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ABSTRACT. In this manuscript, we study some relationships between w-distances
on metric spaces and €2-distances on G*-metric spaces. Concretely we show that
the class of all w-distances on metric spaces is a subclass of all Q2-distances on
G™-metric spaces. Then, researchers must be careful because some recent results
about w-distances (for instances, in the topic of fixed point theory) can be seen
as simple consequences of their corresponding results about (2-distances. In this
sense, we show how to translate some results between different metric models.

1. INTRODUCTION

The notion of metric plays a key role in nonlinear sciences. This concept has been
generalized in various directions to get finer results in the related research areas.
Some of them are the following ones: quasi-metrics, partial metrics, G-metrics, b-
metrics, fuzzy metrics and probabilistic metrics. Among all, the notion of G-metric,
introduced by Mustafa and Sims [12] have attracted attention of number of authors
in the last decade. Recently, Samet et al. [15] and Jleli and Samet [7] proved that the
topology of G-metric space and associated metric space coincides. Very recently,
An et al. [1] re-proved the equivalence of G-metric topology with corresponding
metric topology by repeating the same arguments as in [7,15]. On the other hand,
Kada et al. [8] introduced the concept of w-distance associated to a metric space
and proved the existence and uniqueness of certain mappings in the setting of w-
distance. Later, the notion of Q-distance introduced by Saadati et al. [14]) as a
natural generalization of w-distance in the context of G-metric space. In fact, this
generalization is weak since the authors [14] use the rectangular inequality in the
definition of 2-distance although in corresponding part of the w-distance definition,
the triangular inequality was not used. The literature on these topics has grown up
very quickly (see e.g. [3,4,14,16]).

After remarkable observations in [7,15], it is quite natural to investigate the
relation between w-distance and )-distance. Unexpectedly, we get there is a close
relation.

In this paper, for our purposes, we will consider (-distances defined on a weak
kind of spaces, that is, on G*-metric spaces, firstly introduced by Roldan et al [13].
In this setting, we show that the class of all w-distances on metric spaces is a
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subclass of all 2-distances on G*-metric spaces. This paper can be considered as a
continuation of [1,2,3,4].

2. PRELIMINARIES

In this section, we recollect some fundamental definitions and basic results.
Throughout the paper, for a non-empty set X, let X2 be the product space X x X
and X2 =X x X x X.

Definition 2.1 (Mustafa and Sims [12]). A generalized metric (or a G-metric) on
X is a mapping G : X3 — [0, 00) verifying, for all z,y, 2z € X:
1) G(z,z,z) =0.

(G

(G2) G(z,z,y) >0if z # y.

(G3) G(z,z,y) < G(x,y,2) if y # z.

(G4) G(z,y,2) = G(x, 2,y) = G(y, 2,x) = ... (symmetry in all three variables).
(Gs) G(z,y,2) < G(z,a,a) + G(a,y, z) (rectangle inequality).

Taking into account that the product space of G-metric spaces need not be a
G-metric space, Roldan et al. introduced the following notion.

Definition 2.2 (Rolddan and Karapmar [13]). A G™*-metric on X is a mapping
G : X3 — [0, 00) verifying (G1), (G2), (G4) and (G5).

A G*-metric on a set X lets us to consider a Hausdorff topology 7¢ on X (see
[13]).
Lemma 2.3. If (X,d) is a metric space and we define, for all z,y,z € X,
Ga(z,y, z) = max(d(z,y),d(x, z),d(y, 2)), then Gq is a G-metric on X (and also a
G*-metric).

Conversely, if (X,G) is a G*-metric space and we define dg(z,y) =
max(G(z,y,y),G(y,z,x)) for all x,y € X, then dg is a metric on X.

As we shall use henceforth, the following definition can also be considered in
G*-metric spaces.

Definition 2.4 (R. Saadati et al. [14]). Let (X, G) be a G-metric space. Then a
function Q : X3 — [0,00) is called an Q-distance on X if the following conditions
are satisfied:

(a) Qz,y,2) < Qz,a,a) + Qa,y, z) for all z,y,z,a € X;

(b) forany z,y € X, Q(z,y,), 2z, y) : X — [0, 00) are lower semi-continuous;

(c) for each e > 0, there exists a § > 0 such that Q(z,a,a) < § and Q(a,y, z) < 0

imply G(z,y,2) <e
The notion of w-distance was introduced by Kada et al. in [8].

