Journal of Nonlinear and Convex Analysis Volume 16, Number 8, 2015, 1583–1591

DISCUSSION ON THE EQUIVALENCE OF W-DISTANCES WITH Ω -DISTANCES

ANTONIO-FRANCISCO ROLDÁN-LÓPEZ-DE-HIERRO AND ERDAL KARAPINAR

Dedicated to Prof. Wataru Takahashi on his 70th birthday

ABSTRACT. In this manuscript, we study some relationships between w-distances on metric spaces and Ω -distances on G^* -metric spaces. Concretely we show that the class of all w-distances on metric spaces is a subclass of all Ω -distances on G^* -metric spaces. Then, researchers must be careful because some recent results about w-distances (for instances, in the topic of fixed point theory) can be seen as simple consequences of their corresponding results about Ω -distances. In this sense, we show how to translate some results between different metric models.

1. INTRODUCTION

The notion of metric plays a key role in nonlinear sciences. This concept has been generalized in various directions to get finer results in the related research areas. Some of them are the following ones: quasi-metrics, partial metrics, G-metrics, bmetrics, fuzzy metrics and probabilistic metrics. Among all, the notion of G-metric, introduced by Mustafa and Sims [12] have attracted attention of number of authors in the last decade. Recently, Samet *et al.* [15] and Jleli and Samet [7] proved that the topology of G-metric space and associated metric space coincides. Very recently, An et al. [1] re-proved the equivalence of G-metric topology with corresponding metric topology by repeating the same arguments as in [7, 15]. On the other hand, Kada et al. [8] introduced the concept of w-distance associated to a metric space and proved the existence and uniqueness of certain mappings in the setting of wdistance. Later, the notion of Ω -distance introduced by Saadati *et al.* [14]) as a natural generalization of w-distance in the context of G-metric space. In fact, this generalization is weak since the authors [14] use the rectangular inequality in the definition of Ω -distance although in corresponding part of the w-distance definition, the triangular inequality was not used. The literature on these topics has grown up very quickly (see e.g. [3, 4, 14, 16]).

After remarkable observations in [7, 15], it is quite natural to investigate the relation between w-distance and Ω -distance. Unexpectedly, we get there is a close relation.

In this paper, for our purposes, we will consider Ω -distances defined on a weak kind of spaces, that is, on G^* -metric spaces, firstly introduced by Roldán *et al* [13]. In this setting, we show that the class of all *w*-distances on metric spaces is a

²⁰¹⁰ Mathematics Subject Classification. 54H25, 46T99, 47H10, 47H09.

Key words and phrases. w-distance, Ω -distance, relationships between different models, fixed point.

subclass of all Ω -distances on G^* -metric spaces. This paper can be considered as a continuation of [1,2,3,4].

2. Preliminaries

In this section, we recollect some fundamental definitions and basic results. Throughout the paper, for a non-empty set X, let X^2 be the product space $X \times X$ and $X^3 = X \times X \times X$.

Definition 2.1 (Mustafa and Sims [12]). A generalized metric (or a G-metric) on X is a mapping $G: X^3 \to [0, \infty)$ verifying, for all $x, y, z \in X$:

- $(G_1) \ G(x, x, x) = 0.$
- $(G_2) \ G(x, x, y) > 0 \text{ if } x \neq y.$
- (G_3) $G(x, x, y) \leq G(x, y, z)$ if $y \neq z$.
- (G_4) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \dots$ (symmetry in all three variables).
- (G_5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z)$ (rectangle inequality).

Taking into account that the product space of G-metric spaces need not be a G-metric space, Roldán *et al.* introduced the following notion.

Definition 2.2 (Roldán and Karapınar [13]). A G^* -metric on X is a mapping $G: X^3 \to [0, \infty)$ verifying $(G_1), (G_2), (G_4)$ and (G_5) .

A G^* -metric on a set X lets us to consider a Hausdorff topology τ_G on X (see [13]).

Lemma 2.3. If (X,d) is a metric space and we define, for all $x, y, z \in X$, $G_d(x, y, z) = \max(d(x, y), d(x, z), d(y, z))$, then G_d is a G-metric on X (and also a G^* -metric).

Conversely, if (X,G) is a G^* -metric space and we define $d_G(x,y) = \max(G(x,y,y), G(y,x,x))$ for all $x, y \in X$, then d_G is a metric on X.

