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Although Ad,B
0 depends on the metric d and on the subset B, for simplicity, it is

usual to denote it by A0, and B0 will stand for Bd,A
0 . Notice that if a ∈ A and

b ∈ B verify d(a, b) = d(A,B), then a ∈ A0 and b ∈ B0. Therefore, A0 is nonempty
if, and only if, B0 is nonempty. Therefore, if A0 is nonempty, then A, B and B0 are
non-empty subsets of X. It is clear that if A∩B ̸= ∅, then A0 is nonempty. In [17],
the authors discussed sufficient conditions in order to guarantee the non-emptiness
of A0. In general, if A and B are closed subsets of a normed linear space such that
d(A,B) > 0, then A0 is contained in the boundary of A (see [25]).

Given a metric space (X, d), let define dn : Xn×Xn→ [0,∞), for all (x1, x2, . . . , xn),
(y1, y2, . . . , yn) ∈ Xn, by

dn ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) = max
1≤i≤n

d(ai, bi).

It is well known that dn is a metric on Xn. Furthermore, (X, d) is a complete metric
space if, and only if, (Xn, dn) is also a complete metric space.

Definition 2.1. Let A and B be two subsets of a metric space (X, d) such that A0

is nonempty. We say that the pair (A,B) has the P-property if

a1, a2 ∈ A0, b1, b2 ∈ B0

d(a1, b1) = d(A,B)
d(a2, b2) = d(A,B)

 ⇒ d(a1, a2) = d(b1, b2).

We will consider a weaker condition than the P -property as follows.

Definition 2.2. Let A and B be two subsets of a metric space (X, d) such that A0

is nonempty. We say that the pair (A,B) has the weak P-property if

a1, a2 ∈ A0, b1, b2 ∈ B0

d(a1, b1) = d(A,B)
d(a2, b2) = d(A,B)

 ⇒ d(a1, a2) ≤ d(b1, b2).

Example 2.3. Let X be the plane R2 endowed with the Euclidean metric

dE ((x1, y1) , (x2, y2)) =

√
(x1 − x2)

2 + (y1 − y2)
2

for all (x1, y1) , (x2, y2) ∈ X. Let A and B be the subsets

A = { (x, 1) : −1 ≤ x ≤ 1 } and B = { (x, 0) : |y| ≥ 2 } .
Clearly, A and B are non-empty, closed subsets of X. Furthermore,

dE (A,B) =
√
2, A0 = { (−1, 1), (1, 1) } and B0 = { (−2, 0), (2, 0) }.

It can be easily checked that the pair (A,B) has the weak P -property, but it does
not satisfy the P -property.

Example 2.4. Also in
(
R2, dE

)
, let consider the subsets

A = { (x, 0) ∈ X : x ≥ 0 } ,
B =

{
(x, y) ∈ X : x ≤ 0, x2 + y2 = 1

}
∪ { (0, y) ∈ X : |y| ≥ 1 } .

Clearly, A and B are non-bounded, closed subsets of X. Furthermore, dE (A,B) =
1, A0 = {(0, 0)} and

B0 =
{
(x, y) ∈ X : x ≤ 0, x2 + y2 = 1

}
.
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Again, the pair (A,B) has the weak P -property, but it does not satisfy the P -
property.

Definition 2.5. We will say a point x ∈ A is a best proximity point of T if d(x, Tx) =
d(A,B). If A = B, a best proximity point of T is a fixed point of T (that is, Tx = x).

Let Ψ denote the family of all non-decreasing functions ψ : [0,∞) → [0,∞) such
that ψ(t) = 0 ⇔ t = 0, and let Ψ′ the subset of all ψ ∈ Ψ such that ψ is continuous
and limt→∞ ψ(t) = ∞.

Definition 2.6 (Sankar Raj [26], Definition 2). Let A and B be non-empty subsets
of a metric space (X, d). A map T : A → B is said to be a weakly contractive
mapping if there exists ψ ∈ Ψ′ (if A is bounded, the infinity condition can be
omitted) such that

d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)) for all x, y ∈ A.

In [26], the author proved the following result.

