# DISCUSSION ON THE EQUIVALENCE OF $W$-DISTANCES WITH $\Omega$-DISTANCES 

ANTONIO-FRANCISCO ROLDÁN-LÓPEZ-DE-HIERRO AND ERDAL KARAPINAR<br>Dedicated to Prof. Wataru Takahashi on his 70th birthday


#### Abstract

In this manuscript, we study some relationships between $w$-distances on metric spaces and $\Omega$-distances on $G^{*}$-metric spaces. Concretely we show that the class of all $w$-distances on metric spaces is a subclass of all $\Omega$-distances on $G^{*}$-metric spaces. Then, researchers must be careful because some recent results about $w$-distances (for instances, in the topic of fixed point theory) can be seen as simple consequences of their corresponding results about $\Omega$-distances. In this sense, we show how to translate some results between different metric models.


## 1. Introduction

The notion of metric plays a key role in nonlinear sciences. This concept has been generalized in various directions to get finer results in the related research areas. Some of them are the following ones: quasi-metrics, partial metrics, $G$-metrics, $b$ metrics, fuzzy metrics and probabilistic metrics. Among all, the notion of $G$-metric, introduced by Mustafa and Sims [12] have attracted attention of number of authors in the last decade. Recently, Samet et al. [15] and Jleli and Samet [7] proved that the topology of $G$-metric space and associated metric space coincides. Very recently, An et al. [1] re-proved the equivalence of $G$-metric topology with corresponding metric topology by repeating the same arguments as in $[7,15]$. On the other hand, Kada et al. [8] introduced the concept of $w$-distance associated to a metric space and proved the existence and uniqueness of certain mappings in the setting of $w$ distance. Later, the notion of $\Omega$-distance introduced by Saadati et al. [14]) as a natural generalization of $w$-distance in the context of $G$-metric space. In fact, this generalization is weak since the authors [14] use the rectangular inequality in the definition of $\Omega$-distance although in corresponding part of the $w$-distance definition, the triangular inequality was not used. The literature on these topics has grown up very quickly (see e.g. $[3,4,14,16]$ ).

After remarkable observations in $[7,15]$, it is quite natural to investigate the relation between $w$-distance and $\Omega$-distance. Unexpectedly, we get there is a close relation.

In this paper, for our purposes, we will consider $\Omega$-distances defined on a weak kind of spaces, that is, on $G^{*}$-metric spaces, firstly introduced by Roldán et al [13]. In this setting, we show that the class of all $w$-distances on metric spaces is a

[^0]subclass of all $\Omega$-distances on $G^{*}$-metric spaces. This paper can be considered as a continuation of $[1,2,3,4]$.

## 2. Preliminaries

In this section, we recollect some fundamental definitions and basic results. Throughout the paper, for a non-empty set $X$, let $X^{2}$ be the product space $X \times X$ and $X^{3}=X \times X \times X$.
Definition 2.1 (Mustafa and Sims [12]). A generalized metric (or a G-metric) on $X$ is a mapping $G: X^{3} \rightarrow[0, \infty)$ verifying, for all $x, y, z \in X$ :
$\left(G_{1}\right) G(x, x, x)=0$.
$\left(G_{\mathbf{2}}\right) G(x, x, y)>0$ if $x \neq y$.
$\left(G_{3}\right) G(x, x, y) \leq G(x, y, z)$ if $y \neq z$.
( $\left.G_{4}\right) G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots$ (symmetry in all three variables).
$\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ (rectangle inequality).
Taking into account that the product space of $G$-metric spaces need not be a $G$-metric space, Roldán et al. introduced the following notion.
Definition 2.2 (Roldán and Karapınar [13]). A $G^{*}$-metric on $X$ is a mapping $G: X^{3} \rightarrow[0, \infty)$ verifying $\left(G_{1}\right),\left(G_{2}\right),\left(G_{4}\right)$ and $\left(G_{5}\right)$.

A $G^{*}$-metric on a set $X$ lets us to consider a Hausdorff topology $\tau_{G}$ on $X$ (see [13]).
Lemma 2.3. If $(X, d)$ is a metric space and we define, for all $x, y, z \in X$, $G_{d}(x, y, z)=\max (d(x, y), d(x, z), d(y, z))$, then $G_{d}$ is a $G$-metric on $X$ (and also a $G^{*}$-metric).

