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ABSTRACT. Inrecent times, many authors proved several coupled, tripled, quadru-
pled and, in general, multidimensional fixed point theorems. In many cases, these
results become to be simple consequences of their corresponding unidimensional
theorems. In this paper, we show how the weak P-property can be induced in
product spaces and how to use it to enunciate some kind of multidimensional
(including coupled and tripled) best proximity (and fixed) point theorems.

1. INTRODUCTION

In recent times, many authors proved several coupled, tripled, quadrupled and,
in general, multidimensional fixed point theorems (see, for instance, [1,3,6,7,9-12,
14,15,18-24]). In many cases, these results become to be simple consequences of
their corresponding unidimensional theorems (see, e.g., [2,5,13,16]). In this paper,
we show how the weak P-property can be induced in product spaces and how to
use it to enunciate some kind of multidimensional (including coupled and tripled)
best proximity (and fixed) point results.

2. PRELIMINARIES

Let n be a positive integer. Given a non-empty set X, let denote by X" the
product space X x X x (™) x X of n identical copies of X. If A is a non-empty
subset of X, we will also denote the product space A x A x () x A C X" by A™.

Let A and B be two non-empty subsets of a metric space (X,d). The distance
between A and B is

d(A, B) = inf ({d(a,b) : a € A,b € B}).
d,B d,A .
By Ay~ and B, we denote the following sets:
Ag’B ={z € A: d(z,y) = d(A, B) for some y € B} and
Bg’A ={y € B: d(z,y) = d(A, B) for some x € A} .
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Although Ag’B depends on the metric d and on the subset B, for simplicity, it is

usual to denote it by Ay, and By will stand for Bg’A. Notice that if ¢ € A and
b € B verify d(a,b) = d(A, B), then a € Ag and b € By. Therefore, Ay is nonempty
if, and only if, By is nonempty. Therefore, if Ag is nonempty, then A, B and By are
non-empty subsets of X. It is clear that if AN B # (), then Ay is nonempty. In [17],
the authors discussed sufficient conditions in order to guarantee the non-emptiness
of Ag. In general, if A and B are closed subsets of a normed linear space such that
d(A, B) > 0, then Ay is contained in the boundary of A (see [25]).
Given a metric space (X, d), let define d,, : X" x X" — [0, 00), for all (z1, z2,...,zy),

(Y1,y2,---,Yn) € X", by

dn ((‘Tla Z2,... 7xn)7 (yl; Y2,..-, yn)) = 1ma‘}§nd(a’i7 b’b)

<<

It is well known that d,, is a metric on X™. Furthermore, (X, d) is a complete metric
space if, and only if, (X™,d,,) is also a complete metric space.

Definition 2.1. Let A and B be two subsets of a metric space (X, d) such that Ag
is nonempty. We say that the pair (A, B) has the P-property if

ai,az € Ag, bi,by € By
d(al,bl) = d(A, B) = d(al,ag) = d(bl,bg).
d(ag,by) = d(A, B)

We will consider a weaker condition than the P-property as follows.

Definition 2.2. Let A and B be two subsets of a metric space (X, d) such that Ag
is nonempty. We say that the pair (A, B) has the weak P-property if

ai,az € Ag, b1,bs € By
d(al,bl) = d(A, B) = d(al,ag) < d(bl,bg).
d(a27b2) = d(A7 B)

Example 2.3. Let X be the plane R? endowed with the Euclidean metric

di (21, 31) » (@2,92)) = \/ (21 — 22)> + (1 — 1)
for all (x1,y1), (z2,y2) € X. Let A and B be the subsets
A={(z,1): 1<z <1} and B={(z,0):|yl>2}.
Clearly, A and B are non-empty, closed subsets of X. Furthermore,
dg (A,B) =v2, Ay={(-1,1), (1,1)} and By = {(-2,0), (2,0)}.

It can be easily checked that the pair (A, B) has the weak P-property, but it does
not satisfy the P-property.

Example 2.4. Also in (RQ, d E), let consider the subsets
A={(z,00e X:2>0},
B={(r,y) e X:2<0, 2°+y*=1}U{(0,y) e X : [y >1}.