As we shall use henceforth, the following definition can also be considered in G^* -metric spaces.

Definition 2.4 (R. Saadati *et al.* [14]). Let (X, G) be a *G*-metric space. Then a function $\Omega : X^3 \to [0, \infty)$ is called an Ω -distance on X if the following conditions are satisfied:

- (a) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z)$ for all $x, y, z, a \in X$;
- (b) for any $x, y \in X$, $\Omega(x, y, \cdot)$, $\Omega(x, \cdot, y) : X \to [0, \infty)$ are lower semi-continuous;
- (c) for each $\varepsilon > 0$, there exists a $\delta > 0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G(x, y, z) \leq \varepsilon$.

The notion of w-distance was introduced by Kada *et al.* in [8].

Definition 2.5 (Kada *et al.* [8]). Let (X, d) be a metric space. A function $p : X \times X \to [0, \infty)$ is called a *w*-distance on X if it satisfies the following properties:

- (1) $p(x,z) \le p(x,y) + p(y,z)$ for all $x, y, z \in X$;
- (2) p is lower semi-continuous in its second variable, i.e., if $x \in X$ and $\{y_n\} \to y \in X$, then $p(x, y) \leq \liminf_{n \to \infty} p(x, y_n)$;
- (3) for each $\varepsilon > 0$, there exists $\delta > 0$ such that if $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$, then $d(x, y) \leq \varepsilon$.

3. Relationships

A first approach to the problem of finding relationships between w-distances and Ω -distances is the following result.

Lemma 3.1. Let Ω be a Ω -distance on a G^* -metric space (X, G) and define q_{Ω} : $X^2 \rightarrow [0,\infty) by$

 $q_{\Omega}(x,y) = \Omega(x,y,y) + \Omega(y,x,x)$ for all $x, y \in X$.

Then q_{Ω} is a w-distance on the metric space (X, d_G^s) , where

 $d_G^s(x,y) = G(x,x,y) + G(y,x,x) \quad \text{for all } x, y \in X.$

Proof. We prove three properties.

(a) For all $x, y \in X$ we have that

$$\begin{aligned} q_{\Omega}(x,z) &= \Omega(x,z,z) + \Omega(z,x,x) \\ &\leq \Omega(x,y,y) + \Omega(y,z,z) + \Omega(z,y,y) + \Omega(y,x,x) \\ &= [\Omega(x,y,y) + \Omega(y,x,x)] + [\Omega(y,z,z) + \Omega(z,y,y)] \\ &= q_{\Omega}(x,y) + q_{\Omega}(y,z). \end{aligned}$$

(b) The result follows Definition 2.4 (b).

(c) Let $\varepsilon > 0$ and let $\delta > 0$ such that

$$\left. \begin{array}{l} \Omega(x,a,a) \leq \delta \\ \Omega(a,y,z) \leq \delta \end{array} \right\} \; \Rightarrow \; G(x,y,z) \leq \frac{\varepsilon}{2} \end{array}$$

Now, let $x, y, z \in X$ be such that $q_{\Omega}(z, x) \leq \delta$ and $q_{\Omega}(z, y) \leq \delta$. Then

$$\begin{aligned} &\Omega(x,z,z) \leq \Omega(z,x,x) + \Omega(x,z,z) = q_{\Omega}(z,x) \leq \delta \\ &\Omega(z,y,y) \leq \Omega(z,y,y) + \Omega(y,z,z) = q_{\Omega}(z,y) \leq \delta \end{aligned} \right\} \implies G(x,y,y) \leq \frac{\varepsilon}{2}, \\ &\Omega(y,z,z) \leq \Omega(z,y,y) + \Omega(y,z,z) = q_{\Omega}(z,y) \leq \delta \\ &\Omega(z,x,x) \leq \Omega(z,x,x) + \Omega(x,z,z) = q_{\Omega}(z,x) \leq \delta \end{aligned} \right\} \implies G(y,x,x) \leq \frac{\varepsilon}{2}. \\ \text{efore } d_{C}^{s}(x,y) = G(x,x,y) + G(y,x,x) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}. \end{aligned}$$

Therefore $d_G^s(x,y) = G(x,x,y) + G(y,x,x) \le \varepsilon/2 + \varepsilon/2 = \varepsilon$.

