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Kartsatos and Quarcoo [10] introduced a degree theory for the sum T + C. Ad-
hikari and Kartsatos [2] defined a topological degree for the sum T +S+C provided
that C is strongly quasibounded with respect to S and satisfies a generalized (S+)-
condition. Thus, a certain quasiboundedness condition on the perturbation C is
usually required; see [11, 12]. Instead, we are now interested in solving the above
inclusion in the case where S is strongly quasibounded.

The purpose of this paper is to study the solvability of the inclusion about (S+)L-
perturbations of the sum of strongly quasibounded maximal monotone operators,
which can be of wide application. To this end, we first introduce a topological
degree theory for the sum T + S + C following the basic line of [10]. Namely, the
degree is defined as the limit of the Kartsatos-Skrypnik degree of the operators
Tt + S + C developed in [11], where Tt : X → X∗ is the approximant introduced
by Brézis, Crandall, and Pazy [4]. Next, applying the degree theory, we show that
a given pathwise connected set is included in the range of the perturbed strongly
quasibounded maximal monotone operator. This implies an invariance of domain
result for (S+)L-perturbations of the sum of strongly quasibounded maximal mono-
tone operators. As a consequence of this result, we see that under a weak coercivity
condition the above inclusion can be solved for every p∗ ∈ X∗. Moreover, in a more
concrete situation, we establish the existence of zeros for the inclusion with a reg-
ularization method. From this, a surjectivity result is deduced. For earlier results
on ranges of perturbed maximal monotone operators, we refer to [2, 9, 12, 13].

This paper is organized as follows: In Section 2, we list some definitions and
notations and give useful properties concerning maximal monotone operators which
will be needed. In Section 3, we introduce a topological degree theory for (S+)L-
perturbations of the sum of strongly quasibounded maximal monotone operators
based on the Kartsatos-Skrypnik degree, as a key tool of our results. Section 4
is devoted to ranges of perturbed strongly quasibounded maximal monotone op-
erators including openness and surjectivity. We illustrate our results by a simple
example. In Section 5, we deal with the existence of zeros for the above inclusion
and surjectivity on the sum is also discussed.

2. Preliminaries

Let (X, ∥ · ∥) be a real Banach space and (X∗, ∥ · ∥) be its dual space with dual
pairing ⟨·, ·⟩. Given a nonempty subset Ω of X, let Ω, intΩ, and ∂Ω denote the
closure, the interior, and the boundary of Ω in X, respectively. Let Br(x) denote
the open ball in X or X∗ of radius r > 0 centered at x. The symbol → (⇀) stands
for strong (weak) convergence.

Let T : D(T ) ⊂ X → 2X
∗
be a multi-valued operator, where D(T ) := {x ∈ X :

Tx ̸= ∅} is called the effective domain of T . Then the operator T is said to be

(a) monotone if ⟨u∗ − v∗, x − y⟩ ≥ 0 for every x, y ∈ D(T ) and every u∗ ∈
Tx, v∗ ∈ Ty.

(b) strictly monotone if ⟨u∗ − v∗, x − y⟩ > 0 for every x, y ∈ D(T ) with x ̸=
y and every u∗ ∈ Tx, v∗ ∈ Ty.
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(c) maximal monotone if it is monotone and it follows from (x, u∗) ∈ X × X∗

and

⟨u∗ − v∗, x− y⟩ ≥ 0 for every y ∈ D(T ) and every v∗ ∈ Ty

that x ∈ D(T ) and u∗ ∈ Tx.
(d) strongly quasibounded if for every ℓ > 0 there exists a constant K(ℓ) > 0

such that for all x ∈ D(T ) with ∥x∥ ≤ ℓ and ⟨u∗, x⟩ ≤ ℓ where u∗ ∈ Tx,
we have ∥u∗∥ ≤ K(ℓ).

We say that a single-valued operator C : D(C) ⊂ X → X∗ satisfies condition
(S+) on a set Ω ⊂ D(C) if for every sequence {xn} in Ω with xn ⇀ x0 and
lim supn→∞ ⟨Cxn, xn − x0⟩ ≤ 0, we have xn → x0.

An operator C : D(C) ⊂ X → X∗ is said to be bounded if C maps bounded
subsets of D(C) into bounded subsets of X∗. The operator C is said to be demicon-
tinuous if for every x0 ∈ D(C) and for every sequence {xn} in D(C) with xn → x0,
we have Cxn ⇀ Cx0. The operator C is said to be completely continuous if for
every x0 ∈ D(C) and for every sequence {xn} in D(C) with xn ⇀ x0, we have
Cxn → Cx0.

It is known in [8, Proposition 14] that a monotone operator T : D(T ) ⊂ X → 2X
∗

on the reflexive Banach space X is strongly quasibounded provided that the origin
0 is an interior point of its effective domain D(T ).

A typical example of strongly quasibounded maximal monotone operators is the
subdifferential as follows: Let K be a closed convex subset of a reflexive Banach
space X with 0 ∈ intK. If χ : X → [0,+∞] is defined to be 0 for x ∈ K and
+∞ for x ∈ X \ K, then the subdifferential ∂χ : D(∂χ) ⊂ X → 2X

∗
is maximal

monotone, D(∂χ) = K, 0 ∈ ∂χ(0) and hence it is obviously strongly quasibounded;
see [14, 18]. Here, u∗ ∈ ∂χ(x) if and only if χ(x) ̸= +∞ and

χ(y) ≥ χ(x) + ⟨u∗, y − x⟩ for all y ∈ X.

The following result on the sum is taken from Browder and Hess [8, Theorem 9].

Lemma 2.1. Let T : D(T ) ⊂ X → 2X
∗
and S : D(S) ⊂ X → 2X

∗
be two maximal

monotone operators on the reflexive Banach space X with 0 ∈ D(T ) ∩D(S). If T
is (strongly) quasibounded, then the sum T + S is maximal monotone.

Throughout this paper, X will always be an infinite-dimensional real reflexive
separable Banach space which has been renormed so that X and X∗ are locally
uniformly convex.
It is known that in this case the normalized duality operator J : X → X∗ is bounded,
continuous, surjective, strictly monotone, maximal monotone and satisfies condition
(S+), and such that ⟨Jx, x⟩ = ∥x∥2 and ∥Jx∥ = ∥x∥ for x ∈ X; see e.g., [18].

For our aim, we need the following important properties concerning the class of
maximal monotone operators.

Lemma 2.2. Let T : D(T ) ⊂ X → 2X
∗
be a maximal monotone operator. Then

the following statements hold:
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(a) For each t ∈ (0,∞), the operator Tt ≡ (T−1+tJ−1)−1 : X → X∗ is bounded,
demicontinuous, and maximal monotone. Thus, Ttx ∈ T (x − tJ−1Ttx) for
x ∈ X.

(b) If, in addition, 0 ∈ D(T ) and 0 ∈ T (0), then the operator (0,∞) × X →
X∗, (t, x) 7→ Ttx is continuous on (0,∞)×X.

Proof. Statement (a) is due to Brézis, Crandall, and Pazy [4, Lemma 1.3]. For
statement (b), we refer to [12, Lemma 3.1]. □

Lemma 2.3. Suppose that T : D(T ) ⊂ X → 2X
∗
is a strongly quasibounded maxi-

mal monotone operator with 0 ∈ D(T ) and 0 ∈ T (0). Then the following statements
hold:

(a) If {tn} is a sequence in (0,∞) and {xn} is a sequence in X such that

∥xn∥ ≤ K and ⟨Ttnxn, xn⟩ ≤ K1,

where K,K1 are positive constants, then the sequence {Ttnxn} is bounded in
X∗.

(b) If, in addition, S : D(S) ⊂ X → X∗ is maximal monotone and strongly
quasibounded with 0 ∈ D(S) and S(0) = 0 and if {tn} is a sequence in
(0,∞) and {xn} is a sequence in D(S) such that

∥xn∥ ≤ K and ⟨Ttnxn + Sxn, xn⟩ ≤ K1,

where K,K1 are positive constants, then the sequences {Ttnxn} and {Sxn}
are bounded in X∗.

Proof. For statement (a), we refer to [10, Lemma D].
(b) Since the operators Ttn and S are monotone and Ttn(0) = 0 = S(0), we have
by the hypothesis

⟨Ttnxn, xn⟩ ≤ K1 and ⟨Sxn, xn⟩ ≤ K1.

By (a) and the strong quasiboundedness of the operator S, it is obvious that the
sequences {Ttnxn} and {Sxn} are bounded in X∗. □

Lemma 2.4. Let T : D(T ) ⊂ X → 2X
∗
and S : D(S) ⊂ X → 2X

∗
be two maximal

monotone operators with 0 ∈ D(T ) ∩ D(S) and 0 ∈ T (0) ∩ S(0) such that T is
strongly quasibounded. Suppose that {tn} is a sequence in (0,∞) with tn ↓ 0 and
{xn} is a sequence in D(S) such that xn ⇀ x0 ∈ X and Ttnxn + w∗

n ⇀ z∗0 ∈ X∗,
where w∗

n ∈ Sxn. Then the following statements hold:

(a) The inequality lim infn→∞⟨Ttnxn + w∗
n, xn − x0⟩ ≥ 0 is true.

(b) If limn→∞⟨Ttnxn+w∗
n, xn−x0⟩ = 0, then x0 ∈ D(T+S) and z∗0 ∈ (T+S)x0.