Definition 2.5 (Kada et al. [8]). Let (X,d) be a metric space. A function p :
X X X — [0,00) is called a w-distance on X if it satisfies the following properties:
(1) p(z,2) < p(z,y) +ply, 2) for all z,y,z € X;
(2) p is lower semi-continuous in its second variable, i.e., if x € X and {y,} —
y € X, then p(z,y) < liminf,, 0 p(x, yn);
(3) for each € > 0, there exists § > 0 such that if p(z,z) < ¢ and p(z,y) <,
then d(z,y) <e.
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3. RELATIONSHIPS

A first approach to the problem of finding relationships between w-distances and
Q-distances is the following result.

Lemma 3.1. Let Q be a Q-distance on a G*-metric space (X,G) and define qq :
X2 —[0,00) by

go(z,y) = QAz,y,y) + Uy,z,2)  foralz,y e X.
Then qq is a w-distance on the metric space (X,dZ), where

di(z,y) = G(z,z,y) + Gy, x, ) for all x,y € X.
Proof. We prove three properties.
(a) For all z,y € X we have that
ga(z,2) = Qz,2,2) + Qz, 2, )
< Qz,y,y) + Uy, 2,2) + Qz,9,9) + Uy, z,2)
= [Qz,y,y) + Qy,z,2)] + [y, 2, 2) + Qz,9, )]
= qo(z,y) + q9a(y; 2).

(b) The result follows Definition 2.4 (b).
(c) Let € > 0 and let 6 > 0 such that

Qz,a,a) <o

= Gla,y,2) < =
a,y,2) <6 2
Now, let z,y,z € X be such that go(z,x) < ¢ and ga(z,y) < . Then
Az, 2,2) <QUz,z,x) + Qz, 2, 2) = qa(z,x) <9 e
= G(xzyvy) < 5
Q(Zvyay) < Q(z,y,y)—l—Q(y,z,z) _QQ(Zay) 2
Q(y,Z,Z) < Q(Z Y,y )+ Q(y,Z Z) - qQ(zay) 3
= G(y,l‘,ﬂ?) S o
Az, z,x) <Qz,z,2) + Uz, 2,2) = qalz,x) < 2
Therefore di,(z,y) = G(z,z,y) + G(y,z,x) < /2 + 5/2 =e. O

The last result has two drawbacks. Firstly, it is only possible to generate sym-
metric w-distances. Furthermore, it is impossible to get the original 2-distance
using ¢q since different (2-distances induce the same w-distance. For instance, if
X = [0, 00) provided with the G-metric

G(J‘"y’ Z) = max(]az - y| ’ |‘T - Z‘ ) |y - Z|) for all Z,Y,% € X,
then the mappings Q1 (z,y, z) = x+2y+3z and Qa(z,y, 2) = 2x+2y+22, defined for
all z,y,z € X, are Q-distances on (X, G). However, qq, (z,y) = ga,(z,y) = 62 + 6y

for all z,y € X.
To overcome these drawbacks, we present the following results.

Theorem 3.2. Let p be a w-distance on a metric space (X,d) and define Q, : X> —
[0,00) by
Qp(x,y,2) =p(z,z) + p(x,y) + p(z, 2) forall z,y,z € X.
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Then €y, is a Q-distance on (X, Gq). Moreover, for all z,y,z,a € X, the following
properties hold.

2
(Pr) 3 Qp(z,z,2) < Qp(z,2,9).
1
(PQ) Qp(xa Y, Z) S Qp(xa a7a') + Qp(aa Y, Z) - g Qp(a7a7a)-

2 1 1
(P3) Qp(x,:p,y)—g Qp(CIT,CE,IE) = 5 Qp(x’y)y)ig Qp($,:p,x)
(Py) For all e > 0 there exists 6 > 0 such that

2
Q(z,2,2) — § Qp(z,2,2) <6
= Gd($7x,y) <e
Qp(2,2,y) — 5 Qp(z,2,2) <6

(PS) Qp(xay7 Z) - (.’IJ z y) + (.’E,.’IJ,Z) - Qp(IE,JJ,JJ).

