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subclass of all Ω-distances on G∗-metric spaces. This paper can be considered as a
continuation of [1,2,3,4].

2. Preliminaries

In this section, we recollect some fundamental definitions and basic results.
Throughout the paper, for a non-empty set X, let X2 be the product space X ×X
and X3 = X ×X ×X.

Definition 2.1 (Mustafa and Sims [12]). A generalized metric (or a G-metric) on
X is a mapping G : X3 → [0,∞) verifying, for all x, y, z ∈ X:

(G1) G(x, x, x) = 0.
(G2) G(x, x, y) > 0 if x ̸= y.
(G3) G(x, x, y) ≤ G(x, y, z) if y ̸= z.
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . (symmetry in all three variables).
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) (rectangle inequality).

Taking into account that the product space of G-metric spaces need not be a
G-metric space, Roldán et al. introduced the following notion.

Definition 2.2 (Roldán and Karapınar [13]). A G∗-metric on X is a mapping
G : X3 → [0,∞) verifying (G1), (G2), (G4) and (G5).

A G∗-metric on a set X lets us to consider a Hausdorff topology τG on X (see
[13]).

Lemma 2.3. If (X, d) is a metric space and we define, for all x, y, z ∈ X,
Gd(x, y, z) = max(d(x, y), d(x, z), d(y, z)), then Gd is a G-metric on X (and also a
G∗-metric).

Conversely, if (X,G) is a G∗-metric space and we define dG(x, y) =
max(G(x, y, y), G(y, x, x)) for all x, y ∈ X, then dG is a metric on X.

As we shall use henceforth, the following definition can also be considered in
G∗-metric spaces.

Definition 2.4 (R. Saadati et al. [14]). Let (X,G) be a G-metric space. Then a
function Ω : X3 → [0,∞) is called an Ω-distance on X if the following conditions
are satisfied:

(a) Ω(x, y, z) ≤ Ω(x, a, a) + Ω(a, y, z) for all x, y, z, a ∈ X;
(b) for any x, y ∈ X, Ω(x, y, ·),Ω(x, ·, y) : X → [0,∞) are lower semi-continuous;
(c) for each ε > 0, there exists a δ > 0 such that Ω(x, a, a) ≤ δ and Ω(a, y, z) ≤ δ

imply G(x, y, z) ≤ ε.

The notion of w-distance was introduced by Kada et al. in [8].

Definition 2.5 (Kada et al. [8]). Let (X, d) be a metric space. A function p :
X ×X → [0,∞) is called a w-distance on X if it satisfies the following properties:

(1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(2) p is lower semi-continuous in its second variable, i.e., if x ∈ X and {yn} →

y ∈ X, then p(x, y) ≤ lim infn→∞ p(x, yn);
(3) for each ε > 0, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ,

then d(x, y) ≤ ε.
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3. Relationships

A first approach to the problem of finding relationships between w-distances and
Ω-distances is the following result.

Lemma 3.1. Let Ω be a Ω-distance on a G∗-metric space (X,G) and define qΩ :
X2 → [0,∞) by

qΩ(x, y) = Ω(x, y, y) + Ω(y, x, x) for all x, y ∈ X.

Then qΩ is a w-distance on the metric space (X, dsG), where

dsG(x, y) = G(x, x, y) +G(y, x, x) for all x, y ∈ X.

Proof. We prove three properties.
(a) For all x, y ∈ X we have that

qΩ(x, z) = Ω(x, z, z) + Ω(z, x, x)

≤ Ω(x, y, y) + Ω(y, z, z) + Ω(z, y, y) + Ω(y, x, x)

= [Ω(x, y, y) + Ω(y, x, x)] + [Ω(y, z, z) + Ω(z, y, y)]

= qΩ(x, y) + qΩ(y, z).

(b) The result follows Definition 2.4 (b).
(c) Let ε > 0 and let δ > 0 such that

Ω(x, a, a) ≤ δ

Ω(a, y, z) ≤ δ

}
⇒ G(x, y, z) ≤ ε

2
.