(c) In particular, if xn → x0 and w∗
n ⇀ w∗

0, then x0 ∈ D(S) and w∗
0 ∈ Sx0.

Here D(T + S) denotes the intersection of two effective domains D(T ) and D(S).

Proof. For the sake of convenience, we give the proof in a precise manner which is
of course substantially analogous to that of Lemma 1 in [1].
(a) Assume on the contrary that there is a subsequence of {n}, again denoted by
{n}, such that

(2.1) lim
n→∞

⟨Ttnxn + w∗
n, xn − x0⟩ < 0.
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Set v∗n := Ttnxn. By (2.1), we have

(2.2) lim sup
n→∞

⟨v∗n+w∗
n, xn⟩ = lim sup

n→∞
[⟨v∗n+w∗

n, xn−x0⟩+ ⟨v∗n+w∗
n, x0⟩] < ⟨z∗0 , x0⟩,

which implies along with ⟨w∗
n, xn⟩ ≥ 0

lim sup
n→∞

⟨v∗n, xn⟩ ≤ lim sup
n→∞

⟨v∗n + w∗
n, xn⟩ < ⟨z∗0 , x0⟩.

Since {xn} is bounded in X, it follows from Lemma 2.3(a) that the sequence {v∗n}
is bounded in X∗ and hence limn→∞ tn∥v∗n∥ = 0.
For every x ∈ D(T + S) and every u∗ = u∗1 + u∗2 ∈ Tx + Sx, we have by the
monotonicity of the operator T with v∗n ∈ T (xn − tnJ

−1v∗n)

⟨v∗n − u∗1, xn − tnJ
−1v∗n − x⟩ ≥ 0

and so

⟨v∗n − u∗1, xn − x⟩ ≥ tn⟨v∗n, J−1v∗n⟩ − ⟨u∗1, tnJ−1v∗n⟩ ≥ −tn∥v∗n∥ ∥u∗1∥.
Hence it follows from ⟨w∗

n − u∗2, xn − x⟩ ≥ 0 that

⟨v∗n + w∗
n − u∗, xn − x⟩ = ⟨v∗n − u∗1, xn − x⟩+ ⟨w∗

n − u∗2, xn − x⟩ ≥ −tn∥v∗n∥ ∥u∗1∥,
which implies
(2.3)

lim inf
n→∞

⟨v∗n + w∗
n, xn⟩ ≥ lim inf

n→∞
[⟨v∗n + w∗

n, x⟩ − ⟨u∗, x⟩+ ⟨u∗, xn⟩ − tn∥v∗n∥ ∥u∗1∥]

≥ ⟨z∗0 , x⟩ − ⟨u∗, x⟩+ ⟨u∗, x0⟩.
Combining (2.2) with (2.3), we get

(2.4) ⟨z∗0 − u∗, x0 − x⟩ > 0 for every x ∈ D(T + S) and every u∗ ∈ (T + S)x.

Since the sum T + S is maximal monotone by Lemma 2.1, we obtain

x0 ∈ D(T + S) and z∗0 ∈ (T + S)x0.

Letting x = x0 ∈ D(T + S) in (2.4), we arrive at a contradiction. Therefore, we
have shown that

lim inf
n→∞

⟨Ttnxn + w∗
n, xn − x0⟩ ≥ 0.

(b) Suppose that

(2.5) lim
n→∞

⟨Ttnxn + w∗
n, xn − x0⟩ = 0.

Let x ∈ D(T +S) and u∗ = u∗1+u
∗
2 ∈ Tx+Sx. By the monotonicity of the operator

S and (2.5), we have

(2.6) lim sup
n→∞

⟨Ttnxn, xn⟩ ≤ lim sup
n→∞

⟨Ttnxn + w∗
n, xn⟩ ≤ ⟨z∗0 , x0⟩.

In view of Lemma 2.3(a), the sequence {Ttnxn} is bounded in X∗ and so limn→∞
tn∥Ttnxn∥ = 0. This implies as above that

lim inf
n→∞

⟨Ttnxn + w∗
n, xn⟩ ≥ ⟨z∗0 , x⟩ − ⟨u∗, x⟩+ ⟨u∗, x0⟩.

Combining this with (2.6), we obtain

⟨z∗0 − u∗, x0 − x⟩ ≥ 0 for every x ∈ D(T + S) and every u∗ ∈ (T + S)x.
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By the definition of maximal monotonicity of the operator T + S, we have

x0 ∈ D(T + S) and z∗0 ∈ (T + S)x0.

Statement (c) is a special case of statement (b) with T ≡ 0. This completes the
proof. □

3. Degree theory

In this section, we introduce a topological degree theory for (S+)L-perturbations
of the sum of strongly quasibounded maximal monotone operators, based on the
degree theory of Kartsatos and Skrypnik [11]. It was motivated by the works of
Kartsatos and Quarcoo [10] and Adhikari and Kartsatos [2].

Let L be a dense subspace of X and let F(L) denote the class of all finite-
dimensional subspaces of L. Let {Fn} be a sequence in the class F(L) such that for
each n ∈ N we have

(3.1) Fn ⊂ Fn+1, dimFn = n, and
∪
n∈N

Fn = X.

Set L{Fn} :=
∪

n∈N Fn.

Definition 3.1. Let C : D(C) ⊂ X → X∗ be a single-valued operator with L ⊂
D(C). We say that the operator C satisfies condition (S+)0,L if for every sequence
{Fn} in F(L) satisfying (3.1) and for every sequence {xn} in L with

xn ⇀ x0, lim sup
n→∞

⟨Cxn, xn⟩ ≤ 0, and lim
n→∞

⟨Cxn, y⟩ = 0 for all y ∈ L{Fn},

we have xn → x0, x0 ∈ D(C), and Cx0 = 0. We say that the operator C satisfies
condition (S+)L if the operator Ch : D(C) → X∗, defined by Chx := Cx − h,
satisfies condition (S+)0,L for every h ∈ X∗.

The condition (S+)0,L was first introduced by Kartsatos and Skrypnik [11] and
the structure of the class (S+)L was studied by Berkovits [3]. The following result
shows that the class (S+)L is a natural extension of the classical definition of class
(S+); see also Lemma 5.4 below.

Lemma 3.2. Let L be a dense subspace of X. Then the following relations hold:

(a) If C : X → X∗ is a strongly quasibounded demicontinuous operator that
satisfies condition (S+) on L, then the operator C satisfies condition (S+)L.

(b) If C : D(C) ⊂ X → X∗ is bounded with L ⊂ D(C) and satisfies condition
(S+)L, then D(C) = X and C : X → X∗ is demicontinuous and satisfies
condition (S+) on L.

Proof. (a) Let h ∈ X∗ be given. Suppose that {xn} is any sequence in L such that
(3.2)
xn ⇀ x0, lim sup

n→∞
⟨Cxn−h, xn⟩ ≤ 0, and lim

n→∞
⟨Cxn−h, y⟩ = 0 for all y ∈ L{Fn}.
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Then {⟨Cxn, xn⟩} is bounded from above. Otherwise, we can choose a subsequence
{xnk

} of {xn} such that

lim
k→∞

⟨Cxnk
, xnk

⟩ = +∞,

which implies with the first and second of (3.2)

+∞ = lim sup
k→∞

⟨Cxnk
, xnk

⟩ = lim sup
k→∞

[⟨Cxnk
− h, xnk

⟩+ ⟨h, xnk
⟩] ≤ ⟨h, x0⟩.

This is a contradiction. By the strong quasiboundedness of the operator C, the
sequence {Cxn} is bounded in X∗. Since L{Fn} is dense in the reflexive Banach
space X, it follows from the third of (3.2) that Cxn ⇀ h. Hence we obtain from
the first and second of (3.2) that

lim sup
n→∞

⟨Cxn, xn − x0⟩

≤ lim sup
n→∞

⟨Cxn − h, xn⟩ − lim
n→∞

⟨Cxn − h, x0⟩+ lim
n→∞

⟨h, xn − x0⟩

≤ 0.

Since C satisfies condition (S+) on L and is demicontinuous, we have

xn → x0, x0 ∈ X = D(C), and Cx0 − h = 0.

We conclude that the operator C satisfies condition (S+)L.
For statement (b), we refer to [3, Theorem 3.3]. This completes the proof. □

Assume that T : D(T ) ⊂ X → 2X
∗
is a multi-valued operator, S : D(S) = L ⊂

X → X∗ is a single-valued operator, and C : D(C) ⊂ X → X∗ is a single-valued
operator with L ⊂ D(C) such that

(t1) T is maximal monotone and strongly quasibounded with 0 ∈ D(T ) and
0 ∈ T (0).

(s1) S is maximal monotone and strongly quasibounded with S(0) = 0.
(s2) For every F ∈ F(L) and v ∈ L, the function s(F, v) : F → R, defined by

s(F, v)(x) := ⟨Sx, v⟩, is continuous on F .
(c1) C satisfies condition (S+)L.
(c2) For every F ∈ F(L) and v ∈ L, the function c(F, v) : F → R, defined by

c(F, v)(x) := ⟨Cx, v⟩, is continuous on F .
(c3) There exists a nondecreasing function ψ : [0,∞) → [0,∞) such that

⟨Cx, x⟩ ≥ −ψ(∥x∥) for each x ∈ D(C).

To define a topological degree for (S+)L-perturbations of the sum of maximal
monotone operators, we need some auxiliary results.