Clearly, A and B are non-bounded, closed subsets of X. Furthermore, dg (4, B) =
1, Ao = {(0,0)} and

By={(z,y) € X :2 <0, x2+y2:1}.
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Again, the pair (A, B) has the weak P-property, but it does not satisfy the P-
property.

Definition 2.5. We will say a point x € A is a best prozimity point of T if d(x, Txz) =
d(A, B). If A = B, a best proximity point of T'is a fized point of T' (that is, Tx = z).

Let ¥ denote the family of all non-decreasing functions ¢ : [0,00) — [0, 00) such
that ¢(t) =0 < ¢t =0, and let ¥’ the subset of all ) € ¥ such that 1) is continuous
and limy_,o (1) = 0.

Definition 2.6 (Sankar Raj [26], Definition 2). Let A and B be non-empty subsets
of a metric space (X,d). A map T : A — B is said to be a weakly contractive
mapping if there exists ¢p € U’ (if A is bounded, the infinity condition can be
omitted) such that

d(Tz,Ty) < d(z,y) — ¢(d(z,y))  forallz,yec A
In [26], the author proved the following result.

Theorem 2.7 (Sankar Raj [26], Theorem 3.1). Let (A, B) be a pair of two non-
empty closed subsets of a complete metric space (X, d) such that Ay is non-empty.
Let T : A — B be a weakly contractive mapping such that T(Ag) C By. Assume

that the pair (A, B) has the P-property. Then there exists a unique x* in A such
that d(z*, Tx*) = d(A, B).

In the original version, the author assumed the ¢ is continuous, but, as we shall
prove, this hypothesis is not necessary. Moreover, the previous result also holds
under the weak P-property.

3. AN EXTENSION OF RAJ’S THEOREM

The following result proves that T has a best proximity point under weaker
assumptions than the ones appearing in Theorem 2.7.

Theorem 3.1. Let (A, B) be a pair of two non-empty closed subsets of a complete
metric space (X,d) such that Ay is non-empty. Let T : A — B be a mapping such
that T(Ao) C By and suppose that there exists ) € U verifying

if x,ye€ Ay and d(z,Tx) <d(z,y)+d(A, B),
(3.1) then d(Tz,Ty) < d(z,y) —Y(d(z,y)).

Assume that T is continuous and the pair (A, B) has the weak P-property. Then T
has a unique best proximity point.

Notice that if ¢ is continuous (for instance, if 1) € ¥’), then all weakly contractive
mappings in the sense of Definition 2.6 are continuous. Therefore, the previous result
improves Theorem 2.7 in three senses: (1) the pair (A, B) must only verify the weak
P-property; (2) our contractivity condition must be only verified by points which
satisfy the antecedent condition “d(z,Tz) < d(z,y) + d(A, B)”, but not over all
points in A; (3) furthermore, this condition must be only verified by points in Ajg.
As a consequence, our result is clearly an improvement.



1596 A. ALMEIDA, A. F. ROLDAN LOPEZ DE HIERRO, AND K. SADARANGANI
Proof. Part I. Existence. Starting from any xgo € X and following a well known
argument, there exists a sequence {x,} such that
(3.2) d(xps1,Txy) = d(A,B) for all n > 0.
If there exists some ng € N such that z,,+1 = z,,, then
d(A,B) = d(xng+1, TTny) = d(Xng, Tng ),

SO Ty, is a best proximity point of T'. In the sequel, assume that z,1 # x,, for all
n > 0. Using the weak P-property, for all n.m € N,

Tny T € Ag, Tap, Txy € By
(3.3) d(xpy1,Txy) = d(A, B) = d(Tp+1, Tmy1) < d(Txy, Txy,).
d(xmi1, Tam) = d(A, B)

Taking into account that
d(xp, Tzy) < d(xn, Tpt1) + d(@ps1, Try) = d(zy, Tnt1) + d(A, B),
the contractivity condition (3.1) guarantees that, for all n > 0,
(34)  d(wnr1,@ns2) < AT, Tonsr) < d@n, Tns1) — V(d@n, ni1))
< d(xp, Tpt1)-

Let r > 0 be such that {d(xy, zp+1)} — . We shall prove that » = 0 by contradic-
tion. If r >0, letting n— oo in (3.4), we deduce that r < r—lim,, o0 Y(d(zy, Tnt1)) <
T, SO

(3.5) Jim ¢p(d(zn, Tnt1)) = 0.