(Pﬁ) Qp(xay7 ) (.’IJ z y)

(Pr) Qp(z,y,y) + Q(z, 2,2) = 2Qp(x, y, 2).
In particular, for oll z,y,z € X,

2 1 1
(31) p(xay) = Qp((l?,(lf,il/) - g Qp(l‘,l‘,([‘) = 5 Qp(xayvy) Y QP(ZIJ,CL’,JZ)

3

Proof. Clearly, Qp(z,y,2) > 0 for all z,y,z € X. First, we prove the three proper-
ties that define a Q-distance.
(a) Concretely, we prove (P2). Applying (1), we have that
Qp(xa y7 Z) = p(x7 x) + p(CC, y) + p(fl?, Z)
p(z,2) + p(z,a) + pla, y) + p(z,a) + p(a, z)
[p(z, ) + p(x,a) + p(z,a)] + [p(a, a) + p(a,y) + p(a, 2)] — pla, a)

1
=Qy(z,a,a) +Q(a,y, 2) — 3 Qp(a,a,a).

VAN

In particular, Q,(z,y,2) < Qpy(z,a,a) + Qp(a,y, 2).

(b) Given z,y,z € X, the mappings Q,(z,-,2) = p(z,z) + p(z,-) + p(z, z) and
Q(x,y,-) = p(x,x) + p(x,y) + p(z,-) are lower semi-continuous since p is lower
semi-continuous in its second variable.

(c) Fix € > 0 arbitrary. Applying (3) to /2, there exists § > 0 such that

z,x) <46
ggz,y§§5 } > dl@,y) <

Let z,y, z,a € X verifying Q,(z,a,a) < § and Qp(a,y,2) <0
p(z,z) < p(z,x) + p(z,a) + p(z,a) = Y(z,a,a) <0 £
= d(x7a) S 50
p(z,a) < p(z, ) + p(z,a) + plz, @) = Qylz,a,a) < & 2

—~
8
S

< (a7a (a7 ) —|—p(a, Z) = Qp(a7 y,Z) <
p( p(

)+ play
pla,a) + pla,y) + pla, z) = Q(a,y, z) <

—~
R
<
— —
\/\
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p(a,a)g ( ,a)—l—p(a,y)—l— ( Qp(aay } N d(a Z)<§
p(a,z) < pla,a) +pla,y) +pla, 2) = Qp(a,y,2) <6 2’
p(a,y) < pla,a) + pla,y) + pla, z) = Y(a,y,2) <6 } oy <E
pla, z) < pla,a) + pla,y) +pla, z) = Qp(a,y,z) <6 T2
Therefore
d(z,y) <d(z,a)+ d(a, y)§§+§ and
e €
d(z,z) <d(z,a) +d(a,z) < 5 + 5=
Hence

Ga(z,y, z) = max(d(z,y),d(z, 2),d(y, z)) < max(e,e,e/2) = e.

We conclude that €, is a Q-distance on (X, G4). Next, we prove all announced
properties.

(P1) It is clear that Qp(z,z,y) — % Qu(z, 2, 2) = 2p(z,2) + p(z,y) — % 3p(z,2) =
p(z,y) = 0.

(P2) Already proved.
(P3) On the one hand
1 1
5 Qp(‘r:yvy) - 6 Qp(.’E,iL‘,CU) =
and on the other hand
2 2
Qp(z,2,y) = 5 Yz, 2,2) = [2p(z,2) +p(2,9)] - 5 3p(z,2) = p(z,y).

This also proved (3.1).
(Py) Notice that

o, 2) + 202, )] — 5 30l ) = p(,),

N =

2 2
Qp(z,2,2) — 3 (2, 2,2) = 2p(2,2) + p(z,x) — 3 3p(z,2) = p(z,z),

(z20) = 3 Do) = (5 2) + pl5,0) — 3 3plz,2) = p(z,),
Gy(z,z,y) = max (d(z,x),d(x,y)) = d(x,y).

