immediately yields SFP (5.3) as a special case of
GSEP (5.1). Moreover, SEP (5.4) is also a specialization of GSEP (5.1) by taking
the same settings in (5.3) except A2 := −B.

5.1.3. Convex feasibility problem. The well known convex feasibility problem (CFP),
which consists of finding a point in the intersection of convex sets, is one of the most
classical problems in the communities of physical sciences, statistics and image
reconstruction. Mathematically, it reads as follows:

(5.5) finding a point x ∈
m∩
i=1

Xi ̸= ∅,

where every Xi (i = 1, . . . ,m) is a closed convex subset of Rn. To solve this problem,
projection-like algorithms have been well developed in the literature, e.g., see [2] for
a review on the CFP. Below, we show that CFP (5.5) can be viewed as a standard
GSEP (5.1). By introducing m auxiliary variables xi (i = 1, . . . ,m), then CFP (5.5)
can be further recast as finding m points (x1, . . . , xm) with the property

(x1, . . . , xm) ∈
m∏
i=1

Xi, x1 − x2 = 0, x2 − x3 = 0, . . . , xm − x1 = 0.

Equivalently, we further rewrite it into

(5.6) finding x := (x1, . . . , xm) ∈
m∏
i=1

Xi such that
m∑
i=1

Aixi = 0,

where Ai is the i-th column of the block matrix A defined as follows:

(5.7) A := (A1, A2, . . . , Am−1, Am) :=


In −In . . . 0 0
0 In . . . 0 0
...

...
. . .

...
...

0 0 . . . In −In
−In 0 . . . 0 In

 .

It is clear that CFP (5.6) is a specialization of GSEP (5.1) by taking b := 0. As
shown in [9], certainly, CFP (5.5) can also be regarded as a special case of SFP
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(5.2) by setting x1 := x, C := ∩m
i=1Xi, Q := Rn and A := In. Compared to the

latter case, a noteworthy benefit of (5.6) is that the new reformulation makes the
projections onto Xi (i = 1, . . . ,m) are more implementable than the projection onto
∩m
i=1Xi.

5.1.4. Implementation on GSEP. From the above reformulations, it can be easily
seen that GSEP (5.1) is an interesting model for unifying some classical problems.
Indeed, we further see that GSEP (5.1) is a special case of VIP (1.1) by taking

f1(x1) = f2(x2) = · · · = fm(xm) = 0.

Accordingly, when applying the proposed ProjSM to solve GSEP (5.1), we can
simplify the iterative schemes (3.2) and (3.4) as follows:

(Initialization). Given γ ∈ (0, 2), ν ∈ (0, 1), β > 0, u0 ∈ U .
(Prediction step). Obtain ũk = (x̃k, λ̃k) with suitable ri > 0 via:{

x̃ki := PXi

{
xki +

1
ri
A⊤

i

[
λk − β

(∑m
i=1Aix

k
i − b

)]}
, (i = 1, . . . ,m),

λ̃k = λk − β
(∑m

i=1Aix̃
k
i − b

)
.

(Correction step). Update uk+1 := (xk+1, λk+1) via

(5.8) uk+1 := uk − γαk(u
k − ũk),

where

αk := 1 +

⟨
λk − λ̃k,

∑m
i=1Ai(x

k
i − x̃ki )

⟩
∥uk − ũk∥2M

.

From the correction step (5.8), we can see that the new iterate uk+1 essentially
is an affine combination of the predictor ũk and the last point uk, which potentially
brings promising numerical performance. For the choice of ri in the prediction step,
condition (3.3) amounts to

ri ≥
m+ 2

4ν
β∥A⊤

i Ai∥, (i = 1, . . . ,m).

Below, we respectively give remarks to highlight the superiority of the proposed
ProjSM.

• When considering SFP (5.2), we have m = 1. By setting ν = 3
4 , we obtain

r1 ≥ β∥A⊤
1 A1∥,

and this condition is more flexible than the requirement of CQ algorithm in
[5].

• When applying ProjSM to solve SEP (5.4), we take m = 2 and get

r1 ≥
β

ν
∥A⊤

1 A1∥ and r2 ≥
β

ν
∥A⊤

2 A2∥,

which is also weaker than the requirements in [34, 35].
• To handle the CFP (5.5), one of the most popular methods is the alternating
projection algorithm (APA) [2]. The APA is simple; however, its sequential
projection philosophy may be time consuming if Xi’s are not easy enough
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to compute their projections. It is clear that our ProjSM could make full
use of modern parallel computers to compute the projections onto Xi’s si-
multaneously.