The last result has two drawbacks. Firstly, it is only possible to generate symmetric w-distances. Furthermore, it is impossible to get the original Ω -distance using q_{Ω} since different Ω -distances induce the same w-distance. For instance, if $X = [0, \infty)$ provided with the *G*-metric

$$G(x, y, z) = \max(|x - y|, |x - z|, |y - z|)$$
 for all $x, y, z \in X$,

then the mappings $\Omega_1(x, y, z) = x + 2y + 3z$ and $\Omega_2(x, y, z) = 2x + 2y + 2z$, defined for all $x, y, z \in X$, are Ω -distances on (X, G). However, $q_{\Omega_1}(x, y) = q_{\Omega_2}(x, y) = 6x + 6y$ for all $x, y \in X$.

To overcome these drawbacks, we present the following results.

Theorem 3.2. Let p be a w-distance on a metric space (X, d) and define $\Omega_p : X^3 \to$ $[0,\infty)$ by

$$\Omega_p(x, y, z) = p(x, x) + p(x, y) + p(x, z) \quad \text{for all } x, y, z \in X.$$

Then Ω_p is a Ω -distance on (X, G_d) . Moreover, for all $x, y, z, a \in X$, the following properties hold.

 $(P_1) \quad \frac{2}{3} \ \Omega_p(x, x, x) \le \Omega_p(x, x, y).$ $(P_2) \quad \Omega_p(x, y, z) \le \Omega_p(x, a, a) + \Omega_p(a, y, z) - \frac{1}{3} \ \Omega_p(a, a, a).$

$$(P_3) \quad \Omega_p(x, x, y) - \frac{2}{3} \ \Omega_p(x, x, x) = \frac{1}{2} \left[\ \Omega_p(x, y, y) - \frac{1}{3} \ \Omega_p(x, x, x) \right].$$

(P₄) For all $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\left.\begin{array}{c}
\Omega_p(z,z,x) - \frac{2}{3} \ \Omega_p(z,z,z) \leq \delta \\
\Omega_p(z,z,y) - \frac{2}{3} \ \Omega_p(z,z,z) \leq \delta
\end{array}\right\} \Rightarrow G_d(x,x,y) \leq \varepsilon.$$

- $(P_5) \quad \Omega_p(x, y, z) = \Omega_p(x, x, y) + \Omega_p(x, x, z) \Omega_p(x, x, x).$
- $(P_6) \quad \Omega_p(x, y, z) = \Omega_p(x, z, y).$

$$(P_7) \quad \Omega_p(x, y, y) + \Omega_p(x, z, z) = 2\Omega_p(x, y, z)$$

In particular, for all $x, y, z \in X$,

(3.1)
$$p(x,y) = \Omega_p(x,x,y) - \frac{2}{3} \Omega_p(x,x,x) = \frac{1}{2} \left[\Omega_p(x,y,y) - \frac{1}{3} \Omega_p(x,x,x) \right]$$

Proof. Clearly, $\Omega_p(x, y, z) \ge 0$ for all $x, y, z \in X$. First, we prove the three properties that define a Ω -distance.

(a) Concretely, we prove (P_2) . Applying (1), we have that

$$\begin{split} \Omega_p(x,y,z) &= p(x,x) + p(x,y) + p(x,z) \\ &\leq p(x,x) + p(x,a) + p(a,y) + p(x,a) + p(a,z) \\ &\leq [p(x,x) + p(x,a) + p(x,a)] + [p(a,a) + p(a,y) + p(a,z)] - p(a,a) \\ &= \Omega_p(x,a,a) + \Omega_p(a,y,z) - \frac{1}{3} \ \Omega_p(a,a,a). \end{split}$$

In particular, $\Omega_p(x, y, z) \leq \Omega_p(x, a, a) + \Omega_p(a, y, z).$

(b) Given $x, y, z \in X$, the mappings $\Omega_p(x, \cdot, z) = p(x, x) + p(x, \cdot) + p(x, z)$ and $\Omega_p(x, y, \cdot) = p(x, x) + p(x, y) + p(x, \cdot)$ are lower semi-continuous since p is lower semi-continuous in its second variable.