Therefore, property (Py) is equivalent to axiom (3) of a w-distance.
(Ps) It follows from

Q(z,z,y) + Uz, 2, 2) — Qp(z, z, )
= [2p(z, z) + p(z,y)| + [2p(z, 2) + p(2, 2)] — 3p(z, z)
=p(z,z) + p(z,y) +p(z,2) = Q(2,y, 2).

(Ps) It is obvious.
(P7) It is clear that

QP(IE?yyy) + Qp(l‘a 2 Z) = [p(l‘a l‘) + 2]9(1',:1/)] + [p(:L‘, 1:) + 2]?(1', Z)]
=2[p(z, z) + p(z,y) + p(z, 2)] = 2Qp(z,y, 2).
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Next, we study the converse of the previous result.

Theorem 3.3. Let Q) be a Q-distance on a G*-metric space (X, G) verifying prop-
erties (P1)-(Py) of Theorem 3.2, and define pq : X2 — [0,00) by

2
pae,y) = Qwz,y) - 5 Uav,o)  for all z,y € X.

Then pq is a w-distance on the metric space (X,dg). Furthermore, if Q also verifies
(Ps), then
Qp, =
Proof. By property (P1), pa(z,y) > 0 for all z,y € X. We prove three properties.
(1) (P2) and (P3) yield to

po(z,z) = Qz,x, 2) — % Qz,z,z) = 1 { Az, z,2) — % Qz,z, x) ]

[\

<3 | (960 + 0059 - § 20 - § o) |

N~ N

[ (Q(x,y, Y) fé Q(imﬁﬂm)) + (Q(yaz,Z) *é Q(y,y,y)> }
= pa(z,y) + pa(y, 2).

(2) Clearly, po(z,:) = Q(z,z,-) — % Q(x,z,z) is lower semi-continuous in its

second variable.
(3) Let e > 0. By property (Py), there is 6 > 0 such that

pa(z,x) = Qz,2z,z) — ; Q(z,2,2) <9
5 = G(z,z,y) <e.
pQ(Z,y) - Q(Z,Z,y) - § Q(Z,Z,Z) < 0

As the conditions are symmetric on x and y,
pa(z,x) <6

pmzw<5}:jdd%w:ﬂmMG@”W%GW%xbé&

Now suppose that (Ps) holds. Then, for all z,y,z € X, we have that
2
O (5,32) = pa(e.2) + pa) + po(e.2) = (o,0,0) = 2 0e.0.) )

4 (Q(m,m,y) - g Q(:c,a:,m)) + (Q(:c,a:,z) - g Q(a:,x,a:))
= Oz, 9) + a2, 2) — Uz, 2,2) = Uz, g, 2).

Corollary 3.4. If p is a w-distance on a metric space (X,d), then pq, = p.
Proof. For all z,y € X,

2
pr(az,y) = Qp(xaxvy) - g Qp(l‘)xwr) -
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= %p(z,2,) + pla,y) ~ 5 39w, 7) = play).

O

Corollary 3.5. The notion of w-distance on a metric space is a particularization
of the notion of Q-distance on a G*-metric space.

However, the class of {2-distances are bigger that the class of w-distances since
the following (2-distance do not generate a w-distance.

Example 3.6. Let X = [0,00) provided with the Euclidean distance
do(z,y) = |x —y| for all z,y € X, and the G*-metric associated to dp, that is,
Ga,(z,y,z) = max(|x —y|, |z — 2|, |y — 2|) for all z,y,z € X. Define Q(z,y,2) =
r+2y+32 for all 2,9, 2 € X. Then Q is a Q-distance on (X, Gy,)!. However, it does
not come from a w-distance because it is not symmetric in its two last variables.

4. TRANSLATIONS BETWEEN FIXED POINT THEOREMS USING w-DISTANCES AND
()-DISTANCES

As application of the previous results, we are going to show how we can translate
some results involving ()-distances to statements using w-distances, and viceversa
(in some cases). In particular, we apply the introduced relationships to the field
of fixed point theory, but our results can also be applied to other areas: Topology,
equations theory, etc.