Theorem 2.7 (Sankar Raj [26], Theorem 3.1). Let (A,B) be a pair of two non-
empty closed subsets of a complete metric space (X, d) such that A0 is non-empty.
Let T : A → B be a weakly contractive mapping such that T (A0) ⊆ B0. Assume
that the pair (A,B) has the P-property. Then there exists a unique x∗ in A such
that d(x∗, Tx∗) = d(A,B).

In the original version, the author assumed the ψ is continuous, but, as we shall
prove, this hypothesis is not necessary. Moreover, the previous result also holds
under the weak P -property.

3. An extension of Raj’s theorem

The following result proves that T has a best proximity point under weaker
assumptions than the ones appearing in Theorem 2.7.

Theorem 3.1. Let (A,B) be a pair of two non-empty closed subsets of a complete
metric space (X, d) such that A0 is non-empty. Let T : A → B be a mapping such
that T (A0) ⊆ B0 and suppose that there exists ψ ∈ Ψ verifying

if x, y ∈ A0 and d(x, Tx) ≤ d(x, y) + d(A,B),

then d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)).(3.1)

Assume that T is continuous and the pair (A,B) has the weak P-property. Then T
has a unique best proximity point.

Notice that if ψ is continuous (for instance, if ψ ∈ Ψ′), then all weakly contractive
mappings in the sense of Definition 2.6 are continuous. Therefore, the previous result
improves Theorem 2.7 in three senses: (1) the pair (A,B) must only verify the weak
P -property; (2) our contractivity condition must be only verified by points which
satisfy the antecedent condition “d(x, Tx) ≤ d(x, y) + d(A,B)”, but not over all
points in A; (3) furthermore, this condition must be only verified by points in A0.
As a consequence, our result is clearly an improvement.
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Proof. Part I. Existence. Starting from any x0 ∈ X and following a well known
argument, there exists a sequence {xn} such that

(3.2) d(xn+1, Txn) = d(A,B) for all n ≥ 0.

If there exists some n0 ∈ N such that xn0+1 = xn0 , then

d(A,B) = d(xn0+1, Txn0) = d(xn0 , Txn0),

so xn0 is a best proximity point of T . In the sequel, assume that xn+1 ̸= xn for all
n ≥ 0. Using the weak P -property, for all n.m ∈ N,

(3.3)
xn, xm ∈ A0, Txn, Txm ∈ B0

d(xn+1, Txn) = d(A,B)
d(xm+1, Txm) = d(A,B)

 ⇒ d(xn+1, xm+1) ≤ d(Txn, Txm).

Taking into account that

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn) = d(xn, xn+1) + d(A,B),

the contractivity condition (3.1) guarantees that, for all n ≥ 0,

d(xn+1, xn+2) ≤ d(Txn, Txn+1) ≤ d(xn, xn+1)− ψ(d(xn, xn+1))(3.4)

≤ d(xn, xn+1).

Let r ≥ 0 be such that {d(xn, xn+1)} → r. We shall prove that r = 0 by contradic-
tion. If r>0, letting n→∞ in (3.4), we deduce that r ≤ r−limn→∞ ψ(d(xn, xn+1)) ≤
r, so

(3.5) lim
n→∞

ψ(d(xn, xn+1)) = 0.

However, as ψ is non-decreasing, then ψ(r) ≤ ψ(d(xn, xn+1)) for all n, which is a
contradiction with (3.5) and the fact that ψ(r) > 0 because ψ ∈ Ψ and r > 0. This
contradiction ensures that

(3.6) r = lim
n→∞

d(xn, xn+1) = 0.

Next, we will prove that {xn} is a Cauchy sequence. On the contrary case, a
well known argument using (3.6) shows that there exists ε0 > 0 and two partial
subsequences {xn(k)} and {xm(k)} of {xn} such that

k ≤ m(k) < n(k), d(xm(k), xn(k)−1) < ε0 ≤ d(xm(k), xn(k)) for all k,(3.7)

lim
n→∞

d(xm(k), xn(k)) = lim
n→∞

d(xm(k)+1, xn(k)+1) = ε0.(3.8)

By (3.6) and (3.8), there exists n0 ∈ N such that

d(xk, xk+1) ≤
ε0
2

≤ d(xm(k), xn(k)) for all k ≥ n0.