Proposition 3.3. Suppose that T : D(T ) ⊂ X → 2X
∗
satisfies (t1), S : D(S) =

L ⊂ X → X∗ satisfies (s1), and C : D(C) ⊂ X → X∗ satisfies (c1) and (c3)
with L ⊂ D(C). Then the operator Tt + S + C satisfies condition (S+)0,L for each
t ∈ (0,∞).
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Proof. Let t ∈ (0,∞) be given. Suppose that {Fn} is any sequence in F(L) satisfying
(3.1) and {xn} is any sequence in L such that xn ⇀ x0,

(3.3) lim sup
n→∞

⟨Ttxn + Sxn + Cxn, xn⟩ ≤ 0, and lim
n→∞

⟨Ttxn + Sxn + Cxn, y⟩ = 0

for all y ∈ L{Fn}. From the second of (3.3), we know that the sequence {⟨Ttxn +
Sxn +Cxn, xn⟩} is bounded from above by a positive constant K1. If K denotes a
positive upper bound for the bounded sequence {∥xn∥}, then we have by (c3)

⟨Ttxn + Sxn, xn⟩ ≤ −⟨Cxn, xn⟩+K1 ≤ ψ(∥xn∥) +K1 ≤ ψ(K) +K1.

According to Lemma 2.3(b), the sequences {Ttxn} and {Sxn} are bounded in X∗.
Notice that each bounded sequence in a reflexive Banach space has a weakly con-
vergent subsequence. Passing to a subsequence, if necessary, we may suppose that
Ttxn ⇀ v∗ and Sxn ⇀ w∗ for some v∗, w∗ ∈ X∗. Then, from the last equality of
(3.3), along with

⟨Cxn, y⟩ = ⟨Ttxn + Sxn + Cxn, y⟩ − ⟨Ttnxn + Sxn, y⟩,

we obtain

(3.4) lim
n→∞

⟨Cxn + v∗ + w∗, y⟩ = 0 for all y ∈ L{Fn}.

In view of (3.3) with the equality

⟨Cxn + v∗ + w∗, xn⟩ = ⟨Cxn + Ttxn + Sxn, xn⟩ − ⟨Ttxn + Sxn, xn − x0⟩
− ⟨Ttxn + Sxn, x0⟩+ ⟨v∗ + w∗, xn⟩,

we have by Lemma 2.4(a)

(3.5) lim sup
n→∞

⟨Cxn + v∗ + w∗, xn⟩ ≤ − lim inf
n→∞

⟨Ttxn + Sxn, xn − x0⟩ ≤ 0.

Since the operator C satisfies condition (S+)L, it follows from (3.4) and (3.5) that

xn → x0, x0 ∈ D(C), and Cx0 + v∗ + w∗ = 0.

Since Tt is demicontinuous and S is maximal monotone, we obtain from Lemma
2.4(c) that v∗ = Ttx0, x0 ∈ D(S), and w∗ = Sx0 and therefore

x0 ∈ D(Tt + S + C) and Ttx0 + Sx0 + Cx0 = 0.

We conclude that the operator Tt+S+C satisfies condition (S+)0,L. This completes
the proof. □

Proposition 3.4. Let T, S, and C be the operators as in Proposition 3.3. Let Ω be
a bounded open subset of X. Suppose that

0 ̸∈ Tx+ Sx+ Cx for all x ∈ D(T ) ∩ L ∩ ∂Ω.

Then there exists a positive number t0 such that

Ttx+ Sx+ Cx ̸= 0 for all (t, x) ∈ (0, t0]× (L ∩ ∂Ω).
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Proof. Assume that the assertion is not true. Then there are sequences {tn} in
(0,∞) with tn ↓ 0 and {xn} in L ∩ ∂Ω such that

(3.6) Ttnxn + Sxn + Cxn = 0.

If K is a positive upper bound for the sequence {∥xn∥}, then (3.6) and (c3) imply
that

⟨Ttnxn + Sxn, xn⟩ = −⟨Cxn, xn⟩ ≤ ψ(∥xn∥) ≤ ψ(K) =: K1.

In view of Lemma 2.3(b), we may suppose that

xn ⇀ x0 ∈ X and Ttnxn + Sxn ⇀ z∗0 ∈ X∗.

By (3.6), we have Cxn ⇀ −z∗0 and hence

(3.7) lim
n→∞

⟨Cxn + z∗0 , y⟩ = 0 for all y ∈ L{Fn}.

Observing the equality

⟨Cxn + z∗0 , xn⟩ = ⟨Cxn + Ttnxn + Sxn, xn⟩ − ⟨Ttnxn + Sxn, xn − x0⟩
− ⟨Ttnxn + Sxn, x0⟩+ ⟨z∗0 , xn⟩,

it follows from (3.6) and Lemma 2.4(a) that

(3.8) lim sup
n→∞

⟨Cxn + z∗0 , xn⟩ ≤ − lim inf
n→∞

⟨Ttnxn + Sxn, xn − x0⟩ ≤ 0.

Since the operator C satisfies condition (S+)L, it follows from (3.7) and (3.8) that

xn → x0 ∈ D(C) and Cx0 + z∗0 = 0.

Moreover, Ttnxn + Sxn ⇀ z∗0 implies that

lim
n→∞

⟨Ttnxn + Sxn, xn − x0⟩ = 0.

Hence we obtain from Lemma 2.4(b) that x0 ∈ D(T + S) and z∗0 ∈ (T + S)x0 and
therefore

x0 ∈ D(T ) ∩ L ∩ ∂Ω and 0 ∈ Tx0 + Sx0 + Cx0,

which contradicts the hypothesis on the boundary. Consequently, the assertion is
true. This completes the proof. □

Proposition 3.5. Suppose that T : D(T ) ⊂ X → 2X
∗
satisfies (t1), S : D(S) =

L → X∗ satisfies (s1) and (s2), and C : D(C) ⊂ X → X∗ satisfies (c1), (c2), and
(c3) with L ⊂ D(C). Let Ω be a bounded open subset of X. If

0 ̸∈ Tx+ Sx+ Cx for all x ∈ D(T ) ∩ L ∩ ∂Ω,

then the degree d (Tt + S + C,Ω, 0) is constant for all t ∈ (0, t0], where t0 is a
fixed positive number determined by Proposition 3.4. Here, the symbol d denotes the
Kartsatos-Skrypnik degree introduced in [11].

Proof. In view of Propositions 3.3 and 3.4, the degree d (Tt + S + C,Ω, 0) is well
defined for every t ∈ (0, t0]. It suffices to prove that for any two numbers t1, t2 ∈
(0, t0] we have

(3.9) d (Tt1 + S + C,Ω, 0) = d (Tt2 + S + C,Ω, 0).
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Let t1, t2 be any two points in the interval (0, t0] with t1 < t2. Consider a continuous
function α : [0, 1] → R given by

α(t) := (1− t)t1 + tt2.

For t ∈ [0, 1], let At : D(At) ⊂ X → X∗ be an operator defined by

Atx := Tα(t)x+ Sx+ Cx,

where D(At) = L. According to Proposition 3.4, Atx ̸= 0 for all (t, x) ∈ [0, 1] ×
(D(At)∩∂Ω). For every finite-dimensional space F ⊂ L{Fn} and every v ∈ L{Fn},
the function ã(F, v) : [0, 1]× F → R, defined by ã(F, v)(t, x) := ⟨Atx, v⟩, is contin-
uous on [0, 1] × F . This follows from Lemma 2.2(b), (s2), and (c2). To show that
A0 and A1 are homotopic with respect to Ω in the sense of Definition 4.2 of [11], it

remains to verify that the family {At} satisfies condition (S+)
(t)
0,L.

Suppose that {tn} is any sequence in [0, 1] and {xn} is any sequence in L{Fn} such
that tn → t̃, xn ⇀ x0, and

(3.10) lim sup
n→∞

⟨Atnxn, xn⟩ ≤ 0, and lim
n→∞

⟨Atnxn, y⟩ = 0 for all y ∈ L{Fn}.

From the first of (3.10), we obtain that the sequence {⟨Atnxn, xn⟩} is bounded from
above by a positive constant K1. Then we have

⟨Tα(tn)xn + Sxn, xn⟩ ≤ −⟨Cxn, xn⟩+K1 ≤ ψ(K) +K1,

where K is a positive upper bound for the sequence {∥xn∥}. By Lemma 2.3(b), the
sequences {Tα(tn)xn} and {Sxn} are bounded in X∗. Without loss of generality, we
may suppose that Tα(tn)xn ⇀ v∗ and Sxn ⇀ w∗ for some v∗, w∗ ∈ X∗. Then the
second of (3.10) implies that

(3.11) lim
n→∞

⟨Cxn + v∗ + w∗, y⟩ = 0 for all y ∈ L{Fn}.

Since the operator Tα(tn) is monotone and Tα(tn)x0 → Tα(t̃)x0 by Lemma 2.2(b), we
have

lim inf
n→∞

⟨Tα(tn)xn, xn − x0⟩ ≥ lim inf
n→∞

⟨Tα(tn)x0, xn − x0⟩ = 0,

which implies together with lim infn→∞ ⟨Sxn, xn − x0⟩ ≥ 0

(3.12) lim inf
n→∞

⟨Tα(tn)xn + Sxn, xn − x0⟩ ≥ 0.