However, as 1 is non-decreasing, then ¥ (r) < ¢(d(zy,xn+1)) for all n, which is a
contradiction with (3.5) and the fact that ¢(r) > 0 because ¢ € ¥ and r > 0. This
contradiction ensures that

(3.6) r= lim d(zy,,zp41) = 0.

n—o0

Next, we will prove that {z,} is a Cauchy sequence. On the contrary case, a
well known argument using (3.6) shows that there exists 9 > 0 and two partial
subsequences {Zy )} and {Z,)} of {x,} such that

(3.7)  k<m(k) <n(k), d@Tm@), Tnr)-1) < €0 < d(Tm@), Tn)) for all k,
(3.8)  Wm d(@mry, Tnk)) = N0 d(Zp(k)+1, Zn(ey+1) = Eo-
By (3.6) and (3.8), there exists ng € N such that
d(xg, Tps1) < %0 < d(@p(kys Tngry)  for all k > ny.
Therefore, for all k& > ng,
Trn(k)s Tm(k)+1) + ATy 41, T k)
T (k)s Tm(k)+1) + d(A, B)
< 3+ d(A, B) < (@ ey 2agy) + d(A, B).

AT (1), T (1))
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Applying the contractivity condition (3.1) and (3.3), it follows that, for all & > ny,
AT (k)41 Tr(i)+1) < AT Ty, T (k)
< d(@i)s Togk)) — V(A Zm), Tn(r)))
< d(Trm(k)> Tn(k))-
Taking into account (3.8), we deduce that

Jim P (d(zmk)s Tnry)) = 0,
but this is a contradiction with the fact that
0 < 9(e0/2) < P (d(Tp()s Tn(r)))

because 1) € U. Hence, {z,} is a Cauchy sequence.

As (X,d) is complete, there exists z € X such that {z,} — =. Since {z,} C
Ag € A and A is closed, then © € A. Furthermore, as T is continuous, letting
n — oo in (3.2), we conclude that d(z, Tx) = d(A,b), so z is a best proximity point
of T.

Part II. Uniqueness. Let x,y € X be two best proximity points of T. Since
d(xz,Tx) = d(y,Ty) = d(A, B), the weak P-property guarantees

d(z,y) < d(Tz,Ty).
On the other hand d(z,Tz) = d(A, B) < d(z,y) + d(A, B), which implies that

Hence ¢ (d(x,y)) =0, so d(z,y) = 0 and = = y. This completes the proof. O
One of the main advantages of the contractivity condition (3.1) is that it must

be only verified for different points z,y € Ag. When Ay contains few points, then
it can be easily verified, as in the following example.

Example 3.2. Let A and B be the subsets of the complete metric space (]R2, d E)
given in Example 2.3 and let T': A — B be the mapping
T(x,1)=(3—z[,0) forallze[-1,1].

Since Ag = {(—1,1), (1,1) } and By = {(—2,0), (2,0) }, then T(Ap) = {(2,0) } C
By. If x,y € Ap are different points, then x = (—1,1) and y = (1, 1), or viceversa.
In any case, as T'(—1,1) = T'(1,1), then the contractivity condition (3.1) trivially
holds. As (A, B) has the weak P-property and T is continuous, then Theorem 3.1
guarantees that 7" has a unique best proximity point, which is the point (1, 1).

If d(A,B) = 0, then Ag = By = AN B is a closed, complete subset of (X,d).
The condition T'(Ap) € By means that we can consider a self-mapping T'| 4~z :
ANB — AN B. Therefore, in the following corollary, which corresponds to the case
d (A, B) =0, we do not consider subsets.

Corollary 3.3. Let (X,d) be a complete metric space and let T : X — X be a
continuous mapping. Assume that there exists ¢ € VU verifying
if v,yeX and d(z,Tz)<d(z,y),
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Then T has a unique fized point.