Therefore, for all k ≥ n0,

d(xm(k), Txm(k)) ≤ d(xm(k), xm(k)+1) + d(xm(k)+1, Txm(k))

≤ d(xm(k), xm(k)+1) + d(A,B)

≤ ε0
2

+ d(A,B) ≤ d(xm(k), xn(k)) + d(A,B).
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Applying the contractivity condition (3.1) and (3.3), it follows that, for all k ≥ n0,

d(xm(k)+1, xn(k)+1) ≤ d(Txm(k), Txn(k))

≤ d(xm(k), xn(k))− ψ(d(xm(k), xn(k)))

≤ d(xm(k), xn(k)).

Taking into account (3.8), we deduce that

lim
n→∞

ψ(d(xm(k), xn(k))) = 0,

but this is a contradiction with the fact that

0 < ψ(ε0/2) ≤ ψ
(
d(xm(k), xn(k))

)
because ψ ∈ Ψ. Hence, {xn} is a Cauchy sequence.

As (X, d) is complete, there exists x ∈ X such that {xn} → x. Since {xn} ⊆
A0 ⊆ A and A is closed, then x ∈ A. Furthermore, as T is continuous, letting
n→ ∞ in (3.2), we conclude that d(x, Tx) = d(A, b), so x is a best proximity point
of T .

Part II. Uniqueness. Let x, y ∈ X be two best proximity points of T . Since
d(x, Tx) = d(y, Ty) = d(A,B), the weak P -property guarantees

d(x, y) ≤ d(Tx, Ty).

On the other hand d(x, Tx) = d(A,B) ≤ d(x, y) + d(A,B), which implies that

d(x, y) ≤ d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)) ≤ d(x, y).

Hence ψ(d(x, y)) = 0, so d(x, y) = 0 and x = y. This completes the proof. □
One of the main advantages of the contractivity condition (3.1) is that it must

be only verified for different points x, y ∈ A0. When A0 contains few points, then
it can be easily verified, as in the following example.

Example 3.2. Let A and B be the subsets of the complete metric space
(
R2, dE

)
given in Example 2.3 and let T : A→ B be the mapping

T (x, 1) = (3− |x| , 0) for all x ∈ [−1, 1] .

Since A0 = { (−1, 1), (1, 1) } and B0 = { (−2, 0), (2, 0) }, then T (A0) = { (2, 0) } ⊆
B0. If x, y ∈ A0 are different points, then x = (−1, 1) and y = (1, 1), or viceversa.
In any case, as T (−1, 1) = T (1, 1), then the contractivity condition (3.1) trivially
holds. As (A,B) has the weak P -property and T is continuous, then Theorem 3.1
guarantees that T has a unique best proximity point, which is the point (1, 1).

If d (A,B) = 0, then A0 = B0 = A ∩ B is a closed, complete subset of (X, d).
The condition T (A0) ⊆ B0 means that we can consider a self-mapping T |A∩B :
A∩B → A∩B. Therefore, in the following corollary, which corresponds to the case
d (A,B) = 0, we do not consider subsets.

Corollary 3.3. Let (X, d) be a complete metric space and let T : X → X be a
continuous mapping. Assume that there exists ψ ∈ Ψ verifying

if x, y ∈ X and d(x, Tx) ≤ d(x, y),

then d(Tx, Ty) ≤ d(x, y)− ψ(d(x, y)).
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Then T has a unique fixed point.

Proof. It follows from Theorem 3.1 using A = B = X and taking into account that
(X,X) has the weak P -property (in fact, it verifies the P -property). □

4. Weak P-property on product spaces

For simplicity, we will use the notation A = (a1, a2, . . . , an) ∈ An and B =
(b1, b2, . . . , bn) ∈ Bn to denote arbitrary points of An and Bn.

Lemma 4.1. If A and B be non-empty subsets of a metric space (X, d), then the
following statements hold.

(1) dn(A
n, Bn) = d(A,B).

(2) If A = (a1, a2, . . . , an) ∈ An and B = (b1, b2, . . . , bn) ∈ Bn, then

dn(A,B) = dn(A
n, Bn) ⇔ [ d(ai, bi) = d(A,B) for all i ∈ {1, 2, . . . , n} ] .