Conversely, if $(X, G)$ is a $G^{*}$-metric space and we define $d_{G}(x, y)=$ $\max (G(x, y, y), G(y, x, x))$ for all $x, y \in X$, then $d_{G}$ is a metric on $X$.

As we shall use henceforth, the following definition can also be considered in $G^{*}$-metric spaces.
Definition 2.4 (R. Saadati et al. [14]). Let $(X, G)$ be a $G$-metric space. Then a function $\Omega: X^{3} \rightarrow[0, \infty)$ is called an $\Omega$-distance on $X$ if the following conditions are satisfied:
(a) $\Omega(x, y, z) \leq \Omega(x, a, a)+\Omega(a, y, z)$ for all $x, y, z, a \in X$;
(b) for any $x, y \in X, \Omega(x, y, \cdot), \Omega(x, \cdot, y): X \rightarrow[0, \infty)$ are lower semi-continuous;
(c) for each $\varepsilon>0$, there exists a $\delta>0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G(x, y, z) \leq \varepsilon$.
The notion of $w$-distance was introduced by Kada et al. in [8].
Definition 2.5 (Kada et al. [8]). Let $(X, d)$ be a metric space. A function $p$ : $X \times X \rightarrow[0, \infty)$ is called a $w$-distance on $X$ if it satisfies the following properties:
(1) $p(x, z) \leq p(x, y)+p(y, z)$ for all $x, y, z \in X$;
(2) $p$ is lower semi-continuous in its second variable, i.e., if $x \in X$ and $\left\{y_{n}\right\} \rightarrow$ $y \in X$, then $p(x, y) \leq \liminf _{n \rightarrow \infty} p\left(x, y_{n}\right) ;$
(3) for each $\varepsilon>0$, there exists $\delta>0$ such that if $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$, then $d(x, y) \leq \varepsilon$.

## 3. Relationships

A first approach to the problem of finding relationships between $w$-distances and $\Omega$-distances is the following result.
Lemma 3.1. Let $\Omega$ be a $\Omega$-distance on a $G^{*}$-metric space $(X, G)$ and define $q_{\Omega}$ : $X^{2} \rightarrow[0, \infty)$ by

$$
q_{\Omega}(x, y)=\Omega(x, y, y)+\Omega(y, x, x) \quad \text { for all } x, y \in X
$$

Then $q_{\Omega}$ is a $w$-distance on the metric space $\left(X, d_{G}^{s}\right)$, where

$$
d_{G}^{s}(x, y)=G(x, x, y)+G(y, x, x) \quad \text { for all } x, y \in X
$$

Proof. We prove three properties.
(a) For all $x, y \in X$ we have that

$$
\begin{aligned}
q_{\Omega}(x, z) & =\Omega(x, z, z)+\Omega(z, x, x) \\
& \leq \Omega(x, y, y)+\Omega(y, z, z)+\Omega(z, y, y)+\Omega(y, x, x) \\
& =[\Omega(x, y, y)+\Omega(y, x, x)]+[\Omega(y, z, z)+\Omega(z, y, y)] \\
& =q_{\Omega}(x, y)+q_{\Omega}(y, z) .
\end{aligned}
$$

(b) The result follows Definition 2.4 (b).
(c) Let $\varepsilon>0$ and let $\delta>0$ such that

$$
\left.\begin{array}{l}
\Omega(x, a, a) \leq \delta \\
\Omega(a, y, z) \leq \delta
\end{array}\right\} \Rightarrow G(x, y, z) \leq \frac{\varepsilon}{2}
$$

Now, let $x, y, z \in X$ be such that $q_{\Omega}(z, x) \leq \delta$ and $q_{\Omega}(z, y) \leq \delta$. Then

$$
\left.\begin{array}{l}
\Omega(x, z, z) \leq \Omega(z, x, x)+\Omega(x, z, z)=q_{\Omega}(z, x) \leq \delta \\
\Omega(z, y, y) \leq \Omega(z, y, y)+\Omega(y, z, z)=q_{\Omega}(z, y) \leq \delta
\end{array}\right\} \Rightarrow G(x, y, y) \leq \frac{\varepsilon}{2},
$$