Proof. Tt follows from Theorem 3.1 using A = B = X and taking into account that
(X, X) has the weak P-property (in fact, it verifies the P-property). O

4. WEAK P-PROPERTY ON PRODUCT SPACES

For simplicity, we will use the notation A = (aj,aq9,...,a,) € A" and B =
(b1,b2,...,b,) € B™ to denote arbitrary points of A™ and B".

Lemma 4.1. If A and B be non-empty subsets of a metric space (X,d), then the
following statements hold.

(1) dn(A™, B™) = d(A, B).

(2) If A= (a1,a9,...,a,) € A" and B = (by,ba,...,b,) € B", then

dn(A,B) =d,(A",B") < [d(a;,b;) =d(A,B) forallic {1,2,...,n}].

(3) (AM)dB" — (ALPY™ (that is, (A x A x ) x A)g = Ag x Ag x ) x Ag).
(4) In particular, Ay # @ if, and only if, (A™)y # @.

Proof. (1) Let A = (aj,az2,...,a,) € A" and B = (b, ba,...,b,) € B™ be arbitrary.
Since

dy, (A,B) = max d(a;,b;) > d(a1,b1) > d(A, B),

1<i<n
taking infimum on A € A™ and B € B" we deduce that d,, (A", B") > d(A, B). On
the other hand, as

d(a,b) = d, ((a,a,...,a),(bb,..., b)) >d,(A", B")

for all @ € A and all b € B, we conclude the contrary inequality d(A,B) >
dn(A™, B™).

(2) Assume that d,(A,B) = d,(A™, B™). By item (1), we have that, for all
ie{l,2,...,n},

d(A7B) < d(a’ia bl) < 1I£1a<x d(aj’ b]) = dn(Ana Bn) = d(A7B)
<j<n
Therefore, d(a;, b;) = d(A, B) for all i € {1,2,...,n}.
Conversely, assume that d(a;,b;) = d(A, B) for all i € {1,2,...,n}. Then

d(A,B) = max d(a;,bi) = d(A, B) = du(A", B").

(3) Assume that A = (a1, a9,...,a,) € (Ag)" = Ag x Ag x ™) x Ag. Then
there exist respective by,bo,...,b, € B such that d(a;,b;) = d(A, B) for all i €
{1,2,...,n}. In particular, by item 2, d,(A,B) = d,,(A™, B"), so A € (A")o.

Conversely, assume that A € (A™)g. Then, there exists B € B™ such that
dn(A,B) = d,(A™, B™). Also by item 2, it follows that d(a;,b;) = d(A, B) for
all i € {1,2,...,n}, which means that a; € Ag for all i € {1,2,...,n}. This proves
that A = (a1, ag,...,an) € Ag x Ag x ™) x Ag = (Ap)™ O
Theorem 4.2. If A and B are non-empty subsets of a metric space (X,d), then

the pair (A, B) has the weak P-property on (X, d) if, and only if, the pair (A™, B™)
has the weak P-property on (X", d,).
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Proof. Assume that the pair (A, B) has the weak P-property on (X,d). Then
Ao # @ and By # &. By item 3 of Lemma 4.1, (A™)y # & and (B")g # &. Assume
that A = (a1,a2,...,a,),A" = (a},dl,...,a),) € (A")y and B = (b1, ba,...,b,),B" =

(by,b,,...,b)) € (B™) are such that d,(A,B) = d,(A",B’) = d,(A™, B"). By item
2 of Lemma 4.1, we have that

d(ai,b;) = d(a;, b)) =d(A,B) forallie {1,2,...,n}.

17 71
Since a;,a; € Ag and b;, b, € By for all ¢ € {1,2,...,n}, and (A, B) has the weak
P-property on (X, d), it follows that

d(ai,al) < d(b;,b;) forallie {1,2,...,n}.
In particular,

/ !/ / /
dn(AA") < lrglagxnd(az,ai) < lrgiagxn d(b;, b;) < d,(B,B"),
which means that (A", B™) has the weak P-property on (X", d,).