(3) (An)dn,B
n

0 = (Ad,B
0 )n (that is, (A×A× (n). . .×A)0 = A0 ×A0 × (n). . .×A0).

(4) In particular, A0 ̸= ∅ if, and only if, (An)0 ̸= ∅.

Proof. (1) Let A = (a1, a2, . . . , an) ∈ An and B = (b1, b2, . . . , bn) ∈ Bn be arbitrary.
Since

dn (A,B) = max
1≤i≤n

d(ai, bi) ≥ d(a1, b1) ≥ d(A,B),

taking infimum on A ∈ An and B ∈ Bn we deduce that dn(A
n, Bn) ≥ d(A,B). On

the other hand, as

d(a, b) = dn ((a, a, . . . , a), (b, b, . . . , b)) ≥ dn(A
n, Bn)

for all a ∈ A and all b ∈ B, we conclude the contrary inequality d(A,B) ≥
dn(A

n, Bn).
(2) Assume that dn(A,B) = dn(A

n, Bn). By item (1), we have that, for all
i ∈ {1, 2, . . . , n},

d(A,B) ≤ d(ai, bi) ≤ max
1≤j≤n

d(aj , bj) = dn(A
n, Bn) = d(A,B).

Therefore, d(ai, bi) = d(A,B) for all i ∈ {1, 2, . . . , n}.
Conversely, assume that d(ai, bi) = d(A,B) for all i ∈ {1, 2, . . . , n}. Then

dn(A,B) = max
1≤i≤n

d(ai, bi) = d(A,B) = dn(A
n, Bn).

(3) Assume that A = (a1, a2, . . . , an) ∈ (A0)
n = A0 × A0 × (n). . . × A0. Then

there exist respective b1, b2, . . . , bn ∈ B such that d(ai, bi) = d(A,B) for all i ∈
{1, 2, . . . , n}. In particular, by item 2, dn(A,B) = dn(A

n, Bn), so A ∈ (An)0.
Conversely, assume that A ∈ (An)0. Then, there exists B ∈ Bn such that

dn(A,B) = dn(A
n, Bn). Also by item 2, it follows that d(ai, bi) = d(A,B) for

all i ∈ {1, 2, . . . , n}, which means that ai ∈ A0 for all i ∈ {1, 2, . . . , n}. This proves
that A = (a1, a2, . . . , an) ∈ A0 ×A0 × (n). . .×A0 = (A0)

n. □
Theorem 4.2. If A and B are non-empty subsets of a metric space (X, d), then
the pair (A,B) has the weak P-property on (X, d) if, and only if, the pair (An, Bn)
has the weak P-property on (Xn, dn).
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Proof. Assume that the pair (A,B) has the weak P -property on (X, d). Then
A0 ̸= ∅ and B0 ̸= ∅. By item 3 of Lemma 4.1, (An)0 ̸= ∅ and (Bn)0 ̸= ∅. Assume
that A = (a1, a2, . . . , an),A

′ = (a′1, a
′
2, . . . , a

′
n) ∈ (An)0 and B = (b1, b2, . . . , bn),B

′ =
(b′1, b

′
2, . . . , b

′
n) ∈ (Bn)0 are such that dn(A,B) = dn(A

′,B′) = dn(A
n, Bn). By item

2 of Lemma 4.1, we have that

d(ai, bi) = d(a′i, b
′
i) = d(A,B) for all i ∈ {1, 2, . . . , n}.

Since ai, a
′
i ∈ A0 and bi, b

′
i ∈ B0 for all i ∈ {1, 2, . . . , n}, and (A,B) has the weak

P -property on (X, d), it follows that

d(ai, a
′
i) ≤ d(bi, b

′
i) for all i ∈ {1, 2, . . . , n}.