From (3.10), (3.12), and the equality

⟨Cxn + v∗ + w∗, xn⟩ = ⟨Cxn + Tα(tn)xn + Sxn, xn⟩ − ⟨Tα(tn)xn + Sxn, xn − x0⟩
− ⟨Tα(tn)xn + Sxn, x0⟩+ ⟨v∗ + w∗, xn⟩,

it follows that

(3.13) lim sup
n→∞

⟨Cxn + v∗ + w∗, xn⟩ ≤ − lim inf
n→∞

⟨Tα(tn)xn + Sxn, xn − x0⟩ ≤ 0.

Since the operator C satisfies condition (S+)L, it follows from (3.11) and (3.13) that

xn → x0 ∈ D(C) and Cx0 + v∗ + w∗ = 0.
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By Lemma 2.2(b), we have Tα(tn)xn → Tα(t̃)x0 and so v∗ = Tα(t̃)x0. Since S is

maximal monotone, we have x0 ∈ D(S) and w∗ = Sx0 and hence

x0 ∈ D(At̃) and At̃x0 = Tα(t̃)x0 + Sx0 + Cx0 = 0.

We conclude that the family {At} satisfies condition (S+)
(t)
0,L.

Since A0 and A1 are thus homotopic with respect to Ω, Theorem 4.1 of [11] states
that

d (A0,Ω, 0) = d (A1,Ω, 0),

that is, (3.9) holds, what we wanted to prove. This completes the proof. □
We are now ready to define a topological degree for (S+)L-perturbations of

the sum of strongly quasibounded maximal monotone operators, based on the
Kartsatos-Skrypnik degree theory in [11].

Definition 3.6. Suppose that T : D(T ) ⊂ X → 2X
∗
satisfies (t1), S : D(S) =

L ⊂ X → X∗ satisfies (s1) and (s2), and C : D(C) ⊂ X → X∗ satisfies (c1),
(c2), and (c3) with L ⊂ D(C). Let Ω be a bounded open set in X. If 0 ̸∈
(T + S + C)(D(T ) ∩ L ∩ ∂Ω), then we can define a degree function by

deg (T + S + C,Ω, 0) := lim
t↓0

d (Tt + S + C,Ω, 0).

If p∗ ∈ X∗ is such that p∗ ̸∈ (T + S + C)(D(T ) ∩ L ∩ ∂Ω), then we define

deg (T + S + C,Ω, p∗) := deg (T + S + C − p∗,Ω, 0).

According to Proposition 3.5, the degree function is well defined and this defini-
tion seems to be almost the same as that in [10], except that the operator T + C
there is replaced by T+S+C. The attempt was inspired by Adhikari and Kartsatos
[2]. The advantage is that our definition would be more applicable.

We give some of the fundamental properties of the above degree.

Theorem 3.7. Let L be a dense subspace of X. Suppose that T : D(T ) ⊂ X → 2X
∗

satisfies (t1), S : L→ X∗ satisfies (s1) and (s2), and C : D(C) ⊂ X → X∗ satisfies
(c1), (c2), and (c3) with L ⊂ D(C). Let Ω be a bounded open set in X. Then we
have the following properties:

(a) If 0 ∈ Ω, then deg (εJ,Ω, 0) = 1 for each ε > 0.
(b) If p∗ ̸∈ (T +S+C)(D(T )∩L∩ ∂Ω) and deg (T +S+C,Ω, p∗) ̸= 0, then the

inclusion p∗ ∈ (T + S + C)x has at least one solution in D(T ) ∩ L ∩ Ω.
(c) If 0 ∈ Ω and 0 ̸∈ H(t, ·)(D(T ) ∩ L ∩ ∂Ω) for all t ∈ [0, 1], where

H(t, x) := t(T + S + C)x+ (1− t)C̃x,

then deg (T + S + C,Ω, 0) = deg (C̃,Ω, 0). Here, C̃ : X → X∗ is bounded,

demicontinuous, strictly monotone and satisfies condition (S+) on L, C̃(0) =

0, and ⟨C̃x, x⟩ ≥ ϕ(||x||) for all x ∈ X, where ϕ : [0,∞) → [0,∞) is strictly
increasing, continuous, and ϕ(0) = 0.

(d) If α : [0, 1] → X∗ is a continuous curve and 0 ̸∈ H(t, ·)(D(T ) ∩ L ∩ ∂Ω) for
all t ∈ [0, 1], where

H(t, x) := (T + S + C)x− α(t),
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then the degree deg (H(t, ·),Ω, 0) is constant.

Proof. Noticing by Lemma 2.1 that the sum T+S is maximal monotone and strongly
quasibounded, the proof might be essentially the same as that in [10, Theorem 3].
To make clear the difference, we perform the proof of property (c) in detail.
(c) Consider a map H1 given by

H1(t, s, x) := s(Tt + S + C)x+ (1− s)C̃x for t ∈ (0,∞) and s ∈ [0, 1].

First, we will prove that there exists a positive number t0 such that the equation
H1(t, s, x) = 0 has no solution in L∩ ∂Ω for all t ∈ (0, t0] and all s ∈ [0, 1]. Assume
the contrary. Then there are sequences {tn} in (0,∞), {sn} in [0, 1], and {xn} in
L ∩ ∂Ω such that tn ↓ 0, sn → s0, and

(3.14) sn(Ttn + S + C)xn + (1− sn)C̃xn = 0.

Then sn ∈ (0, 1] for all n ∈ N, by the injectivity of C̃ with C̃(0) = 0. Moreover, we
have s0 ∈ (0, 1]. Indeed, if s0 = 0, then (3.14), (c3), and the monotonicity of the
operator Ttn + S with (Ttn + S)(0) = 0 imply that

(1− sn)ϕ(∥xn∥) ≤ sn⟨Ttnxn + Sxn, xn⟩+ (1− sn)⟨C̃xn, xn⟩
= −sn⟨Cxn, xn⟩ ≤ sn(ψ(∥xn∥))

and hence ϕ(∥xn∥) → 0 and therefore xn → 0 ∈ Ω, which is a contradiction.

It follows from (3.14) and the monotonicity of C̃ with C̃(0) = 0 that

⟨Ttnxn + Sxn, xn⟩ = −⟨Cxn, xn⟩ −
(1− sn

sn

)
⟨C̃xn, xn⟩ ≤ ψ(∥xn∥).

In view of Lemma 2.3(b) and the boundedness of C̃, we may suppose that

xn ⇀ x0, Ttnxn + Sxn ⇀ z∗0 , and C̃xn ⇀ c∗

for some x0 ∈ X and some z∗0 , c
∗ ∈ X∗. Set s̃n := (1− sn)/sn and s̃0 := (1− s0)/s0.

Since we have by (3.14) Cxn ⇀ −z∗0 − s̃0c
∗, it is obvious that

(3.15) lim
n→∞

⟨Cxn + z∗0 + s̃0c
∗, y⟩ = 0 for all y ∈ L{Fn}.

It is known in [18, Proposition 32.7] that each demicontinuous monotone operator
A : X → X∗ on the real reflexive Banach space X is maximal monotone. Since the
operator C̃ is maximal monotone, Lemma 2.4(a) implies that

(3.16) lim inf
n→∞

⟨Ttnxn + Sxn + s̃nC̃xn, xn − x0⟩ ≥ 0.

From (3.14), (3.16), and the equality

⟨Cxn + z∗0 + s̃0c
∗, xn⟩ = ⟨Cxn + Ttnxn + Sxn + s̃nC̃xn, xn⟩

− ⟨Ttnxn + Sxn + s̃nC̃xn, xn − x0⟩

− ⟨Ttnxn + Sxn + s̃nC̃xn, x0⟩+ ⟨z∗0 + s̃0c
∗, xn⟩,

it follows that

(3.17) lim sup
n→∞

⟨Cxn+z∗0+ s̃0c∗, xn⟩ ≤ − lim inf
n→∞

⟨Ttnxn+Sxn+ s̃nC̃xn, xn−x0⟩ ≤ 0.
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Since the operator C satisfies condition (S+)L, we obtain from (3.15) and (3.17)
that

xn → x0, x0 ∈ D(C), and Cx0 + z∗0 + s̃0c
∗ = 0.

As limn→∞⟨Ttnxn + Sxn, xn − x0⟩ = 0, Lemma 2.4(b) states that x0 ∈ D(T + S)

and z∗0 ∈ (T + S)x0. By the demicontinuity of C̃, we have c∗ = C̃x0 and hence

x0 ∈ D(T ) ∩ L ∩ ∂Ω and 0 ∈ s0(Tx0 + Sx0 + Cx0) + (1− s0)C̃x0 = H(s0, x0),

which contradicts the hypothesis that 0 ̸∈ H(s, ·)(D(T ) ∩ L ∩ ∂Ω) for all s ∈ [0, 1].
Therefore, there exists t0 > 0 such that the equation H1(t, s, x) = 0 has no solution
in L ∩ ∂Ω for any (t, s) ∈ (0, t0]× [0, 1].

Next, we want to show that for each fixed t ∈ (0, t0], we have

(3.18) deg (H1(t, 1, ·),Ω, 0) = deg (H1(t, 0, ·),Ω, 0).
Fix t ∈ (0, t0] and consider a family of operators As : D(As) ⊂ X → X∗ given by

Asx := H1(t, s, x),

where D(As) = X for s = 0 and D(As) = L for s ∈ (0, 1]. By Lemma 3.2 and

Proposition 3.3, the operators A0 = C̃ and A1 = Tt + S + C satisfy condition
(S+)0,L. To show that A0 and A1 are homotopic with respect to Ω, we only have

to check that the family {As} satisfies condition (S+)
(s)
0,L. For this, suppose that

{sn} is any sequence in [0, 1] and {xn} is any sequence in L{Fn} such that sn → s0,
xn ⇀ x0, and

(3.19) lim sup
n→∞

⟨Asnxn, xn⟩ ≤ 0, and lim
n→∞

⟨Asnxn, y⟩ = 0 for all y ∈ L{Fn}.