Therefore $d_{G}^{s}(x, y)=G(x, x, y)+G(y, x, x) \leq \varepsilon / 2+\varepsilon / 2=\varepsilon$.
The last result has two drawbacks. Firstly, it is only possible to generate symmetric $w$-distances. Furthermore, it is impossible to get the original $\Omega$-distance using $q_{\Omega}$ since different $\Omega$-distances induce the same $w$-distance. For instance, if $X=[0, \infty)$ provided with the $G$-metric

$$
G(x, y, z)=\max (|x-y|,|x-z|,|y-z|) \quad \text { for all } x, y, z \in X,
$$

then the mappings $\Omega_{1}(x, y, z)=x+2 y+3 z$ and $\Omega_{2}(x, y, z)=2 x+2 y+2 z$, defined for all $x, y, z \in X$, are $\Omega$-distances on $(X, G)$. However, $q_{\Omega_{1}}(x, y)=q_{\Omega_{2}}(x, y)=6 x+6 y$ for all $x, y \in X$.

To overcome these drawbacks, we present the following results.
Theorem 3.2. Let p be a w-distance on a metric space $(X, d)$ and define $\Omega_{p}: X^{3} \rightarrow$ $[0, \infty)$ by

$$
\Omega_{p}(x, y, z)=p(x, x)+p(x, y)+p(x, z) \quad \text { for all } x, y, z \in X
$$

Then $\Omega_{p}$ is a $\Omega$-distance on ( $X, G_{d}$ ). Moreover, for all $x, y, z, a \in X$, the following properties hold.
$\left(P_{1}\right) \quad \frac{2}{3} \Omega_{p}(x, x, x) \leq \Omega_{p}(x, x, y)$.
$\left(P_{2}\right) \quad \Omega_{p}(x, y, z) \leq \Omega_{p}(x, a, a)+\Omega_{p}(a, y, z)-\frac{1}{3} \Omega_{p}(a, a, a)$.
$\left(P_{3}\right) \quad \Omega_{p}(x, x, y)-\frac{2}{3} \Omega_{p}(x, x, x)=\frac{1}{2}\left[\Omega_{p}(x, y, y)-\frac{1}{3} \Omega_{p}(x, x, x)\right]$.
$\left(P_{4}\right) \quad$ For all $\varepsilon>0$ there exists $\delta>0$ such that

$$
\left.\begin{array}{l}
\Omega_{p}(z, z, x)-\frac{2}{3} \Omega_{p}(z, z, z) \leq \delta \\
\Omega_{p}(z, z, y)-\frac{2}{3} \Omega_{p}(z, z, z) \leq \delta
\end{array}\right\} \Rightarrow G_{d}(x, x, y) \leq \varepsilon
$$

$\left(P_{5}\right) \quad \Omega_{p}(x, y, z)=\Omega_{p}(x, x, y)+\Omega_{p}(x, x, z)-\Omega_{p}(x, x, x)$.
$\left(P_{6}\right) \quad \Omega_{p}(x, y, z)=\Omega_{p}(x, z, y)$.
$\left(P_{7}\right) \quad \Omega_{p}(x, y, y)+\Omega_{p}(x, z, z)=2 \Omega_{p}(x, y, z)$.
In particular, for all $x, y, z \in X$,

$$
\begin{equation*}
p(x, y)=\Omega_{p}(x, x, y)-\frac{2}{3} \Omega_{p}(x, x, x)=\frac{1}{2}\left[\Omega_{p}(x, y, y)-\frac{1}{3} \Omega_{p}(x, x, x)\right] \tag{3.1}
\end{equation*}
$$