Now, let x, y, z ∈ X be such that qΩ(z, x) ≤ δ and qΩ(z, y) ≤ δ. Then

Ω(x, z, z) ≤ Ω(z, x, x) + Ω(x, z, z) = qΩ(z, x) ≤ δ

Ω(z, y, y) ≤ Ω(z, y, y) + Ω(y, z, z) = qΩ(z, y) ≤ δ

}
⇒ G(x, y, y) ≤ ε

2
,

Ω(y, z, z) ≤ Ω(z, y, y) + Ω(y, z, z) = qΩ(z, y) ≤ δ

Ω(z, x, x) ≤ Ω(z, x, x) + Ω(x, z, z) = qΩ(z, x) ≤ δ

}
⇒ G(y, x, x) ≤ ε

2
.

Therefore dsG(x, y) = G(x, x, y) +G(y, x, x) ≤ ε/2 + ε/2 = ε. □
The last result has two drawbacks. Firstly, it is only possible to generate sym-

metric w-distances. Furthermore, it is impossible to get the original Ω-distance
using qΩ since different Ω-distances induce the same w-distance. For instance, if
X = [0,∞) provided with the G-metric

G(x, y, z) = max(|x− y| , |x− z| , |y − z|) for all x, y, z ∈ X,

then the mappings Ω1(x, y, z) = x+2y+3z and Ω2(x, y, z) = 2x+2y+2z, defined for
all x, y, z ∈ X, are Ω-distances on (X,G). However, qΩ1(x, y) = qΩ2(x, y) = 6x+6y
for all x, y ∈ X.

To overcome these drawbacks, we present the following results.

Theorem 3.2. Let p be a w-distance on a metric space (X, d) and define Ωp : X
3 →

[0,∞) by

Ωp(x, y, z) = p(x, x) + p(x, y) + p(x, z) for all x, y, z ∈ X.
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Then Ωp is a Ω-distance on (X,Gd). Moreover, for all x, y, z, a ∈ X, the following
properties hold.

(P1)
2

3
Ωp(x, x, x) ≤ Ωp(x, x, y).

(P2) Ωp(x, y, z) ≤ Ωp(x, a, a) + Ωp(a, y, z)−
1

3
Ωp(a, a, a).

(P3) Ωp(x, x, y)−
2

3
Ωp(x, x, x) =

1

2

[
Ωp(x, y, y)−

1

3
Ωp(x, x, x)

]
.

(P4) For all ε > 0 there exists δ > 0 such that

Ωp(z, z, x)−
2

3
Ωp(z, z, z) ≤ δ

Ωp(z, z, y)−
2

3
Ωp(z, z, z) ≤ δ

 ⇒ Gd(x, x, y) ≤ ε.

(P5) Ωp(x, y, z) = Ωp(x, x, y) + Ωp(x, x, z)− Ωp(x, x, x).

(P6) Ωp(x, y, z) = Ωp(x, z, y).

(P7) Ωp(x, y, y) + Ωp(x, z, z) = 2Ωp(x, y, z).

In particular, for all x, y, z ∈ X,

(3.1) p(x, y) = Ωp(x, x, y)−
2

3
Ωp(x, x, x) =

1

2

[
Ωp(x, y, y)−

1

3
Ωp(x, x, x)

]
Proof. Clearly, Ωp(x, y, z) ≥ 0 for all x, y, z ∈ X. First, we prove the three proper-
ties that define a Ω-distance.

(a) Concretely, we prove (P2). Applying (1), we have that

Ωp(x, y, z) = p(x, x) + p(x, y) + p(x, z)

≤ p(x, x) + p(x, a) + p(a, y) + p(x, a) + p(a, z)

≤ [p(x, x) + p(x, a) + p(x, a)] + [p(a, a) + p(a, y) + p(a, z)]− p(a, a)

= Ωp(x, a, a) + Ωp(a, y, z)−
1

3
Ωp(a, a, a).

In particular, Ωp(x, y, z) ≤ Ωp(x, a, a) + Ωp(a, y, z).
(b) Given x, y, z ∈ X, the mappings Ωp(x, ·, z) = p(x, x) + p(x, ·) + p(x, z) and

Ωp(x, y, ·) = p(x, x) + p(x, y) + p(x, ·) are lower semi-continuous since p is lower
semi-continuous in its second variable.