In particular,

dn(A,A
′) ≤ max

1≤i≤n
d(ai, a

′
i) ≤ max

1≤i≤n
d(bi, b

′
i) ≤ dn(B,B

′),

which means that (An, Bn) has the weak P -property on (Xn, dn).
Conversely, assume that (An, Bn) has the weak P -property on (Xn, dn). Then

(An)0 ̸= ∅ and (Bn)0 ̸= ∅. By item 3 of Lemma 4.1, A0 ̸= ∅ and B0 ̸= ∅. Let
a, a′ ∈ A0 and b, b′ ∈ B0 be arbitrary points such that d(a, b) = d(a′, b′) = d(A,B).
Let define A = (a, a, . . . , a),A′ = (a′, a′, . . . , a′) ∈ (An)0 and B = (b, b, . . . , b),B′ =
(b′, b′, . . . , b′) ∈ (Bn)0. Therefore dn(A,B) = dn(A

′,B′) = dn(A
n, Bn). As (An, Bn)

has the weak P -property on (Xn, dn), we deduce that dn(A,A
′) ≤ dn(B,B

′), which
means that d(a, a′) ≤ d(b, b′). Hence, the pair (A,B) has the weak P -property on
(X, d). □

The same proof can be followed point by point to show the following result.

Theorem 4.3. If A and B are non-empty subsets of a metric space (X, d), then
the pair (A,B) has the P-property on (X, d) if, and only if, the pair (An, Bn) has
the P-property on (Xn, dn).

5. A multidimensional best proximity point theorem

The notion of fixed point was generalized to the coupled case by Guo and Laksh-
mikantham in [12] and, shortly after, Bhaskar and Lakshmikantham [11] introduced
the mixed monotone property in order to guarantee existence and uniqueness of
coupled fixed points. After that, Berinde and Borcut [7] presented the notion of
tripled fixed point. Berinde and Borcut’s definition has a disadvantage: the mixed
monotone property forces to repeat its second variable. Quadruple case was intro-
duced by Karapınar in [14]. The multidimensional case was not studied until the
works of Berzig and Samet [8] (which did not solve the problem of how permuting
the variables) and, especially, Roldán et al. See references in [20,21,23].

In the setting of best proximity theory, the notion of coupled best proximity point
must be as follows.

Definition 5.1. Let A and B be non-empty subsets of a metric space (X, d) and let
F : A2 → B be a mapping. We will say that (x, y) ∈ A2 is a coupled best proximity
point of F if

d(x, F (x, y)) = d(y, F (y, x)) = d(A,B).
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The more general notion of multidimensional fixed point was given by Roldán et
al. in [21,23]. Following their idea, we could establish a notion of multidimensional
best proximity point for a nonlinear operator. However, for simplicity, we present
the following concept which was also used by other authors in the past. We must
advise that the following definition is not compatible with the mixed monotone
property when the dimension is odd (see [16]).

Definition 5.2. Let A and B be non-empty subsets of a metric space (X, d) and
let F : An → B be a mapping. We will say that (x1, x2, . . . , xn) ∈ An is a multidi-
mensional best proximity point of F if

d(xi, F (xi, xi+1, . . . , xn, x1, x2, . . . , xi−1)) = d(A,B) for all i ∈ {1, 2, . . . , n} .

In order to guarantee existence and uniqueness of n-dimensional best proximity
points, item 3 of Lemma 4.1 will play a crucial role. It guarantees that (A × A ×
(n). . . × A)0 = A0 × A0 × (n). . . × A0, that is, (A

n)0 = (A0)
n. Therefore, we can denote

this set by An
0 and we can describe it as:

An
0 = { (a1, a2, . . . , an) ∈ An : ∃ b1, b2, . . . , bn ∈ B such that

d(ai, bi) = d(A,B) for all 1 ≤ i ≤ n } .
Given two non-empty subsets A and B of a metric space (X, d) and a mapping

F : An → B, let consider the mapping Tn
F : An → Bn given by

Tn
F (x1, x2, . . . , xn) = (F (x1, x2, x3, . . . , xn−1, xn) ,(5.1)

F (x2, x3, x4, . . . , xn, x1) , . . . ,

F (xn, x1, x2, . . . , xn−2, xn−1)
)

for all (x1, x2, . . . , xn) ∈ A2.

Lemma 5.3. If A and B are non-empty subsets of a metric space (X, d) and F :
An → B is a mapping such that F (An

0 ) ⊆ B0, then T
n
F (An

0 ) ⊆ Bn
0 .