Conversely, assume that (A", B") has the weak P-property on (X", dy,). Then
(A™)g # @ and (B™)y # &. By item 3 of Lemma 4.1, Ay # @& and By # &. Let
a,a’ € Ap and b,V € By be arbitrary points such that d(a,b) = d(a’,b’) = d(A, B).
Let define A = (a,a,...,a),A" = (d’,d,...,d’) € (A")g and B = (b,b,...,b),B" =
(W, V,...,0') € (B")o. Therefore dy(A,B) = dy(A',B) = dp(A™, B"). As (A", B")
has the weak P-property on (X", d,), we deduce that d,(A,A") < d,(B,B’), which
means that d(a,a’) < d(b,b"). Hence, the pair (A, B) has the weak P-property on
(X, d). O

The same proof can be followed point by point to show the following result.

Theorem 4.3. If A and B are non-empty subsets of a metric space (X,d), then
the pair (A, B) has the P-property on (X,d) if, and only if, the pair (A™, B™) has
the P-property on (X", d,).

5. A MULTIDIMENSIONAL BEST PROXIMITY POINT THEOREM

The notion of fixed point was generalized to the coupled case by Guo and Laksh-
mikantham in [12] and, shortly after, Bhaskar and Lakshmikantham [11] introduced
the mixed monotone property in order to guarantee existence and uniqueness of
coupled fixed points. After that, Berinde and Borcut [7] presented the notion of
tripled fixed point. Berinde and Borcut’s definition has a disadvantage: the mixed
monotone property forces to repeat its second variable. Quadruple case was intro-
duced by Karapmar in [14]. The multidimensional case was not studied until the
works of Berzig and Samet [8] (which did not solve the problem of how permuting
the variables) and, especially, Roldan et al. See references in [20, 21, 23].

In the setting of best proximity theory, the notion of coupled best proximity point
must be as follows.

Definition 5.1. Let A and B be non-empty subsets of a metric space (X, d) and let
F : A2 — B be a mapping. We will say that (z,y) € A? is a coupled best prozimity
point of F if

d(z, F(z,y)) = d(y, F(y,z)) = d(A, B).
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The more general notion of multidimensional fixed point was given by Roldan et
al. in [21,23]. Following their idea, we could establish a notion of multidimensional
best proximity point for a nonlinear operator. However, for simplicity, we present
the following concept which was also used by other authors in the past. We must
advise that the following definition is not compatible with the mixed monotone
property when the dimension is odd (see [16]).

Definition 5.2. Let A and B be non-empty subsets of a metric space (X,d) and
let F': A" — B be a mapping. We will say that (z1,x9,...,x,) € A" is a multidi-
mensional best proximity point of F if

d(xi, F(xi, Tig1, ..oy Tn, T1, T2, ..., xi—1)) = d(A, B) for all i € {1,2,...,n}.

In order to guarantee existence and uniqueness of n-dimensional best proximity
points, item 3 of Lemma 4.1 will play a crucial role. It guarantees that (A x A x
(") x A)g = Ag x Ag X (M) x Ay, that is, (A™)g = (Ag)". Therefore, we can denote
this set by A{ and we can describe it as:

o =1 (a1,a9,...,a,) € A" : 3 b1,ba,...,b, € B such that
d(a;,b;)) =d(A,B) forall 1 <i<n }.

Given two non-empty subsets A and B of a metric space (X, d) and a mapping

F : A" — B, let consider the mapping 77, : A" — B™ given by

(5.1) Tp (1,22, ..., 2n) = (F (21,22,23, ..., Tn-1,Tn)
F(x9,23,Z4, ..., Ty, T1) ...,
F(xn,xl,:cg,...,xn_g,wn_1)>
for all (x1,z2,...,1,) € A%

Lemma 5.3. If A and B are non-empty subsets of a metric space (X,d) and F :
A™ — B is a mapping such that F (Af) C By, then T} (Af) C By

Proof. Let (a1, az,...,a,) € A} = (Ap)" be arbitrary. Therefore a; € Ay for all
i€{1,2,...,n}. Hence, the points

(a17a27a37 ceeyQp—1, an) ) (a27 a’37 CL4, ceey aTMal) 9 ottty

(ana ai,az,...,Aan—-2, an—l)

are all in (Ap)". By hypothesis, since F (Af}) C By, we deduce that the points

F (a1,a9,as3,...,an-1,ay), F(az,as,aq4,...,an,a1), ...,
F (an,al,aQ, ey Ap—92, an_l)
are all in By. Hence, T} (a1, as,...,a,) € (By)" = B. O

Our main result of this section is the following one.