(c) Fix ε > 0 arbitrary. Applying (3) to ε/2, there exists δ > 0 such that

p(z, x) ≤ δ
p(z, y) ≤ δ

}
⇒ d(x, y) ≤ ε

2
.

Let x, y, z, a ∈ X verifying Ωp(x, a, a) ≤ δ and Ωp(a, y, z) ≤ δ. Then

p(x, x) ≤ p(x, x) + p(x, a) + p(x, a) = Ωp(x, a, a) ≤ δ

p(x, a) ≤ p(x, x) + p(x, a) + p(x, a) = Ωp(x, a, a) ≤ δ

}
⇒ d(x, a) ≤ ε

2
;

p(a, a) ≤ p(a, a) + p(a, y) + p(a, z) = Ωp(a, y, z) ≤ δ

p(a, y) ≤ p(a, a) + p(a, y) + p(a, z) = Ωp(a, y, z) ≤ δ

}
⇒ d(a, y) ≤ ε

2
;
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p(a, a) ≤ p(a, a) + p(a, y) + p(a, z) = Ωp(a, y, z) ≤ δ

p(a, z) ≤ p(a, a) + p(a, y) + p(a, z) = Ωp(a, y, z) ≤ δ

}
⇒ d(a, z) ≤ ε

2
;

p(a, y) ≤ p(a, a) + p(a, y) + p(a, z) = Ωp(a, y, z) ≤ δ

p(a, z) ≤ p(a, a) + p(a, y) + p(a, z) = Ωp(a, y, z) ≤ δ

}
⇒ d(y, z) ≤ ε

2
.

Therefore

d(x, y) ≤ d(x, a) + d(a, y) ≤ ε

2
+

ε

2
= ε and

d(x, z) ≤ d(x, a) + d(a, z) ≤ ε

2
+

ε

2
= ε.

Hence

Gd(x, y, z) = max(d(x, y), d(x, z), d(y, z)) ≤ max(ε, ε, ε/2) = ε.

We conclude that Ωp is a Ω-distance on (X,Gd). Next, we prove all announced
properties.

(P1) It is clear that Ωp(x, x, y)− 2
3 Ωp(x, x, x) = 2p(x, x) + p(x, y)− 2

3 3p(x, x) =
p(x, y) ≥ 0.

(P2) Already proved.
(P3) On the one hand

1

2
Ωp(x, y, y)−

1

6
Ωp(x, x, x) =

1

2
[p(x, x) + 2p(x, y)]− 1

6
3p(x, x) = p(x, y),

and on the other hand

Ωp(x, x, y)−
2

3
Ωp(x, x, x) = [2p(x, x) + p(x, y)]− 2

3
3p(x, x) = p(x, y).

This also proved (3.1).
(P4) Notice that

Ωp(z, z, x)−
2

3
Ωp(z, z, z) = 2p(z, z) + p(z, x)− 2

3
3p(z, z) = p(z, x),

Ωp(z, z, y)−
2

3
Ωp(z, z, z) = 2p(z, z) + p(z, y)− 2

3
3p(z, z) = p(z, y),

Gd(x, x, y) = max (d(x, x), d(x, y)) = d(x, y).

Therefore, property (P4) is equivalent to axiom (3) of a w-distance.
(P5) It follows from

Ωp(x, x, y) + Ωp(x, x, z)− Ωp(x, x, x)

= [2p(x, x) + p(x, y)] + [2p(x, x) + p(x, z)]− 3p(x, x)

= p(x, x) + p(x, y) + p(x, z) = Ωp(x, y, z).

(P6) It is obvious.
(P7) It is clear that

Ωp(x, y, y) + Ωp(x, z, z) = [p(x, x) + 2p(x, y)] + [p(x, x) + 2p(x, z)]

= 2 [p(x, x) + p(x, y) + p(x, z)] = 2Ωp(x, y, z).

□
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Next, we study the converse of the previous result.

Theorem 3.3. Let Ω be a Ω-distance on a G∗-metric space (X,G) verifying prop-
erties (P1)-(P4) of Theorem 3.2, and define pΩ : X2 → [0,∞) by

pΩ(x, y) = Ω(x, x, y)− 2

3
Ω(x, x, x) for all x, y ∈ X.