Proof. Clearly, $\Omega_{p}(x, y, z) \geq 0$ for all $x, y, z \in X$. First, we prove the three properties that define a $\Omega$-distance.
(a) Concretely, we prove ( $P_{2}$ ). Applying (1), we have that

$$
\begin{aligned}
\Omega_{p}(x, y, z) & =p(x, x)+p(x, y)+p(x, z) \\
& \leq p(x, x)+p(x, a)+p(a, y)+p(x, a)+p(a, z) \\
& \leq[p(x, x)+p(x, a)+p(x, a)]+[p(a, a)+p(a, y)+p(a, z)]-p(a, a) \\
& =\Omega_{p}(x, a, a)+\Omega_{p}(a, y, z)-\frac{1}{3} \Omega_{p}(a, a, a) .
\end{aligned}
$$

In particular, $\Omega_{p}(x, y, z) \leq \Omega_{p}(x, a, a)+\Omega_{p}(a, y, z)$.
(b) Given $x, y, z \in X$, the mappings $\Omega_{p}(x, \cdot, z)=p(x, x)+p(x, \cdot)+p(x, z)$ and $\Omega_{p}(x, y, \cdot)=p(x, x)+p(x, y)+p(x, \cdot)$ are lower semi-continuous since $p$ is lower semi-continuous in its second variable.
(c) Fix $\varepsilon>0$ arbitrary. Applying (3) to $\varepsilon / 2$, there exists $\delta>0$ such that

$$
\left.\begin{array}{l}
p(z, x) \leq \delta \\
p(z, y) \leq \delta
\end{array}\right\} \Rightarrow d(x, y) \leq \frac{\varepsilon}{2}
$$

Let $x, y, z, a \in X$ verifying $\Omega_{p}(x, a, a) \leq \delta$ and $\Omega_{p}(a, y, z) \leq \delta$. Then

$$
\left.\begin{array}{l}
p(x, x) \leq p(x, x)+p(x, a)+p(x, a)=\Omega_{p}(x, a, a) \leq \delta \\
p(x, a) \leq p(x, x)+p(x, a)+p(x, a)=\Omega_{p}(x, a, a) \leq \delta \\
p(a, a) \leq p(a, a)+p(a, y)+p(a, z)=\Omega_{p}(a, y, z) \leq \delta \\
p(a, y) \leq p(a, a)+p(a, y)+p(a, z)=\Omega_{p}(a, y, z) \leq \delta
\end{array}\right\} \Rightarrow d(x, a) \leq \frac{\varepsilon}{2} ;
$$

$$
\left.\begin{array}{l}
p(a, a) \leq p(a, a)+p(a, y)+p(a, z)=\Omega_{p}(a, y, z) \leq \delta \\
p(a, z) \leq p(a, a)+p(a, y)+p(a, z)=\Omega_{p}(a, y, z) \leq \delta \\
p(a, y) \leq p(a, a)+p(a, y)+p(a, z)=\Omega_{p}(a, y, z) \leq \delta \\
p(a, z) \leq p(a, a)+p(a, y)+p(a, z)=\Omega_{p}(a, y, z) \leq \delta
\end{array}\right\} \Rightarrow d(a, z) \leq \frac{\varepsilon}{2} ;
$$

Therefore

$$
\begin{aligned}
& d(x, y) \leq d(x, a)+d(a, y) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \text { and } \\
& d(x, z) \leq d(x, a)+d(a, z) \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Hence

$$
G_{d}(x, y, z)=\max (d(x, y), d(x, z), d(y, z)) \leq \max (\varepsilon, \varepsilon, \varepsilon / 2)=\varepsilon .
$$

We conclude that $\Omega_{p}$ is a $\Omega$-distance on $\left(X, G_{d}\right)$. Next, we prove all announced properties.
$\left(P_{1}\right)$ It is clear that $\Omega_{p}(x, x, y)-\frac{2}{3} \Omega_{p}(x, x, x)=2 p(x, x)+p(x, y)-\frac{2}{3} 3 p(x, x)=$ $p(x, y) \geq 0$.
$\left(P_{2}\right)$ Already proved.
$\left(P_{3}\right)$ On the one hand

$$
\frac{1}{2} \Omega_{p}(x, y, y)-\frac{1}{6} \Omega_{p}(x, x, x)=\frac{1}{2}[p(x, x)+2 p(x, y)]-\frac{1}{6} 3 p(x, x)=p(x, y),
$$

and on the other hand

$$
\Omega_{p}(x, x, y)-\frac{2}{3} \Omega_{p}(x, x, x)=[2 p(x, x)+p(x, y)]-\frac{2}{3} 3 p(x, x)=p(x, y) .
$$