Proof. Let (a1, a2, . . . , an) ∈ An
0 = (A0)

n be arbitrary. Therefore ai ∈ A0 for all
i ∈ {1, 2, . . . , n}. Hence, the points

(a1, a2, a3, . . . , an−1, an) , (a2, a3, a4, . . . , an, a1) , . . . ,

(an, a1, a2, . . . , an−2, an−1)

are all in (A0)
n. By hypothesis, since F (An

0 ) ⊆ B0, we deduce that the points

F (a1, a2, a3, . . . , an−1, an) , F (a2, a3, a4, . . . , an, a1) , . . . ,

F (an, a1, a2, . . . , an−2, an−1)

are all in B0. Hence, T
n
F (a1, a2, . . . , an) ∈ (B0)

n = Bn
0 . □

Our main result of this section is the following one.

Theorem 5.4. Let A and B be closed subsets of a complete metric space (X, d) such
that A0 ̸= ∅ and let F : An → B be a mapping such that the following properties
hold.

(a) F (An
0 ) ⊆ B0.
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(b) F is continuous.
(c) (A,B) has the weak P-property.
(d) There exists ψ ∈ Ψ such that

d (F (x1, x2, . . . , xn) , F (y1, y2, . . . , yn)) ≤ max
1≤i≤n

d(xi, yi)− ψ

(
max
1≤i≤n

d(xi, yi)

)
for all points x1, x2, . . . , xn, y1, y2, . . . , yn ∈ A0 verifying

max
1≤i≤n

d(xi, F (xi, xi+1, . . . , xn, x1, x2, . . . , xi−1)) ≤ max
1≤i≤n

d(xi, yi) + d(A,B).

Then the mapping F has a unique n-dimensional best proximity point.

Proof. Since A0 ̸= ∅, then A, B, An
0 and Bn

0 are non-empty sets by item 4 of
Lemma 4.1. As A and B are non-empty closed subsets, then An and Bn are also
non-empty closed subsets of (Xn, dn). Consider the mapping Tn

F : An → Bn defined
by (5.1). By hypothesis (a) and Lemma 5.3, we have that TF (An

0 ) ⊆ Bn
0 . As F

is continuous, then Tn
F is also continuous. Furthermore, using Theorem 4.2, taking

into account that (A,B) has the weak P -property, then (An, Bn) has the weak P -
property on (Xn, dn). In addition to this, assume that X = (x1, x2, . . . , xn) ,Y =
(y1, y2, . . . , yn) ∈ (An)0 = An

0 = (A0)
n are points such that

(5.2) dn(X, T
n
FX) ≤ dn(X,Y) + dn(A

n, Bn).

Since X = (x1, x2, . . . , xn) ∈ (A0)
n, then xi ∈ A0 and similarly yi ∈ A0 for all

i ∈ {1, 2, . . . , n}. By item 1 of Lemma 4.1, dn(A
n, Bn) = d(A,B). Hence, (5.2)

means that

(5.3) max
1≤i≤n

d(xi, F (xi, xi+1, . . . , xn, x1, x2, . . . , xi−1)) ≤ max
1≤i≤n

d(xi, yi) + d(A,B).

Using condition (d),

d (F (x1, x2, . . . , xn) , F (y1, y2, . . . , yn)) ≤ max
1≤i≤n

d(xi, yi)− ψ

(
max
1≤i≤n

d(xi, yi)

)
.

Exactly the same argument can be applied to any points

(xj , xj+1, . . . , xn, x1, x2, . . . , xj−1) ,

(yj , yj+1, . . . , yn, y1, y2, . . . , yj−1) ∈ (A0)
n = An

0

because condition (5.3) does not depend on the initial value j. Therefore, assump-
tion (d) yields

d (F (xj , xj+1, . . . , xn, x1, . . . , xj−1) , F (yj , yj+1, . . . , yn, y1, . . . , yj−1))

≤ max
1≤i≤n

d(xi, yi)− ψ

(
max
1≤i≤n

d(xi, yi)

)
for all j ∈ {1, 2, . . . , n} (notice that the second member is independent from j).
Taking maximum on j, we deduce that

dn(T
n
FX, T

n
FY) = max

1≤j≤n
d
(
F (xj , xj+1, . . . , xn, x1, . . . , xj−1) ,

F (yj , yj+1, . . . , yn, y1, . . . , yj−1)
)
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≤ max
1≤i≤n

d(xi, yi)− ψ

(
max
1≤i≤n

d(xi, yi)

)
= dn(X,Y)− ψ (dn(X,Y)) .