Firstly, we show how we can translate every fixed point result in the setting of
()-distances to the framework of w-distances. This procedure allows us to present
a new class of contractivity conditions, as in the following illustrative example.

In [14], the authors proved the following result (necessary preliminaries can be

found therein).
Theorem 4.1 (Saadati et al., 2010, Theorem 2.2). Let (X, <) be a partially ordered
set. Suppose that there exists a G-metric on X such that (X,G) is a complete G-
metric space and ) is an Q-distance on X and T is a non-decreasing mapping from
X into itself. Let X be Q-bounded. Suppose that there exists k € [0,1) such that

Tz, Tz, Tw) < k Uz, Tz,w) foralz < Tz andw € X.
Also for every r € X
inf( Qz,y,z) + Uz, y, Tz) + Qz, T?z,y) :z < Tz ) >0
for every y € X with y # Ty. If there exists an xg € X with xg < Txq, then T has
a fized point. Moreover, if u = Tv, then Q(u,v,v) = 0.
Taking into account that if a subset is p-bounded, then it is also €2,-bounded,
then we can deduce the following consequence.

Corollary 4.2. Let p be a w-distance in a complete metric space (X,d) and let X
be a partial order on X. Assume that X is p-bounded. Let T : X — X be a <-non-
decreasing mapping from X into itself and suppose that there exists k € [0,1) such
that, for all x < Tx and w € X,

p(Tx, Tx) + p(Tx, T?x) + p(Tx, Tw) < k (p(x, ) + p(x, Tx) + p(z,w)) .

1a proof can be found on page 77.
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Also for every x € X
inf ( 4p(z,z) + 3p(z,y) + p(z, Tx) +p(x,T%z) 2 < Tx ) >0

for every y € X with y # Ty. If there exists an zy € X with xo < Txg, then T has
a fized point. Moreover, if u =T, then p(u,u) = p(u,v) = 0.

Proof. It is only necessary to apply Theorem 4.1 to the {)-distance €, defined in
Theorem 3.2, taking into account that (X, Gy) is a complete G-metric space. g

Using the introduced relationships, the converse procedure is only possible when
the Q-distance verify some properties, as we show using the following result given
in [6].

Theorem 4.3 (Ili¢ and Rakocevié¢, 2008, Theorem 3.1). Let X be a complete metric
space with metric d and let p be a w-distance on X. Let f,g: X — X commutes,
satisfy g(X) C f(X) and suppose that there exists a constant k € (0,1) such that,
for every x,y € X,

p(9x, gy) < X My(z,y) where
My(2,y) = max (p(fz, fy), p(fz, gz),p(fy, 9y), p(f2. 9y), (Y, 9)) -
Also assume that for every y € X with f(y) # g(y), we have that
inf (p(fz,y) +p(fr,gz) : z € X) > 0.

Then f and g have a common unique fized point uw in X (that is, a point u € X
such that fu = gu=wu) and p(u,u) = 0.

Taking into account that if (X, G) is a complete G-metric space, then (X, dq) is
a complete metric space, the previous result can be enunciated in the following way.

Corollary 4.4. Let Q be a Q-distance verifying properties (P1)-(Ps) of Theorem
3.2 on a G*-metric space (X,G). Let f,g: X — X be two commuting mappings
such that g(X) C f(X) and suppose that there exists a constant k € (0,1) verifying
that, for every x,y € X,

2
Qgx, gz, gy) — 3 (g, gz, gz) < X ML (,y) where
2
Mé’g(gj’y) = Inax <Q(f$, fxv fy) - g Q(fxv fxa fx)a

OUf, fo.g) 5 0o, .12, v, S.90) ~ 5 Uy f.1)).

Also assume that for every y € X with f(y) # g(y), we have that

4
inf (Q(fx7f$7y)+9(f$vfxag$) - g Q(f$,fl‘,fl') S X> > 0.
Then f and g have a common unique fized point u in X and Q(u,u,u) = 0.

Proof. Tt is only necessary to apply Theorem 4.3 to the w-distance pq (that exists
by Theorem 3.3). O
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