(c) Fix $\varepsilon > 0$ arbitrary. Applying (3) to $\varepsilon/2$, there exists $\delta > 0$ such that

$$\left\{ \begin{array}{l} p(z,x) \leq \delta \\ p(z,y) \leq \delta \end{array} \right\} \; \Rightarrow \; d(x,y) \leq \frac{\varepsilon}{2}.$$

Let $x, y, z, a \in X$ verifying $\Omega_p(x, a, a) \leq \delta$ and $\Omega_p(a, y, z) \leq \delta$. Then

$$p(x,x) \le p(x,x) + p(x,a) + p(x,a) = \Omega_p(x,a,a) \le \delta$$

$$p(x,a) \le p(x,x) + p(x,a) + p(x,a) = \Omega_p(x,a,a) \le \delta$$

$$p(a,a) \le p(a,a) + p(a,y) + p(a,z) = \Omega_p(a,y,z) \le \delta$$

$$p(a,y) \le p(a,a) + p(a,y) + p(a,z) = \Omega_p(a,y,z) \le \delta$$

$$p(a,y) \le p(a,a) + p(a,y) + p(a,z) = \Omega_p(a,y,z) \le \delta$$

$$\begin{aligned} p(a,a) &\leq p(a,a) + p(a,y) + p(a,z) = \Omega_p(a,y,z) \leq \delta \\ p(a,z) &\leq p(a,a) + p(a,y) + p(a,z) = \Omega_p(a,y,z) \leq \delta \end{aligned} \right\} \implies d(a,z) \leq \frac{\varepsilon}{2}; \\ p(a,y) &\leq p(a,a) + p(a,y) + p(a,z) = \Omega_p(a,y,z) \leq \delta \\ p(a,z) &\leq p(a,a) + p(a,y) + p(a,z) = \Omega_p(a,y,z) \leq \delta \end{aligned} \right\} \implies d(y,z) \leq \frac{\varepsilon}{2}.$$

Therefore

$$d(x,y) \le d(x,a) + d(a,y) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{and} \\ d(x,z) \le d(x,a) + d(a,z) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence

$$G_d(x, y, z) = \max(d(x, y), d(x, z), d(y, z)) \le \max(\varepsilon, \varepsilon, \varepsilon/2) = \varepsilon.$$

We conclude that Ω_p is a Ω -distance on (X, G_d) . Next, we prove all announced properties.

- (P₁) It is clear that $\Omega_p(x, x, y) \frac{2}{3} \Omega_p(x, x, x) = 2p(x, x) + p(x, y) \frac{2}{3} 3p(x, x) = p(x, y) \ge 0.$
- (P_2) Already proved.
- (P_3) On the one hand

$$\frac{1}{2} \ \Omega_p(x, y, y) - \frac{1}{6} \ \Omega_p(x, x, x) = \frac{1}{2} \ [p(x, x) + 2p(x, y)] - \frac{1}{6} \ 3p(x, x) = p(x, y),$$
and on the other hand

$$\Omega_p(x, x, y) - \frac{2}{3} \ \Omega_p(x, x, x) = [2p(x, x) + p(x, y)] - \frac{2}{3} \ 3p(x, x) = p(x, y).$$

This also proved (3.1).

$$(P_4)$$
 Notice that

$$\begin{aligned} \Omega_p(z,z,x) &- \frac{2}{3} \ \Omega_p(z,z,z) = 2p(z,z) + p(z,x) - \frac{2}{3} \ 3p(z,z) = p(z,x), \\ \Omega_p(z,z,y) &- \frac{2}{3} \ \Omega_p(z,z,z) = 2p(z,z) + p(z,y) - \frac{2}{3} \ 3p(z,z) = p(z,y), \\ G_d(x,x,y) &= \max\left(d(x,x), d(x,y)\right) = d(x,y). \end{aligned}$$

Therefore, property (P_4) is equivalent to axiom (3) of a *w*-distance. (P_5) It follows from

$$\begin{aligned} \Omega_p(x, x, y) &+ \Omega_p(x, x, z) - \Omega_p(x, x, x) \\ &= [2p(x, x) + p(x, y)] + [2p(x, x) + p(x, z)] - 3p(x, x) \\ &= p(x, x) + p(x, y) + p(x, z) = \Omega_p(x, y, z). \end{aligned}$$

 (P_6) It is obvious.

 (P_7) It is clear that

$$\Omega_p(x, y, y) + \Omega_p(x, z, z) = [p(x, x) + 2p(x, y)] + [p(x, x) + 2p(x, z)]$$

= 2 [p(x, x) + p(x, y) + p(x, z)] = 2\Omega_p(x, y, z).

Next, we study the converse of the previous result.