As a consequence, Theorem 3.1 guarantees that Tn
F has a unique best proximity

point. In particular, there exists a unique Z = (z1, z2, . . . , zn) ∈ An such that

dn(Z, TFZ) = dn(A
n, Bn).

Using item 2 of Lemma 4.1, z1, z2, . . . , zn are points in A such that

d(zi, F (zi, zi+1, . . . , zn, z1, z2, . . . , zi−1)) = d(A,B)

for all i ∈ {1, 2, . . . , n}, which means that Z is an n-dimensional best proximity
point of F . To prove the uniqueness, assume that W = (ω1, ω2, . . . , ωn) ∈ An is
another n-dimensional best proximity point of F , that is,

d(ωi, F (ωi, ωi+1, . . . , ωn, ω1, ω2, . . . , ωi−1)) = d(A,B)

for all i ∈ {1, 2, . . . , n}. Again, using 2 of Lemma 4.1, we deduce that dn(W, TFW) =
dn(A

n, Bn), which means that W is a best proximity point of Tn
F . As it is unique,

we conclude that W = Z. Hence, Z is the unique n-dimensional best proximity point
of F . □
Example 5.5. Let A and B be the subsets of the complete metric space

(
R2, dE

)
given in Example 2.4. Recall that (A,B) has the weak P -property. Given n ∈ N,
notice that

An =
{
((x1, 0) , (x2, 0) , . . . , (xn, 0)) ∈ R2n : x1, x2, . . . , xn ≥ 0

}
.

Let us consider the mapping F : An → B defined by

F ((x1, 0) , (x2, 0) , . . . , (xn, 0))

= (− |sin (x1 + x2 + . . .+ xn)| , cos (x1 + x2 + . . .+ xn))

for all x1, x2, . . . , xn ≥ 0. Then

F (An) =
{
(x, y) ∈ X : x ≤ 0, x2 + y2 = 1

}
= B0.

In particular, F (An
0 ) ⊆ B0. Furthermore, asA0 = { (0, 0) }, thenAn

0 = { (0, 0, (2n). . . , 0) }.
As a consequence, the contractivity condition (d) of Theorem 5.4 holds. Since
F is continuous, the aforementioned theorem guarantees that F has a unique n-

dimensional best proximity point, which is (0, 0, (2n). . . , 0) ∈ An
0 .

We can present different consequences modifying the contractivity condition (for
instance, avoiding the antecedent condition or replacing A0 by A).

Corollary 5.6. Theorem 5.4 also holds if we replace condition (d) by one of the
following assumptions.

(d ′) There exists ψ ∈ Ψ such that

d (F (x1, x2, . . . , xn) , F (y1, y2, . . . , yn))

≤ max
1≤i≤n

d(xi, yi)− ψ

(
max
1≤i≤n

d(xi, yi)

)
for all points x1, x2, . . . , xn, y1, y2, . . . , yn ∈ A0.
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(d ′′) There exists ψ ∈ Ψ such that

d (F (x1, x2, . . . , xn) , F (y1, y2, . . . , yn))

≤ max
1≤i≤n

d(xi, yi)− ψ

(
max
1≤i≤n

d(xi, yi)

)
for all points x1, x2, . . . , xn, y1, y2, . . . , yn ∈ A.

(d ′′′) There exists k ∈ [0, 1) such that

d (F (x1, x2, . . . , xn) , F (y1, y2, . . . , yn)) ≤ k max
1≤i≤n

d(xi, yi)

for all points x1, x2, . . . , xn, y1, y2, . . . , yn ∈ A0.

Proof. Notice that (d′′)⇒(d′)⇒(d), and item (d′′′) is based on taking ψ (t) = (1−k)t
for all t ≥ 0, which is in Ψ. □

For the sake of completeness, we particularize the previous results to the cases
n = 2 and n = 3.