There are two cases to consider. Let s0 = 0. Obviously, we have

(3.20)
sn⟨Cxn, xn⟩ = ⟨Asnxn, xn⟩ − sn⟨Ttxn + Sxn, xn⟩ − (1− sn)⟨C̃xn, xn⟩

≤ ⟨Asnxn, xn⟩ − (1− sn)ϕ(∥xn∥).
Since the sequence {∥xn∥} is bounded, it has a convergent subsequence, denoted
again by {∥xn∥}. Noting that {ψ(∥xn∥)} is also bounded, it follows from the first
of (3.19) and (3.20) that

0 = − lim
n→∞

snψ(∥xn∥) ≤ lim sup
n→∞

sn⟨Cxn, xn⟩ ≤ − lim
n→∞

ϕ(∥xn∥) ≤ 0

and so limn→∞ xn = 0. Hence x0 = 0 ∈ D(As0) and As0x0 = 0.
Now let s0 ∈ (0, 1]. We may suppose that sn > 0 for all n ∈ N. Set s̃n := (1−sn)/sn
and s̃0 := (1− s0)/s0. We may rewrite (3.19) in the form:

(3.21) lim sup
n→∞

⟨Ttxn + Sxn + Cxn + s̃nC̃xn, xn⟩ ≤ 0

and

(3.22) lim
n→∞

⟨Ttxn + Sxn + Cxn + s̃nC̃xn, y⟩ = 0 for all y ∈ L{Fn}.

From (3.21), we know that the sequence {⟨Ttnxn + Sxn + Cxn + s̃nC̃xn, xn⟩} is
bounded from above by a positive upper bound K1. This and the monotonicity of
C̃ imply that

⟨Ttxn + Sxn, xn⟩ ≤ −⟨Cxn, xn⟩ − s̃n⟨C̃xn, xn⟩+K1 ≤ ψ(∥xn∥) +K1.
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By Lemma 2.3(b), the sequences {Ttxn} and {Sxn} are bounded in X∗. We may

suppose that Ttxn ⇀ v∗, Sxn ⇀ w∗, and C̃xn ⇀ h∗ for some v∗, w∗, h∗ ∈ X∗. Then
(3.22) implies that

(3.23) lim
n→∞

⟨Cxn + v∗ + w∗ + s̃0h
∗, y⟩ = 0 for all y ∈ L{Fn}.

As above, it follows from (3.21) and Lemma 2.4(a) that
(3.24)

lim sup
n→∞

⟨Cxn + v∗ + w∗ + s̃0h
∗, xn⟩ ≤ − lim inf

n→∞
⟨Ttxn + Sxn + s̃nC̃xn, xn − x0⟩

≤ 0.

Since the operator C satisfies condition (S+)L, it follows from (3.23) and (3.24) that

xn → x0 ∈ D(C) and Cx0 + v∗ + w∗ + s̃0h
∗ = 0.

Since the operator S is maximal monotone and the operators Tt, C̃ are demicontin-
uous, it is clear that

x0 ∈ D(S), w∗ = Sx0, v∗ = Ttx0, and h∗ = C̃x0

and therefore

x0 ∈ D(As0) and As0x0 = s0(Ttx0 + Sx0 + Cx0) + (1− s0)C̃x0 = 0.

We have shown that the family {As} satisfies condition (S+)
(s)
0,L.

Since A0 and A1 are thus homotopic with respect to Ω, Theorem 4.1 of [11] implies
that d (A1,Ω, 0) = d (A0,Ω, 0), that is, (3.18) holds. Therefore, for every t ∈ (0, t0],
we have

d (Tt + S + C,Ω, 0) = d (C̃,Ω, 0).

By Definition 3.6, we conclude that

deg (T + S + C,Ω, 0) = d (C̃,Ω, 0).

This completes the proof of (c). □

Remark 3.8. The difference between our definition and Definition 5 of [2] is that
the assumption of strong quasiboundedness on the operator C in [2] was moved to
that of the operator S. Moreover, a generalized (S+)-condition in [2] was replaced
by condition (S+)L.

We present an example of operators satisfying condition (S+)0,L which is a par-
ticular form of Theorem 5.1 in [11].

Example 3.9. Let G is a bounded open set in RN and let 2 ≤ p < ∞ and set
p′ := p/(p− 1). Suppose that ρ : R → R is a continuous function on R and there is
a positive constant c such that

0 ≤ ρ(t) ≤ c
[ ∣∣ ∫ t

0
ρ(s)ds

∣∣+ 1
]r

for all t ∈ R,
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where r is an exponent with 0 ≤ r < N/(N − 2). Let A : D(A) ⊂ W 1,p
0 (G) →

[W 1,p
0 (G)]∗ be an operator setting by

⟨Au,φ⟩ =
N∑
i=1

∫
G

[
ρ2(u)

∂u

∂xi
+

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

] ∂φ(x)
∂xi

dx,

where

D(A) = {u ∈W 1,p
0 (G) : ρ2(u)

∂u

∂xi
∈ Lp′(G)}.

Taking into account the p-Laplace operator ∆p defined by

∆pu =
N∑
i=1

∂

∂xi

(∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

)
,

Theorem 5.1 of [11] implies that the operator A satisfies condition (S+)0,L with
respect to the space L = C∞

0 (G).

According to [11], the degree theory for densely defined operators satisfying con-
dition (S+)0,L is used to solve the Dirichlet boundary value problem for the elliptic
equation

N∑
i=1

∂

∂xi

[
ρ2(u)

∂u

∂xi
+

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

]
=

N∑
i=1

∂

∂xi
fi(x),

where fi ∈ Lp′(G) for i = 1, · · · , N .

4. Ranges

This section is devoted to ranges of perturbed strongly quasibounded maximal
monotone operators including openness and surjectivity, by using the degree theory
in Section 3.

The following result says that a given pathwise connected set is included in the
range of the sum of strongly quasibounded maximal monotone operators by a (S+)L-
perturbation. The case when the perturbation C is strongly quasibounded with
respect to S and satisfies a generalized (S+)-condition can be found in [2, Theorem
8].

Theorem 4.1. Let L be a dense subspace of X. Suppose that T : D(T ) ⊂ X → 2X
∗

satisfies (t1), S : L→ X∗ satisfies (s1) and (s2), and C : D(C) ⊂ X → X∗ satisfies
(c1), (c2), and (c3) with L ⊂ D(C). Let Ω be a bounded open subset of X with
0 ∈ Ω. Suppose that M is a pathwise connected set in X∗ such that
(4.1)
[(T+S+C)(D(T )∩L∩Ω)]∩M ̸= ∅ and [(T+S+C+εJ)(D(T )∩L∩∂Ω)]∩M = ∅

for every ε ≥ 0. Then we have

M ⊂ (T + S + C)(D(T ) ∩ L ∩ Ω).
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Proof. Take an element q∗ from the set [(T + S + C)(D(T ) ∩ L ∩ Ω)] ∩M. Let p∗

be an arbitrary element of M with p∗ ̸= q∗. Let α : [0, 1] → M be a continuous
path in X∗ such that α(0) = q∗ and α(1) = p∗. First, we consider a homotopy
H1,n : [0, 1]× (D(T ) ∩ L) → 2X

∗
defined by

H1,n(t, x) := Tx+ Sx+ Cx+
1

n
Jx− α(t).

We will show that for all large n, the inclusion

(4.2) 0 ∈ H1,n(t, x)

has no solution in [0, 1] × (D(T ) ∩ L ∩ ∂Ω). For this, assume the contrary. Then
there is a subsequence {nk} of {n} such that the inclusion 0 ∈ H1,nk

(t, x) has a
solution in [0, 1] × (D(T ) ∩ L ∩ ∂Ω) for each k ∈ N. For brevity, we may suppose
that for each n ∈ N, there exist tn ∈ [0, 1], xn ∈ D(T ) ∩ L ∩ ∂Ω, and v∗n ∈ Txn such
that

(4.3) v∗n + Sxn + Cxn +
1

n
Jxn = α(tn).

Passing to a subsequence, if necessary, we may suppose that tn → t0 and xn ⇀ x0
for some t0 ∈ [0, 1] and some x0 ∈ X. Since the sequences {xn}, {ψ(∥xn∥)}, and
{α(tn)} are bounded and

⟨v∗n + Sxn, xn⟩ = −⟨Cxn, xn⟩ −
1

n
⟨Jxn, xn⟩+ ⟨α(tn), xn⟩

≤ ψ(∥xn∥) + ∥α(tn)∥ ∥xn∥,
we can choose a positive constant ℓ such that

∥xn∥ ≤ ℓ, ⟨v∗n, xn⟩ ≤ ℓ, and ⟨Sxn, xn⟩ ≤ ℓ for all n ∈ N.