This also proved (3.1).
$\left(P_{4}\right)$ Notice that

$$
\begin{aligned}
& \Omega_{p}(z, z, x)-\frac{2}{3} \Omega_{p}(z, z, z)=2 p(z, z)+p(z, x)-\frac{2}{3} 3 p(z, z)=p(z, x), \\
& \Omega_{p}(z, z, y)-\frac{2}{3} \Omega_{p}(z, z, z)=2 p(z, z)+p(z, y)-\frac{2}{3} 3 p(z, z)=p(z, y), \\
& G_{d}(x, x, y)=\max (d(x, x), d(x, y))=d(x, y) .
\end{aligned}
$$

Therefore, property $\left(P_{4}\right)$ is equivalent to axiom (3) of a $w$-distance.
$\left(P_{5}\right)$ It follows from

$$
\begin{aligned}
& \Omega_{p}(x, x, y)+\Omega_{p}(x, x, z)-\Omega_{p}(x, x, x) \\
& \quad=[2 p(x, x)+p(x, y)]+[2 p(x, x)+p(x, z)]-3 p(x, x) \\
& \quad=p(x, x)+p(x, y)+p(x, z)=\Omega_{p}(x, y, z) .
\end{aligned}
$$

$\left(P_{6}\right)$ It is obvious.
$\left(P_{7}\right)$ It is clear that

$$
\begin{aligned}
\Omega_{p}(x, y, y)+\Omega_{p}(x, z, z) & =[p(x, x)+2 p(x, y)]+[p(x, x)+2 p(x, z)] \\
& =2[p(x, x)+p(x, y)+p(x, z)]=2 \Omega_{p}(x, y, z) .
\end{aligned}
$$

Next, we study the converse of the previous result.
Theorem 3.3. Let $\Omega$ be a $\Omega$-distance on a $G^{*}$-metric space $(X, G)$ verifying properties $\left(P_{1}\right)-\left(P_{4}\right)$ of Theorem 3.2, and define $p_{\Omega}: X^{2} \rightarrow[0, \infty)$ by

$$
p_{\Omega}(x, y)=\Omega(x, x, y)-\frac{2}{3} \Omega(x, x, x) \quad \text { for all } x, y \in X .
$$

Then $p_{\Omega}$ is a $w$-distance on the metric space $\left(X, d_{G}\right)$. Furthermore, if $\Omega$ also verifies $\left(P_{5}\right)$, then

$$
\Omega_{p_{\Omega}}=\Omega .
$$

Proof. By property $\left(P_{1}\right), p_{\Omega}(x, y) \geq 0$ for all $x, y \in X$. We prove three properties.
(1) $\left(P_{2}\right)$ and $\left(P_{3}\right)$ yield to

$$
\begin{aligned}
p_{\Omega}(x, z) & =\Omega(x, x, z)-\frac{2}{3} \Omega(x, x, x)=\frac{1}{2}\left[\Omega(x, z, z)-\frac{1}{3} \Omega(x, x, x)\right] \\
& \leq \frac{1}{2}\left[\left(\Omega(x, y, y)+\Omega(y, z, z)-\frac{1}{3} \Omega(y, y, y)\right)-\frac{1}{3} \Omega(x, x, x)\right] \\
& =\frac{1}{2}\left[\left(\Omega(x, y, y)-\frac{1}{3} \Omega(x, x, x)\right)+\left(\Omega(y, z, z)-\frac{1}{3} \Omega(y, y, y)\right)\right] \\
& =p_{\Omega}(x, y)+p_{\Omega}(y, z) .
\end{aligned}
$$

(2) Clearly, $p_{\Omega}(x, \cdot)=\Omega(x, x, \cdot)-\frac{2}{3} \Omega(x, x, x)$ is lower semi-continuous in its second variable.
(3) Let $\varepsilon>0$. By property $\left(P_{4}\right)$, there is $\delta>0$ such that

$$
\left.\begin{array}{l}
p_{\Omega}(z, x)=\Omega(z, z, x)-\frac{2}{3} \Omega(z, z, z) \leq \delta \\
p_{\Omega}(z, y)=\Omega(z, z, y)-\frac{2}{3} \Omega(z, z, z) \leq \delta
\end{array}\right\} \Rightarrow G(x, x, y) \leq \varepsilon
$$