Theorem 3.3. Let Ω be a Ω -distance on a G^* -metric space (X, G) verifying properties (P_1) - (P_4) of Theorem 3.2, and define $p_{\Omega}: X^2 \to [0, \infty)$ by

$$p_{\Omega}(x,y) = \Omega(x,x,y) - \frac{2}{3} \Omega(x,x,x)$$
 for all $x, y \in X$.

Then p_{Ω} is a w-distance on the metric space (X, d_G) . Furthermore, if Ω also verifies (P_5) , then

$$\Omega_{p_{\Omega}} = \Omega.$$

Proof. By property (P_1) , $p_{\Omega}(x, y) \ge 0$ for all $x, y \in X$. We prove three properties. (1) (P_2) and (P_3) yield to

$$p_{\Omega}(x,z) = \Omega(x,x,z) - \frac{2}{3} \Omega(x,x,x) = \frac{1}{2} \left[\Omega(x,z,z) - \frac{1}{3} \Omega(x,x,x) \right]$$

$$\leq \frac{1}{2} \left[\left(\Omega(x,y,y) + \Omega(y,z,z) - \frac{1}{3} \Omega(y,y,y) \right) - \frac{1}{3} \Omega(x,x,x) \right]$$

$$= \frac{1}{2} \left[\left(\Omega(x,y,y) - \frac{1}{3} \Omega(x,x,x) \right) + \left(\Omega(y,z,z) - \frac{1}{3} \Omega(y,y,y) \right) \right]$$

$$= p_{\Omega}(x,y) + p_{\Omega}(y,z).$$

(2) Clearly, $p_{\Omega}(x, \cdot) = \Omega(x, x, \cdot) - \frac{2}{3} \Omega(x, x, x)$ is lower semi-continuous in its second variable.

(3) Let $\varepsilon > 0$. By property (P_4) , there is $\delta > 0$ such that

$$p_{\Omega}(z,x) = \Omega(z,z,x) - \frac{2}{3} \Omega(z,z,z) \le \delta$$

$$p_{\Omega}(z,y) = \Omega(z,z,y) - \frac{2}{3} \Omega(z,z,z) \le \delta$$

$$\Rightarrow G(x,x,y) \le \varepsilon.$$

As the conditions are symmetric on x and y,

$$p_{\Omega}(z,x) \le \delta p_{\Omega}(z,y) \le \delta$$
 $\Rightarrow d_G(x,y) = \max(G(x,x,y),G(y,y,x)) \le \varepsilon.$

Now suppose that (P_5) holds. Then, for all $x, y, z \in X$, we have that

$$\begin{split} \Omega_{p_{\Omega}}(x,y,z) &= p_{\Omega}(x,x) + p_{\Omega}(x,y) + p_{\Omega}(x,z) = \left(\Omega(x,x,x) - \frac{2}{3} \ \Omega(x,x,x)\right) \\ &+ \left(\Omega(x,x,y) - \frac{2}{3} \ \Omega(x,x,x)\right) + \left(\Omega(x,x,z) - \frac{2}{3} \ \Omega(x,x,x)\right) \\ &= \Omega(x,x,y) + \Omega(x,x,z) - \Omega(x,x,x) = \Omega(x,y,z). \end{split}$$

Corollary 3.4. If p is a w-distance on a metric space (X, d), then $p_{\Omega_p} = p$. *Proof.* For all $x, y \in X$,

$$p_{\Omega_p}(x,y) = \Omega_p(x,x,y) - \frac{2}{3} \ \Omega_p(x,x,x) =$$

$$= 2p(x, x,) + p(x, y) - \frac{2}{3} \ 3p(x, x) = p(x, y).$$

Corollary 3.5. The notion of w-distance on a metric space is a particularization of the notion of Ω -distance on a G^* -metric space.

However, the class of Ω -distances are bigger that the class of w-distances since the following Ω -distance do not generate a w-distance.

Example 3.6. Let $X = [0, \infty)$ provided with the Euclidean distance $d_0(x, y) = |x - y|$ for all $x, y \in X$, and the G^* -metric associated to d_0 , that is, $G_{d_0}(x, y, z) = \max(|x - y|, |x - z|, |y - z|)$ for all $x, y, z \in X$. Define $\Omega(x, y, z) = x + 2y + 3z$ for all $x, y, z \in X$. Then Ω is a Ω -distance on $(X, G_{d_0})^1$. However, it does not come from a w-distance because it is not symmetric in its two last variables.