5.2. Network resource allocation problem. In this section, we consider the
network resource allocation problem (NRAP) modeling in power [26, 33], channel
[1, 29], bandwidth [37] and storage allocations [32], which can be characterized as

(5.9) max

{
m∑
i=1

θi(x)
∣∣∣ x ∈ X :=

m∩
i=1

Xi

}
,

where θi(·) : Rn → R (i = 1, . . . ,m) are concave and continuously Fréchet dif-
ferentiable utility functions; Xi ⊂ Rn (i = 1, . . . ,m) are nonempty closed convex
sets. The NRAP often has been studied as a VI thanks to the rich set of efficient
solvers for VIP. However, the direct application of traditional projection-like meth-
ods tailored for VIP to (5.9) fails to be implementable for the reason that it is
not an easy task to compute the projection onto the set X := ∩m

i=1Xi, even when
Xi’s are simple enough so that projections (i.e., PXi(·)’s) have explicit representa-
tions. To circumvent this difficulty, Iiduka [27, 28] judiciously proposed a series of
decentralized projection algorithms for (5.9). However, these methods have strong
requirements, that is, the utility functions (i.e., θi(·)’s) are strongly concave and
their gradients are Lipschitz continuous. Such strong conditions may preclude the
potential applications of these methods. Indeed, it is interesting to observe that
NRAP (5.9) can be viewed as a generalization of CFP (5.5) with an addition ob-
jective function

∑m
i=1 θi(·). Similarly, by introducing m variables xi (i = 1, . . . ,m),

then the model (5.9) can be reformulated as

(5.10) min

{
m∑
i=1

−θi(xi)
∣∣∣ m∑

i=1

Aixi = 0; xi ∈ Xi, (i = 1, . . . ,m)

}
,

where the Ai’s are defined in (5.7). Since the θi(xi)’s are concave and differentiable,
letting fi(xi) := −∇θi(xi), (i = 1, . . . ,m) in (1.1b), we immediately put (5.10) into
a special case of VI (1.1). Hence, we can gainfully employ the proposed ProjSM
((3.2) and (3.4)) to solve (5.10) directly. Note that our ProjSM only requires that
θi(·)’s be concave and their gradients be Lipschitz continuous, which are relatively
weaker than the assumptions of the aforementioned methods. Another noteworthy
feature of our ProjSM is that the new method can also be regarded as a decentralized
algorithm.

6. Conclusions

We consider a well-structured VIP, where the underlying mapping is separable
intom individual parts and the feasible set contains a linear constraint andm simple
convex sets. To fully exploit the separable structure, we propose a projection-based
splitting method, which consists of a parallel prediction step and a cheap correction
step. The method is eligible for solving large-scale problems, due to the fact that
its prediction step can be implemented simultaneously. Our new method is globally
convergent under some mild assumptions. Finally, we introduce a GSEP, which
includes some well-known problems such as SFP, SEP, and CFP as special cases. In
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addition, we formulate the NRAP as a specialization of the structured VI (1.1). The
applicability of our method to these problems is demonstrated. When considering
complicated sets Xi’s in the sense that the projections onto them (i.e., PXi(·)’s) can
not be explicitly calculated, we can adopt the strategies introduced in [31, 44] to
overcome the difficulty, which is also our future work.
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[37] A. Nedić and A. Ozdaglar, Cooperative distributed multi-agent optimization, in Convex Op-
timization in Signal Processing and Communications, D.P. Palomar and Y.C. Eldar (eds.),
Cambridge University Press, New York, 2010, pp. 340–386.

[38] O. Oreifej, X. Li and M. Shah, Simultaneous video stabilization and moving object detection
in turbulence, IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 450–462.

[39] B. Qu and N. H. Xiu, A note on the CQ algorithm for the split feasibility problem, Inverse
Problems 21 (2005), 1655–1665.

[40] M. Tao and X.M. Yuan, Recovering low-rank and sparse components of matrices from incom-
plete and noisy observations, SIAM J. Optim. 21 (2011), 57–81.

[41] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu and K. Knight, Sparsity and smoothness via the
fused LASSO, J. R. Stat. Soc. Ser. B 67 (2005), 91–108.

[42] H. K. Xu, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility prob-
lem, Inverse Problems 22 (2006), 2021–2034.

[43] H. K. Xu, Iterative methods for the split feasibility problem in infinite dimensional Hilbert
spaces, Inverse Problems 26 (2010), 105018(17pp).

[44] Q. Z. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems
20 (2004), 1261–1266.

[45] W. X. Zhang, D. R. Han and Z. B. Li, A self-adaptive projection method for solving the
multiple-sets split feasibility problem, Inverse Problems 25 (2009), 115001.

[46] W. X. Zhang, D. R. Han and X. M. Yuan, An efficient simultaneous method for the constrained
multiple-sets split feasibility problem, Comput. Optim. Appl. 52 (2012), 825–843.



1556 H. HE AND H. K. XU

Manuscript received May 10, 2014

revised July 27, 2014

H. He
Department of Mathematics, School of Sciences, Hangzhou Dianzi University, 310018, Hangzhou,
China

E-mail address: hehjmath@hdu.edu.cn

H. K. Xu
Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang
310018, China; Department of Applied Mathematics, National Sun Yat-Sen University, Kaohsiung,
Taiwan 80424

E-mail address: xuhk@math.nsysu.edu.tw