Corollary 5.7. Let A and B be closed subsets of a complete metric space (X, d) such
that A0 ̸= ∅ and let F : A2 → B be a mapping such that the following properties
hold.

(a) F (A2
0) ⊆ B0.

(b) F is continuous.
(c) (A,B) has the weak P-property.
(d) There exists ψ ∈ Ψ such that

d(F (x, y), F (u, v)) ≤ max {d(x, u), d(y, v)} − ψ (max {d(x, u), d(y, v)})
for all x, y, u, v ∈ A0 such that

max (d(x, F (x, y)), d(y, F (y, x))) ≤ max {d(x, u), d(y, v)}+ d(A,B).

Then the mapping F has a unique coupled best proximity point, that is, there exist
unique x, y ∈ A such that

d(x, F (x, y)) = d(y, F (y, x)) = d (A,B) .

Corollary 5.8. Let A and B be closed subsets of a complete metric space (X, d) such
that A0 ̸= ∅ and let F : A3 → B be a mapping such that the following properties
hold.

(a) F (A3
0) ⊆ B0.

(b) F is continuous.
(c) (A,B) has the weak P-property.
(d) There exists ψ ∈ Ψ such that

d(F (x, y, z), F (u, v, w)) ≤max {d(x, u), d(y, v), d (z, w)}
− ψ (max {d(x, u), d(y, v), d (z, w)})

for all x, y, z, u, v, w ∈ A0 such that

max (d(x, F (x, y, z)), d(y, F (y, z, x)), d(z, F (z, x, y)))

≤ max {d(x, u), d(y, v), d (z, w)}+ d(A,B).
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Then the mapping F has a unique tripled best proximity point, that is, there exist
unique x, y, z ∈ A such that

d(x, F (x, y, z)) = d(y, F (y, z, x)) = d(z, F (z, x, y)) = d (A,B) .

In the next results, we avoid the antecedent condition, and we replace A0 by A.

Corollary 5.9. Let A and B be closed subsets of a complete metric space (X, d) such
that A0 ̸= ∅ and let F : A2 → B be a mapping such that the following properties
hold.

(a) F (A2
0) ⊆ B0.

(b) F is continuous.
(c) (A,B) has the weak P-property.
(d) There exists ψ ∈ Ψ such that

d(F (x, y), F (u, v)) ≤ max {d(x, u), d(y, v)} − ψ (max {d(x, u), d(y, v)})
for all x, y, u, v ∈ A.

Then the mapping F has a unique coupled best proximity point.

Corollary 5.10. Let A and B be closed subsets of a complete metric space (X, d)
such that A0 ̸= ∅ and let F : A2 → B be a mapping such that the following
properties hold.

(a) F (A2
0) ⊆ B0.

(b) F is continuous.
(c) (A,B) has the weak P-property.
(d) There exists ψ ∈ Ψ such that

d(F (x, y, z), F (u, v, w)) ≤max {d(x, u), d(y, v), d (z, w)}
− ψ (max {d(x, u), d(y, v), d (z, w)})

for all x, y, z, u, v, w ∈ A.

Then the mapping F has a unique tripled best proximity point.

Finally, we present a version of Theorem 5.4 in which A = B = X.

Corollary 5.11. Let (X, d) be a complete metric space and let F : Xn → X be a
continuous mapping. Assume that there exists ψ ∈ Ψ such that

d (F (x1, x2, . . . , xn) , F (y1, y2, . . . , yn))

≤ max
1≤i≤n

d(xi, yi)− ψ

(
max
1≤i≤n

d(xi, yi)

)
for all points x1, x2, . . . , xn, y1, y2, . . . , yn ∈ X verifying

max
1≤i≤n

d(xi, F (xi, xi+1, . . . , xn, x1, x2, . . . , xi−1)) ≤ max
1≤i≤n

d(xi, yi).

Then F has a unique n-dimensional fixed point, that is, there exist unique
z1, z2, . . . , zn ∈ X such that

zi = F (zi, zi+1, . . . , zn, z1, z2, . . . , zi−1) for all i ∈ {1, 2, . . . , n} .

We left to the reader to particularize the previous corollary to the cases n = 2
and n = 3.
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