4. Translations between fixed point theorems using *w*-distances and Ω -distances

As application of the previous results, we are going to show how we can translate some results involving Ω -distances to statements using *w*-distances, and viceversa (in some cases). In particular, we apply the introduced relationships to the field of fixed point theory, but our results can also be applied to other areas: Topology, equations theory, etc.

Firstly, we show how we can translate every fixed point result in the setting of Ω -distances to the framework of *w*-distances. This procedure allows us to present a new class of contractivity conditions, as in the following illustrative example.

In [14], the authors proved the following result (necessary preliminaries can be found therein).

Theorem 4.1 (Saadati *et al.*, 2010, Theorem 2.2). Let (X, \preccurlyeq) be a partially ordered set. Suppose that there exists a *G*-metric on *X* such that (X, G) is a complete *G*metric space and Ω is an Ω -distance on *X* and *T* is a non-decreasing mapping from *X* into itself. Let *X* be Ω -bounded. Suppose that there exists $k \in [0, 1)$ such that

$$\Omega(Tx, T^2x, Tw) \le k \ \Omega(x, Tx, w) \quad for \ all \ x \preccurlyeq Tx \ and \ w \in X.$$

Also for every $x \in X$

$$nf(\Omega(x, y, x) + \Omega(x, y, Tx) + \Omega(x, T^2x, y) : x \preccurlyeq Tx) > 0$$

for every $y \in X$ with $y \neq Ty$. If there exists an $x_0 \in X$ with $x_0 \preccurlyeq Tx_0$, then T has a fixed point. Moreover, if u = Tv, then $\Omega(u, v, v) = 0$.

Taking into account that if a subset is *p*-bounded, then it is also Ω_p -bounded, then we can deduce the following consequence.

Corollary 4.2. Let p be a w-distance in a complete metric space (X, d) and let \preccurlyeq be a partial order on X. Assume that X is p-bounded. Let $T : X \to X$ be a \preccurlyeq -non-decreasing mapping from X into itself and suppose that there exists $k \in [0, 1)$ such that, for all $x \preccurlyeq Tx$ and $w \in X$,

$$p(Tx, Tx) + p(Tx, T^{2}x) + p(Tx, Tw) \le k \left(p(x, x) + p(x, Tx) + p(x, w) \right).$$

¹A proof can be found on page ??.

Also for every $x \in X$

 $\inf \left(4p(x,x) + 3p(x,y) + p(x,Tx) + p(x,T^2x) : x \leq Tx \right) > 0$

for every $y \in X$ with $y \neq Ty$. If there exists an $x_0 \in X$ with $x_0 \preccurlyeq Tx_0$, then T has a fixed point. Moreover, if u = Tv, then p(u, u) = p(u, v) = 0.

Proof. It is only necessary to apply Theorem 4.1 to the Ω -distance Ω_p defined in Theorem 3.2, taking into account that (X, G_d) is a complete G-metric space. \Box

Using the introduced relationships, the converse procedure is only possible when the Ω -distance verify some properties, as we show using the following result given in [6].

Theorem 4.3 (Ilić and Rakočević, 2008, Theorem 3.1). Let X be a complete metric space with metric d and let p be a w-distance on X. Let $f, g : X \to X$ commutes, satisfy $g(X) \subset f(X)$ and suppose that there exists a constant $k \in (0,1)$ such that, for every $x, y \in X$,

$$p(gx, gy) \le \lambda \ M_p(x, y)$$
 where

$$M_p(x,y) = \max\left(p(fx,fy), p(fx,gx), p(fy,gy), p(fx,gy), p(fy,gx)\right)$$

Also assume that for every $y \in X$ with $f(y) \neq g(y)$, we have that

 $\inf \left(p(fx, y) + p(fx, gx) : x \in X \right) > 0.$

Then f and g have a common unique fixed point u in X (that is, a point $u \in X$ such that fu = gu = u) and p(u, u) = 0.

Taking into account that if (X, G) is a complete G-metric space, then (X, d_G) is a complete metric space, the previous result can be enunciated in the following way.