Then pΩ is a w-distance on the metric space (X, dG). Furthermore, if Ω also verifies
(P5), then

ΩpΩ = Ω.

Proof. By property (P1), pΩ(x, y) ≥ 0 for all x, y ∈ X. We prove three properties.
(1) (P2) and (P3) yield to

pΩ(x, z) = Ω(x, x, z)− 2

3
Ω(x, x, x) =

1

2

[
Ω(x, z, z)− 1

3
Ω(x, x, x)

]
≤ 1

2

[ (
Ω(x, y, y) + Ω(y, z, z)− 1

3
Ω(y, y, y)

)
− 1

3
Ω(x, x, x)

]
=

1

2

[ (
Ω(x, y, y)− 1

3
Ω(x, x, x)

)
+

(
Ω(y, z, z)− 1

3
Ω(y, y, y)

) ]
= pΩ(x, y) + pΩ(y, z).

(2) Clearly, pΩ(x, ·) = Ω(x, x, ·) − 2
3 Ω(x, x, x) is lower semi-continuous in its

second variable.
(3) Let ε > 0. By property (P4), there is δ > 0 such that

pΩ(z, x) = Ω(z, z, x)− 2

3
Ω(z, z, z) ≤ δ

pΩ(z, y) = Ω(z, z, y)− 2

3
Ω(z, z, z) ≤ δ

 ⇒ G(x, x, y) ≤ ε.

As the conditions are symmetric on x and y,

pΩ(z, x) ≤ δ

pΩ(z, y) ≤ δ

}
⇒ dG(x, y) = max(G(x, x, y), G(y, y, x)) ≤ ε.

Now suppose that (P5) holds. Then, for all x, y, z ∈ X, we have that

ΩpΩ(x, y, z) = pΩ(x, x) + pΩ(x, y) + pΩ(x, z) =

(
Ω(x, x, x)− 2

3
Ω(x, x, x)

)
+

(
Ω(x, x, y)− 2

3
Ω(x, x, x)

)
+

(
Ω(x, x, z)− 2

3
Ω(x, x, x)

)
= Ω(x, x, y) + Ω(x, x, z)− Ω(x, x, x) = Ω(x, y, z).

□

Corollary 3.4. If p is a w-distance on a metric space (X, d), then pΩp = p.

Proof. For all x, y ∈ X,

pΩp(x, y) = Ωp(x, x, y)−
2

3
Ωp(x, x, x) =
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= 2p(x, x, ) + p(x, y)− 2

3
3p(x, x) = p(x, y).

□
Corollary 3.5. The notion of w-distance on a metric space is a particularization
of the notion of Ω-distance on a G∗-metric space.

However, the class of Ω-distances are bigger that the class of w-distances since
the following Ω-distance do not generate a w-distance.

Example 3.6. Let X = [0,∞) provided with the Euclidean distance
d0(x, y) = |x− y| for all x, y ∈ X, and the G∗-metric associated to d0, that is,
Gd0(x, y, z) = max(|x− y| , |x− z| , |y − z|) for all x, y, z ∈ X. Define Ω(x, y, z) =
x+2y+3z for all x, y, z ∈ X. Then Ω is a Ω-distance on (X,Gd0)

1. However, it does
not come from a w-distance because it is not symmetric in its two last variables.

4. Translations between fixed point theorems using w-distances and
Ω-distances

As application of the previous results, we are going to show how we can translate
some results involving Ω-distances to statements using w-distances, and viceversa
(in some cases). In particular, we apply the introduced relationships to the field
of fixed point theory, but our results can also be applied to other areas: Topology,
equations theory, etc.

Firstly, we show how we can translate every fixed point result in the setting of
Ω-distances to the framework of w-distances. This procedure allows us to present
a new class of contractivity conditions, as in the following illustrative example.

In [14], the authors proved the following result (necessary preliminaries can be
found therein).
Theorem 4.1 (Saadati et al., 2010, Theorem 2.2). Let (X,≼) be a partially ordered
set. Suppose that there exists a G-metric on X such that (X,G) is a complete G-
metric space and Ω is an Ω-distance on X and T is a non-decreasing mapping from
X into itself. Let X be Ω-bounded. Suppose that there exists k ∈ [0, 1) such that

Ω(Tx, T 2x, Tw) ≤ k Ω(x, Tx,w) for all x ≼ Tx and w ∈ X.