As the conditions are symmetric on $x$ and $y$,

$$
\left.\begin{array}{l}
p_{\Omega}(z, x) \leq \delta \\
p_{\Omega}(z, y) \leq \delta
\end{array}\right\} \Rightarrow d_{G}(x, y)=\max (G(x, x, y), G(y, y, x)) \leq \varepsilon
$$

Now suppose that $\left(P_{5}\right)$ holds. Then, for all $x, y, z \in X$, we have that

$$
\begin{aligned}
\Omega_{p_{\Omega}}(x, y, z)= & p_{\Omega}(x, x)+p_{\Omega}(x, y)+p_{\Omega}(x, z)=\left(\Omega(x, x, x)-\frac{2}{3} \Omega(x, x, x)\right) \\
& \quad+\left(\Omega(x, x, y)-\frac{2}{3} \Omega(x, x, x)\right)+\left(\Omega(x, x, z)-\frac{2}{3} \Omega(x, x, x)\right) \\
= & \Omega(x, x, y)+\Omega(x, x, z)-\Omega(x, x, x)=\Omega(x, y, z) .
\end{aligned}
$$

Corollary 3.4. If $p$ is a $w$-distance on a metric space $(X, d)$, then $p_{\Omega_{p}}=p$.
Proof. For all $x, y \in X$,

$$
p_{\Omega_{p}}(x, y)=\Omega_{p}(x, x, y)-\frac{2}{3} \Omega_{p}(x, x, x)=
$$

$$
=2 p(x, x,)+p(x, y)-\frac{2}{3} 3 p(x, x)=p(x, y)
$$

Corollary 3.5. The notion of $w$-distance on a metric space is a particularization of the notion of $\Omega$-distance on a $G^{*}$-metric space.

However, the class of $\Omega$-distances are bigger that the class of $w$-distances since the following $\Omega$-distance do not generate a $w$-distance.
Example 3.6. Let $X=[0, \infty)$ provided with the Euclidean distance $d_{0}(x, y)=|x-y|$ for all $x, y \in X$, and the $G^{*}$-metric associated to $d_{0}$, that is, $G_{d_{0}}(x, y, z)=\max (|x-y|,|x-z|,|y-z|)$ for all $x, y, z \in X$. Define $\Omega(x, y, z)=$ $x+2 y+3 z$ for all $x, y, z \in X$. Then $\Omega$ is a $\Omega$-distance on $\left(X, G_{d_{0}}\right)^{1}$. However, it does not come from a $w$-distance because it is not symmetric in its two last variables.

## 4. Translations between fixed point theorems using w-Distances and $\Omega$-DISTANCES

As application of the previous results, we are going to show how we can translate some results involving $\Omega$-distances to statements using $w$-distances, and viceversa (in some cases). In particular, we apply the introduced relationships to the field of fixed point theory, but our results can also be applied to other areas: Topology, equations theory, etc.

Firstly, we show how we can translate every fixed point result in the setting of $\Omega$-distances to the framework of $w$-distances. This procedure allows us to present a new class of contractivity conditions, as in the following illustrative example.

In [14], the authors proved the following result (necessary preliminaries can be found therein).
Theorem 4.1 (Saadati et al., 2010, Theorem 2.2). Let $(X, \preccurlyeq)$ be a partially ordered set. Suppose that there exists a $G$-metric on $X$ such that $(X, G)$ is a complete $G$ metric space and $\Omega$ is an $\Omega$-distance on $X$ and $T$ is a non-decreasing mapping from $X$ into itself. Let $X$ be $\Omega$-bounded. Suppose that there exists $k \in[0,1)$ such that

$$
\Omega\left(T x, T^{2} x, T w\right) \leq k \Omega(x, T x, w) \quad \text { for all } x \preccurlyeq T x \text { and } w \in X .
$$

Also for every $x \in X$

$$
\inf \left(\Omega(x, y, x)+\Omega(x, y, T x)+\Omega\left(x, T^{2} x, y\right): x \preccurlyeq T x\right)>0
$$

for every $y \in X$ with $y \neq T y$. If there exists an $x_{0} \in X$ with $x_{0} \preccurlyeq T x_{0}$, then $T$ has a fixed point. Moreover, if $u=T v$, then $\Omega(u, v, v)=0$.