By the strong quasiboundedness of the operators T and S, the sequences {v∗n} and
{Sxn} are bounded in X∗. We may suppose that v∗n ⇀ v∗ and Sxn ⇀ s∗ for some
v∗, s∗ ∈ X∗. By (4.3), we have Cxn ⇀ −v∗ − s∗ + α(t0) and hence

(4.4) lim
n→∞

⟨Cxn + v∗ + s∗ − α(t0), y⟩ = 0 for all y ∈ L{Fn}.

Since the operator T + S is maximal monotone, Lemma 2.4(a) implies that

lim inf
n→∞

⟨v∗n + Sxn, xn − x0⟩ ≥ 0

and therefore

(4.5) lim inf
n→∞

⟨v∗n + Sxn +
1

n
Jxn − α(tn), xn − x0⟩ ≥ 0.

From (4.3), (4.5), and the equality

⟨Cxn + v∗ + s∗ − α(t0), xn⟩ =
⟨
Cxn + v∗n + Sxn +

1

n
Jxn − α(tn), xn

⟩
−

⟨
v∗n + Sxn +

1

n
Jxn − α(tn), xn − x0

⟩
−

⟨
v∗n + Sxn +

1

n
Jxn − α(tn), x0

⟩
+ ⟨v∗ + s∗ − α(t0), xn⟩
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it follows that

(4.6)

lim sup
n→∞

⟨Cxn + v∗ + s∗ − α(t0), xn⟩

≤ − lim inf
n→∞

⟨
v∗n + Sxn +

1

n
Jxn − α(tn), xn − x0

⟩
≤ 0.

Since the operator C satisfies condition (S+)L, we obtain from (4.4) and (4.6) that

xn → x0, x0 ∈ D(C), and Cx0 + v∗ + s∗ − α(t0) = 0.

By the maximal monotonicity of the operator T + S, Lemma 2.4(c) states that

x0 ∈ D(T + S) and v∗ + s∗ ∈ Tx0 + Sx0.

Therefore, we have

α(t0) ∈ Tx0 + Sx0 + Cx0 and x0 ∈ D(T ) ∩ L ∩ ∂Ω,

which contradicts the hypothesis (4.1) with ε = 0. Until now, we have shown that
assertion (4.2) holds for all large n, that is, 0 ̸∈ H1,n(t, ·)(D(T ) ∩ L ∩ ∂Ω) for all
t ∈ [0, 1].

Note that the operator T̂n := T + (1/n)J is maximal monotone by Lemma 2.1,

strongly quasibounded, and 0 ∈ T̂n(0). In view of (4.2), we obtain from Theorem
3.7(d) that

(4.7) deg (H1,n(1, ·),Ω, 0) = deg (H1,n(0, ·),Ω, 0) for all large n.

Next, we consider another homotopy H2,n given by

H2,n(t, x) := t(Tx+ Sx+ Cx+
1

n
Jx− q∗) + (1− t)Jx.

We now prove that for all large n, the inclusion

(4.8) 0 ∈ H2,n(t, x)

has no solution in [0, 1]× (D(T )∩L∩ ∂Ω). If this is not true, then we may suppose
that there are sequences {tn} in [0, 1], {xn} in D(T )∩L∩ ∂Ω, and {v∗n} in X∗ with
v∗n ∈ Txn such that

(4.9) tn(v
∗
n + Sxn + Cxn +

1

n
Jxn − q∗) + (1− tn)Jxn = 0.

We may suppose that tn → t0 and xn ⇀ x0, where t0 ∈ [0, 1] and x0 ∈ X. By
the injectivity of the duality operator J , we have tn ∈ (0, 1]. Moreover, the limit
t0 belongs to (0, 1]. In fact, if t0 = 0, then (4.9), (c3), and the monotonicity of the
operator T + S + (1/n)J imply that

(1− tn)∥xn∥2 ≤ tn⟨v∗n + Sxn +
1

n
Jxn, xn⟩+ (1− tn)⟨Jxn, xn⟩

= −tn⟨Cxn − q∗, xn⟩ ≤ tn[ψ(∥xn∥) + ∥q∗∥ ∥xn∥]
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and so limn→∞ xn = 0, which contradicts the fact that 0 is not contained in the
closed set ∂Ω.
It follows from (t1), (s1), and

⟨v∗n + Sxn, xn⟩ = −⟨Cxn, xn⟩+ ⟨q∗, xn⟩ −
( 1

n
+

1− tn
tn

)
⟨Jxn, xn⟩

≤ ψ(∥xn∥) + ∥q∗∥ ∥xn∥

that the sequence {v∗n +Sxn} is bounded in X∗. Together with the boundedness of
the duality operator J , we may suppose without loss of generality that v∗n+Sxn ⇀
w∗ and Jxn ⇀ j∗ for some w∗, j∗ ∈ X∗. Set t̃0 := (1 − t0)/t0. Since we have by
(4.9) Cxn ⇀ −w∗ + q∗ − t̃0j

∗, we can show as above that

(4.10) lim
n→∞

⟨Cxn + w∗ − q∗ + t̃0j
∗, y⟩ = 0 for all y ∈ L{Fn}

and

(4.11) lim sup
n→∞

⟨Cxn + w∗ − q∗ + t̃0j
∗, xn⟩ ≤ 0.

The relation (4.11) follows, in view of Lemma 2.4(a), from

lim inf
n→∞

⟨v∗n + Sxn − q∗ +
1

n
Jxn +

(1− tn
tn

)
Jxn, xn − x0⟩ ≥ 0.

Since the operator C satisfies condition (S+)L, we obtain from (4.10) and (4.11)
that

xn → x0, x0 ∈ D(C), and Cx0 + w∗ − q∗ + t̃0j
∗ = 0.

Since the sum T + S is maximal monotone and J is continuous, we have

x0 ∈ D(T + S), w∗ ∈ (T + S)x0, and j∗ = Jx0.

Consequently, we get

q∗ ∈ Tx0 + Sx0 + Cx0 + t̃0Jx0 and x0 ∈ D(T ) ∩ L ∩ ∂Ω,

which contradicts the hypothesis (4.1) with ε = t̃0. Therefore, assertion (4.8) is true
for all large n, that is, 0 ̸∈ H2,n(t, ·)(D(T ) ∩ L ∩ ∂Ω) for all t ∈ [0, 1].
Recall that the duality operator J : X → X∗ is bounded, continuous, strictly
monotone and satisfies condition (S+), and ⟨Jx, x⟩ = ϕ(∥x∥) for all x ∈ X, where

ϕ(t) := t2. Moreover, the operator Ĉ : D(Ĉ) ⊂ X → X∗, defined by Ĉx := Cx−q∗,
satisfies condition (S+)L and other conditions with ĉ(F, v)(x) := ⟨Ĉx, v⟩ for x ∈ F

and ⟨Ĉx, x⟩ ≥ −ψ̂(||x||) for x ∈ D(Ĉ), where ψ̂(t) := (1+∥q∗∥)max{ψ(t), t}. Taking
(4.8) into account, Theorem 3.7(c) implies that

(4.12) deg (H2,n(1, ·),Ω, 0) = deg (H2,n(0, ·),Ω, 0) for all large n.

Combining (4.7) with (4.12), we get by Theorem 3.7(a),(b)

deg (T + S + C +
1

n
J − p∗,Ω, 0) = deg (T + S + C +

1

n
J − q∗,Ω, 0)

= deg (J,Ω, 0) = 1,
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which implies that the inclusion p∗ ∈ Tx+Sx+Cx+ (1/n)Jx has a solution xn in
D(T ) ∩ L ∩ Ω. Thus, for all large n, we have

(4.13) v∗n + Sxn + Cxn +
1

n
Jxn = p∗,

where v∗n ∈ Txn. From ⟨v∗n + Sxn, xn⟩ ≤ ψ(∥xn∥) + ∥p∗∥ ∥xn∥, we obtain that the
sequence {v∗n+Sxn} is bounded in X∗. Without loss of generality, we may suppose
that xn ⇀ x0 and v∗n + Sxn ⇀ w∗

0 for some x0 ∈ X and some w∗
0 ∈ X∗. Then

we have by (4.13) Cxn ⇀ −w∗
0 + p∗ and so limn→∞⟨Cxn + w∗

0 − p∗, y⟩ = 0 for all
y ∈ L{Fn}. As before, we get

lim sup
n→∞

⟨Cxn + w∗
0 − p∗, xn⟩ ≤ 0.

A similar argument establishes that xn → x0 ∈ D(T )∩L∩Ω, w∗
0 ∈ Tx0+Sx0, and

Cx0 + w∗
0 − p∗ = 0 and hence

p∗ ∈ Tx0 + Sx0 + Cx0.

From the second of (4.1) with ε = 0, it is clear that x0 ∈ D(T ) ∩ L ∩ Ω. Since p∗

was arbitrary in M , we conclude that

M ⊂ (T + S + C)(D(T ) ∩ L ∩ Ω).

This completes the proof. □
Recall that an operator A : D(A) ⊂ X → 2X

∗
is said to be locally injective on a

set Ω ⊂ X if for every x ∈ D(A)∩Ω, there exists an open ball Br(x) in X such that

A is injective on D(A)∩Br(x). If Ω = X, we simply say that A is locally injective.
As a consequence of Theorem 4.1, we obtain an invariance of domain result for
(S+)L-perturbations of strongly quasibounded maximal monotone operators.