Also for every x ∈ X

inf( Ω(x, y, x) + Ω(x, y, Tx) + Ω(x, T 2x, y) : x ≼ Tx ) > 0

for every y ∈ X with y ̸= Ty. If there exists an x0 ∈ X with x0 ≼ Tx0, then T has
a fixed point. Moreover, if u = Tv, then Ω(u, v, v) = 0.

Taking into account that if a subset is p-bounded, then it is also Ωp-bounded,
then we can deduce the following consequence.

Corollary 4.2. Let p be a w-distance in a complete metric space (X, d) and let ≼
be a partial order on X. Assume that X is p-bounded. Let T : X → X be a ≼-non-
decreasing mapping from X into itself and suppose that there exists k ∈ [0, 1) such
that, for all x ≼ Tx and w ∈ X,

p(Tx, Tx) + p(Tx, T 2x) + p(Tx, Tw) ≤ k (p(x, x) + p(x, Tx) + p(x,w)) .

1A proof can be found on page ??.
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Also for every x ∈ X

inf
(
4p(x, x) + 3p(x, y) + p(x, Tx) + p(x, T 2x) : x ≼ Tx

)
> 0

for every y ∈ X with y ̸= Ty. If there exists an x0 ∈ X with x0 ≼ Tx0, then T has
a fixed point. Moreover, if u = Tv, then p(u, u) = p(u, v) = 0.

Proof. It is only necessary to apply Theorem 4.1 to the Ω-distance Ωp defined in
Theorem 3.2, taking into account that (X,Gd) is a complete G-metric space. □

Using the introduced relationships, the converse procedure is only possible when
the Ω-distance verify some properties, as we show using the following result given
in [6].

Theorem 4.3 (Ilić and Rakočević, 2008, Theorem 3.1). Let X be a complete metric
space with metric d and let p be a w-distance on X. Let f, g : X → X commutes,
satisfy g(X) ⊂ f(X) and suppose that there exists a constant k ∈ (0, 1) such that,
for every x, y ∈ X,

p(gx, gy) ≤ λ Mp(x, y) where

Mp(x, y) = max (p(fx, fy), p(fx, gx), p(fy, gy), p(fx, gy), p(fy, gx)) .

Also assume that for every y ∈ X with f(y) ̸= g(y), we have that

inf (p(fx, y) + p(fx, gx) : x ∈ X) > 0.

Then f and g have a common unique fixed point u in X (that is, a point u ∈ X
such that fu = gu = u) and p(u, u) = 0.

Taking into account that if (X,G) is a complete G-metric space, then (X, dG) is
a complete metric space, the previous result can be enunciated in the following way.

Corollary 4.4. Let Ω be a Ω-distance verifying properties (P1)-(P5) of Theorem
3.2 on a G∗-metric space (X,G). Let f, g : X → X be two commuting mappings
such that g(X) ⊂ f(X) and suppose that there exists a constant k ∈ (0, 1) verifying
that, for every x, y ∈ X,

Ω(gx, gx, gy)− 2

3
Ω(gx, gx, gx) ≤ λ Mf,g

Ω (x, y) where

Mf,g
Ω (x, y) = max

(
Ω(fx, fx, fy)− 2

3
Ω(fx, fx, fx),

Ω(fx, fx, gx)− 2

3
Ω(fx, fx, fx), Ω(fy, fy, gy)− 2

3
Ω(fy, fy, fy),

Ω(fx, fx, gy)− 2

3
Ω(fx, fx, fx), Ω(fy, fy, gx)− 2

3
Ω(fy, fy, fy)

)
.

Also assume that for every y ∈ X with f(y) ̸= g(y), we have that

inf

(
Ω(fx, fx, y) + Ω(fx, fx, gx)− 4

3
Ω(fx, fx, fx) : x ∈ X

)
> 0.

Then f and g have a common unique fixed point u in X and Ω(u, u, u) = 0.

Proof. It is only necessary to apply Theorem 4.3 to the w-distance pΩ (that exists
by Theorem 3.3). □
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