Taking into account that if a subset is $p$-bounded, then it is also $\Omega_{p}$-bounded, then we can deduce the following consequence.
Corollary 4.2. Let $p$ be a $w$-distance in a complete metric space $(X, d)$ and let $\preccurlyeq$ be a partial order on $X$. Assume that $X$ is p-bounded. Let $T: X \rightarrow X$ be $a \preccurlyeq-n o n-$ decreasing mapping from $X$ into itself and suppose that there exists $k \in[0,1)$ such that, for all $x \preccurlyeq T x$ and $w \in X$,

$$
p(T x, T x)+p\left(T x, T^{2} x\right)+p(T x, T w) \leq k(p(x, x)+p(x, T x)+p(x, w))
$$

[^1]Also for every $x \in X$

$$
\inf \left(4 p(x, x)+3 p(x, y)+p(x, T x)+p\left(x, T^{2} x\right): x \preccurlyeq T x\right)>0
$$

for every $y \in X$ with $y \neq T y$. If there exists an $x_{0} \in X$ with $x_{0} \preccurlyeq T x_{0}$, then $T$ has a fixed point. Moreover, if $u=T v$, then $p(u, u)=p(u, v)=0$.

Proof. It is only necessary to apply Theorem 4.1 to the $\Omega$-distance $\Omega_{p}$ defined in Theorem 3.2, taking into account that $\left(X, G_{d}\right)$ is a complete $G$-metric space.

Using the introduced relationships, the converse procedure is only possible when the $\Omega$-distance verify some properties, as we show using the following result given in [6].
Theorem 4.3 (Ilić and Rakočević, 2008, Theorem 3.1). Let $X$ be a complete metric space with metric $d$ and let $p$ be a w-distance on $X$. Let $f, g: X \rightarrow X$ commutes, satisfy $g(X) \subset f(X)$ and suppose that there exists a constant $k \in(0,1)$ such that, for every $x, y \in X$,

$$
\begin{aligned}
p(g x, g y) & \leq \lambda M_{p}(x, y) \quad \text { where } \\
M_{p}(x, y) & =\max (p(f x, f y), p(f x, g x), p(f y, g y), p(f x, g y), p(f y, g x))
\end{aligned}
$$

Also assume that for every $y \in X$ with $f(y) \neq g(y)$, we have that

$$
\inf (p(f x, y)+p(f x, g x): x \in X)>0
$$

Then $f$ and $g$ have a common unique fixed point $u$ in $X$ (that is, a point $u \in X$ such that $f u=g u=u$ ) and $p(u, u)=0$.

Taking into account that if $(X, G)$ is a complete $G$-metric space, then $\left(X, d_{G}\right)$ is a complete metric space, the previous result can be enunciated in the following way.
Corollary 4.4. Let $\Omega$ be a $\Omega$-distance verifying properties $\left(P_{1}\right)-\left(P_{5}\right)$ of Theorem 3.2 on a $G^{*}$-metric space $(X, G)$. Let $f, g: X \rightarrow X$ be two commuting mappings such that $g(X) \subset f(X)$ and suppose that there exists a constant $k \in(0,1)$ verifying that, for every $x, y \in X$,

$$
\begin{aligned}
& \Omega(g x, g x, g y)-\frac{2}{3} \Omega(g x, g x, g x) \leq \lambda M_{\Omega}^{f, g}(x, y) \quad \text { where } \\
& M_{\Omega}^{f, g}(x, y)=\max \left(\Omega(f x, f x, f y)-\frac{2}{3} \Omega(f x, f x, f x)\right. \\
& \quad \Omega(f x, f x, g x)-\frac{2}{3} \Omega(f x, f x, f x), \Omega(f y, f y, g y)-\frac{2}{3} \Omega(f y, f y, f y) \\
& \left.\quad \Omega(f x, f x, g y)-\frac{2}{3} \Omega(f x, f x, f x), \Omega(f y, f y, g x)-\frac{2}{3} \Omega(f y, f y, f y)\right) .
\end{aligned}
$$