Corollary 4.4. Let Ω be a Ω -distance verifying properties (P_1) - (P_5) of Theorem 3.2 on a G^* -metric space (X, G). Let $f, g : X \to X$ be two commuting mappings such that $g(X) \subset f(X)$ and suppose that there exists a constant $k \in (0, 1)$ verifying that, for every $x, y \in X$,

$$\begin{split} \Omega(gx,gx,gy) &- \frac{2}{3} \ \Omega(gx,gx,gx) \leq \lambda \ M_{\Omega}^{f,g}(x,y) \qquad \text{where} \\ M_{\Omega}^{f,g}(x,y) &= \max\left(\Omega(fx,fx,fy) - \frac{2}{3} \ \Omega(fx,fx,fx), \\ \Omega(fx,fx,gx) - \frac{2}{3} \ \Omega(fx,fx,fx), \ \Omega(fy,fy,gy) - \frac{2}{3} \ \Omega(fy,fy,fy), \\ \Omega(fx,fx,gy) - \frac{2}{3} \ \Omega(fx,fx,fx), \ \Omega(fy,fy,gx) - \frac{2}{3} \ \Omega(fy,fy,fy) \right). \end{split}$$

Also assume that for every $y \in X$ with $f(y) \neq g(y)$, we have that

$$\inf\left(\Omega(fx, fx, y) + \Omega(fx, fx, gx) - \frac{4}{3} \ \Omega(fx, fx, fx) : x \in X\right) > 0.$$

Then f and g have a common unique fixed point u in X and $\Omega(u, u, u) = 0$.

Proof. It is only necessary to apply Theorem 4.3 to the *w*-distance p_{Ω} (that exists by Theorem 3.3).

References

- T. V. An, N. V. Dung and V. T. L. Hang, A new approach to fixed point theorems on G-metric spaces, Topology and its Appl. 160 (2013), 1486–1493.
- [2] J. García-Falset, L. Guran and E. Llorens-Fuster, Fixed points for multivalued contractions with respect to a w-distance, Sci. Math. Jpn. **71** (2010), 83–91.
- [3] L. Gholizadeh, A fixed point theorem in generalized ordered metric spaces with application, J. Nonlinear Sci. Appl. 6 (2013), 244–251.
- [4] L. Gholizadeh, R. Saadati, W. Shatanawi and S. M. Vaezpour, Contractive mapping in generalized ordered metric spaces with application in integral equations, Math. Probl. Eng. 2011, Article ID 380784, 14 pages.
- [5] R. H. Haghi, Sh. Rezapour and N. Shahzad, Be careful on partial metric fixed point results, Topology and its Appl. 160 (2013), 450–454.
- [6] D. Ilić and V. Rakočević, Common fixed points for maps on metric space with w-distance, Applied Mathematics and Computation 199 (2008), 599–610.
- [7] M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl. 2012, 2012:210 (22 November 2012)
- [8] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete matrix spaces, Math. Japonica 44 (1996), 381–391.
- [9] H. Lakzian, H. Aydi and B.E. Rhoades, Fixed points for (φ, ψ, p) -weakly contractive mappings in metric spaces with w-distance, Applied Mathematics and Computation **219** (2013), 6777– 6782.
- [10] L.-J. Lin and C.-S. Chuang, Some new fixed point theorems of generalized nonlinear contractive multivalued maps in complete metric spaces, Computers and Mathematics with Applications 62 (2011), 3555–3566.
- [11] J. Marín, S. Romaguera and P. Tirado, Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2011, 2011:2.
- [12] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297.
- [13] A. Roldán and E. Karapınar, Some multidimensional fixed point theorems on partially preordered G^* -metric spaces under (ψ, φ) -contractivity conditions, Fixed Point Theory Appl. 2013 2013:158.
- [14] R. Saadati, S. M. Vaezpour, P. Vetro and B. E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Model. 52 (2010), 797–801.
- [15] B. Samet, C. Vetro and F. Vetro, *Remarks on -Metric Spaces*, Int. J. Anal. 2013 (2013), Article ID 917158, 6 pages
- [16] W. Shatanawi and A. Pitea, Ω-Distance and coupled fixed point in G-metric spaces, Fixed Point Theory Appl., doi: 10.1186/1687-1812-2013-208.

Manuscript received August 30, 2014 revised November 30, 2014

A.-F. ROLDÁN-LÓPEZ-DE-HIERRO

- Department of Mathematics, University of Jaén, Campus las Lagunillas s/n, 23071, Jaén, Spain *E-mail address*: afroldan@ujaen.es, aroldan@ugr.es
- E. KARAPINAR

Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey and; Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, Jeddah, Saudi Arabia

E-mail address: ekarapinar@atilim.edu.tr, erdalkarapinar@yahoo.com