Corollary 4.2. Let L be a dense subspace of X. Suppose that T : D(T ) ⊂ X → 2X
∗

satisfies (t1), S : L→ X∗ satisfies (s1) and (s2), and C : D(C) ⊂ X → X∗ satisfies
(c1), (c2), and (c3) with L ⊂ D(C) and C(0) = 0. Let Ω be a bounded open subset
of X. If T +S+C+ εJ is injective on D(T )∩L∩Ω for every ε > 0 and T +S+C
is locally injective on Ω, then the set (T + S + C)(D(T ) ∩ L ∩ Ω) is open in X∗.

Proof. Let p∗ ∈ (T + S + C)(D(T ) ∩ L ∩ Ω) be arbitrary. Then we have

p∗ = v∗ + Sz + Cz for some z ∈ D(T ) ∩ L ∩ Ω and some v∗ ∈ Tz.

For simplicity, we may suppose that z = 0, v∗ = 0, and p∗ = 0. It is possible if we

consider the sets D(T̃ ) ≡ D(T ) − z, D(C̃) ≡ D(C) − z, and Ω̃ ≡ Ω − z, and the

operators T̃ x ≡ T (x+ z)− Tz, S̃x ≡ S(x+ z)− Sz, and C̃x ≡ C(x+ z)− Cz.
Since T + S + C is locally injective on the open set Ω, there exists an open ball
Bs(0) in X such that Bs(0) ⊂ Ω and T + S + C is injective on D(T ) ∩ L ∩ Bs(0).
To apply Theorem 4.1, we have to show that there is a positive number r such that

(4.14) [(T + S + C + εJ)(D(T ) ∩ L ∩ ∂Bs(0))] ∩Br(0) = ∅ for every ε ≥ 0,

where Br(0) ⊂ X∗. Assume on the contrary that for a sequence {rn} in (0,∞) with
rn → 0, there exist the corresponding sequences {εn} in [0,∞), {p∗n} in X∗ with
p∗n ∈ Brn(0), {xn} in D(T ) ∩ L ∩ ∂Bs(0), and {v∗n} in X∗ with v∗n ∈ Txn such that

(4.15) v∗n + Sxn + Cxn + εnJxn = p∗n for each n ∈ N.
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Then {xn} is bounded, p∗n → 0, and ⟨v∗n + Sxn, xn⟩ ≤ ψ(s) + s∥p∗n∥. By the strong
quasiboundedness of the operator T + S, the sequence {v∗n + Sxn} is bounded in
X∗. We may suppose without loss of generality that εn → ε0, xn ⇀ x0 ∈ X,
v∗n + Sxn ⇀ w∗ ∈ X∗, and Jxn ⇀ j∗ ∈ X∗. Note that ε0 ∈ [0,∞). Indeed, if
ε0 = ∞, then the monotonicity of T + S implies that

εns
2 = εn∥xn∥2 ≤ ⟨v∗n + Sxn, xn⟩+ εn⟨Jxn, xn⟩ ≤ ψ(s) + s∥p∗n∥ < K

for some positive constant K, which yields a contradiction.
Since we have by (4.15) Cxn ⇀ −w∗ − ε0j

∗ and the operator C satisfies condition
(S+)L, a standard argument proves that xn → x0 ∈ D(C) and Cx0+w

∗+ε0j
∗ = 0.

Since the operator T + S is maximal monotone and J is continuous, we obtain
that x0 ∈ D(T + S), w∗ ∈ (T + S)x0, and j∗ = Jx0 and hence x0 ∈ D(T ) ∩
L ∩ ∂Bs(0) and 0 ∈ Tx0 + Sx0 + Cx0 + ε0Jx0. On the other hand, we have
0 ∈ (T + S + C + ε0J)(D(T ) ∩ L ∩ Bs(0)). This contradicts the injectivity of the

operator T +S+C+ ε0J on the set D(T )∩L∩Bs(0). Thus, assertion (4.14) holds.
Applying Theorem 4.1 with Ω = Bs(0) and M = Br(0), we have

Br(0) ⊂ (T + S + C)(D(T ) ∩ L ∩Bs(0)).

Hence it follows from Bs(0) ⊂ Ω that the set (T + S +C)(D(T )∩L∩Ω) is open in
X∗. This completes the proof. □

Remark 4.3. When T ≡ 0 and C is strongly quasibounded with respect to S and
satisfies a generalized (S+)-condition, Theorem 4.1 and Corollary 4.2 were studied
in [13, Theorem 7], with the aid of the degree theory for densely defined maps
involving operators of type (S+) in [11]. For the case where S ≡ 0 and C is strongly
quasibounded and generalized pseudomonotone, we refer to Theorem 6.3 of [12].

From Corollary 4.2, we get a surjectivity result on the sum T + S + C under a
weak coercivity condition.

Corollary 4.4. Let L, T, S, and C be as in Corollary 4.2. Suppose that T + S +
C + εJ is injective on D(T ) ∩ L for every ε > 0 and T + S +C is locally injective.
If T + S + C is weakly coercive, that is,

inf {∥v∗ + Sx+ Cx∥ : v∗ ∈ Tx} → ∞ as ∥x∥ → ∞, x ∈ D(T ) ∩ L,

then the operator T + S + C is surjective.

Proof. Applying Corollary 4.2 with Ω = X, the set (T + S + C)(D(T ) ∩ L) is
nonempty and open in X∗. To prove the surjectivity of the operator T + S + C, it
is sufficient to verify that this set is closed in the connected space X∗. Let {xn} be
any sequence in D(T ) ∩ L such that

(4.16) lim
n→∞

v∗n + Sxn + Cxn = y∗ for some y∗ ∈ X∗,

where v∗n ∈ Txn. Then the sequence {xn} is bounded in X. In fact, assume on
the contrary that there is a subsequence of {xn}, denoted again by {xn}, such that
limn→∞ ∥xn∥ = ∞. By the weak coercivity of the operator T + S + C, we get

lim
n→∞

∥v∗n + Sxn + Cxn∥ = ∞,
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which contradicts (4.16). Set y∗n := v∗n +Sxn +Cxn. Since {xn} is thus bounded in
X and

⟨v∗n + Sxn, xn⟩ = −⟨Cxn, xn⟩+ ⟨y∗n, xn⟩ ≤ ψ(∥xn∥) + ∥y∗n∥ ∥xn∥,

the strong quasiboundedness of T + S implies that the sequence {v∗n + Sxn} is
bounded in X∗. So we may suppose that xn ⇀ x0 and v∗n + Sxn ⇀ w∗ for some
x0 ∈ X and some w∗ ∈ X∗. Since Cxn ⇀ y∗−w∗, the operator C satisfies condition
(S+)L, and the operator T + S is maximal monotone, we can show that

xn → x0, x0 ∈ D(C) ∩D(T + S), w∗ ∈ (T + S)x0, and Cx0 − y∗ + w∗ = 0.

From y∗ ∈ Tx0 + Sx0 + Cx0 ⊂ (T + S + C)(D(T ) ∩ L), it is clear that the set
(T + S + C)(D(T ) ∩ L) is closed in X∗. We conclude that the operator T + S + C
is surjective. This completes the proof. □

We close this section by illustrating the above results by the following simple
example.

Example 4.5. Let G be a bounded open set in RN and let 2 ≤ p < ∞. Set
X =W 1,p

0 (G). Let S,C : X → X∗ be two operators setting by

⟨Su, φ⟩ =
∫
G
|u|p−2uφdx,

⟨Cu,φ⟩ =
N∑
i=1

∫
G

∣∣∣ ∂u
∂xi

∣∣∣p−2 ∂u

∂xi

∂φ

∂xi
dx.

Then it is obvious that the operator S is completely continuous, monotone, S(0) = 0
and the operator C is bounded, continuous, uniformly monotone, C(0) = 0, and
satisfies condition (S+) on X; see [15, Theorem 2.2] and [18, Proposition 26.10]. In
particular, the operator S is maximal monotone, bounded and the operator C is
injective and coercive. If we take T = ∂χ in Section 2, then Corollaries 4.2 and 4.4
apply, on observing that the operator T +S+C+ εJ is injective on D(T ) for every
ε ≥ 0 and the operator T + S + C is (weakly) coercive.

Remark 4.6. In [11], we see that condition (S+)0,L on the whole abstract operator
must be verified to solve a given differential equation; see Example 3.9. In our
approach, each term of the possible whole operator is at first characterized. In
many cases, it is more convenient when applying.

5. Zeros

In this section, we deal with the solvability for a nonlinear inclusion of the form
T + S + C, based on the degree theory stated in Section 3.

We now establish the existence of zeros for the inclusion with a regularization
method which is a generalization of Theorem 4 in [10].
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Theorem 5.1. Let L be a dense subspace of X. Suppose that T : D(T ) ⊂ X → 2X
∗

satisfies (t1), S : L→ X∗ satisfies (s1) and (s2), and C : D(C) ⊂ X → X∗ satisfies
(c1), (c2), and (c3) with L ⊂ D(C). Let Ω be a bounded open subset of X with
0 ∈ Ω. Let Λ be a positive number with Λ > Q, where Q1 := inf {∥x∥ : x ∈ ∂Ω},
Q2 := ψ( sup{∥x∥ : x ∈ ∂Ω}) and Q := Q2/Q

2
1. If

(5.1) 0 ̸∈ Tx+ Sx+ Cx+ λJx for all (λ, x) ∈ (0,Λ)× (D(T ) ∩ L ∩ ∂Ω),
then the inclusion

0 ∈ Tx+ Sx+ Cx

has a solution x in D(T ) ∩ L ∩ Ω. If, in addition, (5.1) holds for λ = 0, then the
solution x belongs to the set D(T ) ∩ L ∩ Ω.