Also assume that for every $y \in X$ with $f(y) \neq g(y)$, we have that

$$
\inf \left(\Omega(f x, f x, y)+\Omega(f x, f x, g x)-\frac{4}{3} \Omega(f x, f x, f x): x \in X\right)>0
$$

Then $f$ and $g$ have a common unique fixed point $u$ in $X$ and $\Omega(u, u, u)=0$.
Proof. It is only necessary to apply Theorem 4.3 to the $w$-distance $p_{\Omega}$ (that exists by Theorem 3.3).

## References

[1] T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topology and its Appl. 160 (2013), 1486-1493.
[2] J. García-Falset, L. Guran and E. Llorens-Fuster, Fixed points for multivalued contractions with respect to a w-distance, Sci. Math. Jpn. 71 (2010), 83-91.
[3] L. Gholizadeh, A fixed point theorem in generalized ordered metric spaces with application, J. Nonlinear Sci. Appl. 6 (2013), 244-251.
[4] L. Gholizadeh, R. Saadati, W. Shatanawi and S. M. Vaezpour, Contractive mapping in generalized ordered metric spaces with application in integral equations, Math. Probl. Eng. 2011, Article ID 380784, 14 pages.
[5] R. H. Haghi, Sh. Rezapour and N. Shahzad, Be careful on partial metric fixed point results, Topology and its Appl. 160 (2013), 450-454.
[6] D. Ilić and V. Rakočević, Common fixed points for maps on metric space with w-distance, Applied Mathematics and Computation 199 (2008), 599-610.
[7] M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. 2012, 2012:210 (22 November 2012)
[8] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete matrix spaces, Math. Japonica 44 (1996), 381-391.
[9] H. Lakzian, H. Aydi and B.E. Rhoades, Fixed points for $(\varphi, \psi, p)$-weakly contractive mappings in metric spaces with $w$-distance, Applied Mathematics and Computation 219 (2013), 67776782.
[10] L.-J. Lin and C.-S. Chuang, Some new fixed point theorems of generalized nonlinear contractive multivalued maps in complete metric spaces, Computers and Mathematics with Applications 62 (2011), 3555-3566.
[11] J. Marín, S. Romaguera and P. Tirado, Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2011, 2011:2.
[12] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289-297.
[13] A. Roldán and E. Karapınar, Some multidimensional fixed point theorems on partially preordered $G^{*}$-metric spaces under $(\psi, \varphi)$-contractivity conditions, Fixed Point Theory Appl. 2013 2013:158.
[14] R. Saadati, S. M. Vaezpour, P. Vetro and B .E. Rhoades, Fixed point theorems in generalized partially ordered $G$-metric spaces, Math. Comput. Model. 52 (2010), 797-801.
[15] B. Samet, C. Vetro and F. Vetro, Remarks on -Metric Spaces, Int. J. Anal. 2013 (2013), Article ID 917158, 6 pages
[16] W. Shatanawi and A. Pitea, $\Omega$-Distance and coupled fixed point in $G$-metric spaces, Fixed Point Theory Appl., doi: 10.1186/1687-1812-2013-208.

Manuscript received August 30, 2014
revised November 30, 2014

## A.-F. RoldÁn-López-DE-Hierro

Department of Mathematics, University of Jaén, Campus las Lagunillas s/n, 23071, Jaén, Spain E-mail address: afroldan@ujaen.es, aroldan@ugr.es
E. Karapinar

Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey and; Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, Saudi Arabia

E-mail address: ekarapinar@atilim.edu.tr, erdalkarapinar@yahoo.com


[^0]:    2010 Mathematics Subject Classification. 54H25, 46T99, 47H10, 47H09.
    Key words and phrases. $w$-distance, $\Omega$-distance, relationships between different models, fixed point.

[^1]:    ${ }^{1}$ A proof can be found on page ??.