Proof. Let ε0 be a positive number such that Q + ε0 < Λ. Fix ε ∈ (0, ε0] and
consider a homotopy given by

H(t, x) := t(Tx+ Sx+ Cx+ εJx) + (1− t)Jx.

First, we will prove that the inclusion 0 ∈ H(t, x) has no solution in D(T )∩L∩ ∂Ω
for every t ∈ [0, 1]. Assume that the assertion is false. Then there exist sequences
{tn} in [0, 1], {xn} in D(T ) ∩ L ∩ ∂Ω, and {v∗n} in X∗ with v∗n ∈ Txn such that

(5.2) tn(v
∗
n + Sxn + Cxn + εJxn) + (1− tn)Jxn = 0.

We may suppose that tn → t0 and xn ⇀ x0 for some t0 ∈ [0, 1] and some x0 ∈ X.
Then we have tn ∈ (0, 1] for all n ∈ N and the limit t0 belongs to (0, 1]. Indeed, if
t0 = 0, then (5.2), (c3), and the monotonicity of the operator T +S+εJ imply that
(5.3)

(1− tn)Q
2
1 ≤ (1− tn)∥xn∥2 ≤ tn⟨v∗n + Sxn + εJxn, xn⟩+ (1− tn)⟨Jxn, xn⟩

= −tn⟨Cxn, xn⟩ ≤ tnQ2

and so Q1 = 0, which is a contradiction. Since the sum T + S is strongly quasi-
bounded and we have

⟨v∗n + Sxn, xn⟩ = −⟨Cxn, xn⟩ −
(
ε+

1− tn
tn

)
⟨Jxn, xn⟩ ≤ Q2,

the sequence {v∗n + Sxn} is clearly bounded in X∗. We may suppose without loss
of generality that v∗n + Sxn ⇀ w∗ and Jxn ⇀ j∗ for some w∗, j∗ ∈ X∗. Set
t̃0 := (1− t0)/t0. From Cxn ⇀ −w∗ − (ε+ t̃0)j

∗, it is obvious that

(5.4) lim
n→∞

⟨Cxn + w∗ + (ε+ t̃0)j
∗, y⟩ = 0 for all y ∈ L{Fn}.

In view of Lemma 2.4(a), we get

lim inf
n→∞

⟨v∗n + Sxn +
(
ε+

1− tn
tn

)
Jxn, xn − x0⟩ ≥ 0,

which implies along with (5.2)

(5.5) lim sup
n→∞

⟨Cxn + w∗ + (ε+ t̃0)j
∗, xn⟩ ≤ 0.

Since the operator C satisfies condition (S+)L, it follows from (5.4) and (5.5) that

xn → x0, x0 ∈ D(C), and Cx0 + w∗ + (ε+ t̃0)j
∗ = 0.
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Since the operator T + S is maximal monotone and J is continuous, we have

x0 ∈ D(T + S), w∗ ∈ (T + S)x0, and j∗ = Jx0.

Therefore, we obtain

x0 ∈ D(T ) ∩ L ∩ ∂Ω and 0 ∈ Tx0 + Sx0 + Cx0 + (ε+ t̃0)Jx0,

which contradicts the hypothesis (5.1) with ε+ t̃0 ∈ (0,Λ), on observing from (5.3)
that t̃0 = limn→∞(1 − tn)/tn ≤ Q. Thus, we have shown that 0 ̸∈ H(t, ·)(D(T ) ∩
L ∩ ∂Ω) for all t ∈ [0, 1].

Note that the operator T̂ε := T + εJ is maximal monotone by Lemma 2.1, strongly
quasibounded, and 0 ∈ T̂ε(0). Using some properties of the degree stated in Theo-
rem 3.7, we obtain that

deg (T + S + C + εJ,Ω, 0) = deg (J,Ω, 0) = 1

and hence the inclusion

0 ∈ Tx+ Sx+ Cx+ εJx

has a solution xε in D(T ) ∩ L ∩ Ω.
For a sequence {εn} in (0, ε0] with εn → 0, let {xεn} be the corresponding sequence
in D(T )∩L∩Ω such that 0 ∈ Txεn + Sxεn +Cxεn + εnJxεn . Setting xn := xεn , it
can be rewritten as

v∗n + Sxn + Cxn + εnJxn = 0,

where v∗n ∈ Txn. Since T + S is strongly quasibounded, it follows from ⟨v∗n +
Sxn, xn⟩ ≤ ψ(∥xn∥) that the sequence {v∗n + Sxn} is bounded in X∗. We may
suppose that xn ⇀ x0 and v∗n +Sxn ⇀ w∗ for some x0 ∈ X and some w∗ ∈ X∗. As
Cxn ⇀ −w∗, we can show as above that

lim sup
n→∞

⟨Cxn + w∗, xn⟩ ≤ 0 and lim
n→∞

⟨Cxn + w∗, y⟩ = 0 for all y ∈ L{Fn}.

Since C satisfies condition (S+)L and T + S is maximal monotone, we obtain that

xn → x0, x0 ∈ D(C) ∩D(T + S), Cx0 + w∗ = 0, and w∗ ∈ (T + S)x0.

We conclude that x0 ∈ D(T ) ∩ L ∩ Ω and 0 ∈ Tx0 + Sx0 + Cx0. If, in addition,
hypothesis (5.1) holds for λ = 0, then it is trivial that the limit x0 belongs to the
open set Ω. This completes the proof. □

From Theorem 5.1, we deduce a surjectivity result under a coercivity condition.

Corollary 5.2. Let L be a dense subspace of X. Suppose that T : D(T ) ⊂ X → 2X
∗

satisfies (t1), S : L→ X∗ satisfies (s1) and (s2), and C : D(C) ⊂ X → X∗ satisfies
(c1), (c2), and (c3) with L ⊂ D(C). If the following coercivity condition

lim
∥x∥→∞

x∈D(T )∩L, v∗∈Tx

⟨v∗ + Sx+ Cx, x⟩
∥x∥

= +∞

holds, then the operator T + S + C is surjective.
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Proof. Let h∗ ∈ X∗ be arbitrary but fixed. By the coercivity condition, there exists
an open ball Bs(0) in X such that

⟨v∗ + Sx+ Cx, x⟩
∥x∥

> ∥h∗∥

for all x ∈ D(T ) ∩ L ∩ ∂Bs(0) and all v∗ ∈ Tx, which implies

⟨v∗ + Sx+ Cx+ λJx− h∗, x⟩ ≥ ⟨v∗ + Sx+ Cx, x⟩ − ∥h∗∥ ∥x∥ > 0

for all λ ∈ [0,∞). Note that

0 ̸∈ Tx+ Sx+ Cx+ λJx− h∗ for all (λ, x) ∈ [0,∞)× (D(T ) ∩ L ∩ ∂Bs(0))

and the operator Ĉ : D(Ĉ) ⊂ X → X∗, defined by Ĉx := Cx−h∗, satisfies condition
(S+)L and other conditions, as we observed in the proof of Theorem 4.1. Applying

Theorem 5.1 with C = Ĉ and Ω = Bs(0), the inclusion h∗ ∈ Tx + Sx + Cx has a
solution in D(T )∩L∩Bs(0). Therefore, the operator T +S+C is surjective. This
completes the proof. □

Definition 5.3. Let C : D(C) ⊂ X → X∗ be a single-valued operator with L ⊂
D(C). We say that the operator C satisfies condition (S+)0,D(C) if for every sequence
{Fn} in F(L) satisfying (3.1) and for every sequence {xn} in D(C) with

xn ⇀ x0, lim sup
n→∞

⟨Cxn, xn⟩ ≤ 0, and lim
n→∞

⟨Cxn, y⟩ = 0 for all y ∈ L{Fn},

we have xn → x0, x0 ∈ D(C), and Cx0 = 0. We say that the operator C satisfies
condition (S+)D(C) if the operator Ch : D(C) → X∗, defined by Chx := Cx − h,
satisfies condition (S+)0,D(C) for every h ∈ X∗.

From Definitions 3.1 and 5.3 and Example 3.2 of [3], it is obvious that (S+)D(C)

is a proper subclass of (S+)L. We give an analogue of Lemma 3.2 about (S+)D(C),
as a slight modification of Theorem 3.3 in [3].

Lemma 5.4. Let L be a dense subspace of X. Then the following relations hold:

(a) If C : D(C) = X → X∗ is a strongly quasibounded demicontinuous operator
that satisfies condition (S+) on D(C), then the operator C satisfies condition
(S+)D(C).

(b) If C : D(C) ⊂ X → X∗ is bounded with L ⊂ D(C) and satisfies condition
(S+)D(C), then D(C) = X and C : X → X∗ is demicontinuous and satisfies
condition (S+) on X.

Remark 5.5. When S ≡ 0, Theorem 5.1 and Corollary 5.2 reduce to Theorem 4
and Corollary 1 of [10], respectively. However, stronger condition (S+)D(C) on the
operator C was required in [10].

Remark 5.6. If the operators T, S,C are the same as in Example 4.5, then Theorem
5.1 and Corollary 5.2 also apply, on observing from the strict monotonicity of the
operator C that 0 ̸∈ Tx+ Sx+Cx+ λJx for all (λ, x) ∈ [0,∞)× (D(T )∩L∩ ∂Ω).
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