Theorem 5.4. Let A and B be closed subsets of a complete metric space (X, d) such
that Ag # @ and let F : A™ — B be a mapping such that the following properties
hold.

(a) F(AD) C By.
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(b) F is continuous.
(¢) (A, B) has the weak P-property.
(d) There exists 1 € VU such that

d(F (.171,.%2, cee 7xn) )F(yl)y27 cee ,?/n)) S fg%xnd(xl)yl) - ¢ (f??%xrld(xl)yl))

for all points x1,x2,...,Tn,Y1,Y2,-..,Yn € Ay verifying

fgfg%d(l'iaF(xhxiJrl’ sy Ty T, L2y - - 7$i*1)) < fg?g%d(w%yz) + d(A7B)

Then the mapping F' has a unique n-dimensional best proximity point.

Proof. Since Ay # @, then A, B, Ay and B are non-empty sets by item 4 of
Lemma 4.1. As A and B are non-empty closed subsets, then A"™ and B"™ are also
non-empty closed subsets of (X", d,,). Consider the mapping T} : A™ — B" defined
by (5.1). By hypothesis (a) and Lemma 5.3, we have that Tr (Ay) C By. As F
is continuous, then T is also continuous. Furthermore, using Theorem 4.2, taking
into account that (A, B) has the weak P-property, then (A", B™) has the weak P-
property on (X", d,). In addition to this, assume that X = (z1,22,...,2,),Y =
(Y1,92,- -, yn) € (A™), = Af = (Ap)" are points such that

(5.2) dy (X, TPX) < dn(X,Y) + dn(A™, BM).

Since X = (x1,%2,...,2,) € (Ap)", then z; € Ay and similarly y; € Ag for all
i €{1,2,...,n}. By item 1 of Lemma 4.1, d,(A", B") = d(A, B). Hence, (5.2)
means that

(5.3) lg%ﬁd($i7F($i,xi+17 e Ty T, Ty, T 1)) < fg%};d(fﬁuyi) +d(A, B).

Using condition (d),

d(F (21, @2,...,2n) , F (Y1, 42, .-, yn)) < lrg%ﬁd(xi,yi) - (g%%zd(xi,yio :
Exactly the same argument can be applied to any points
(Tj, Tjp1s- s Ty 1, X2, ..., Tjo1),
(Yjs Yjt1s -+ Yns Y15 Y2, - -5 Yj—1) € (Ao)" = Af

because condition (5.3) does not depend on the initial value j. Therefore, assump-
tion (d) yields

d(F(xjaijrl?"'axnamla'--,xjfl)7F(yj7yj+la'-"yn,yla'-"yjfl))
< Al us) — d(s. s
= 112%7% (xmyz) () (1@?2% (xuyz)>

for all j € {1,2,...,n} (notice that the second member is independent from j).
Taking maximum on j, we deduce that

dn(TFX,TgY) = 1Igja<xnd (F (:Uj,CCjJrl, ey Ty L1y - ,l’jfl) 5

F(yj7yj+17 s Yns Y1, - - 7yj—1))
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< C o) o).
= lrélfél d(xzayz) (0 <II£?§}§L d(*%a@/z))

=dp(X,Y) = 9 (dn(X,Y)).

As a consequence, Theorem 3.1 guarantees that T has a unique best proximity

point. In particular, there exists a unique Z = (21, 29, ..., 2,) € A™ such that
dn(Z,TpZ) = d,(A", B").
Using item 2 of Lemma 4.1, 21, 29, ..., 2, are points in A such that
d(ziy F(2iy Zit1y - -y Zny 21,225 -+ -, 2i—1)) = d(A, B)
for all i € {1,2,...,n}, which means that Z is an n-dimensional best proximity
point of F. To prove the uniqueness, assume that W = (wy,ws,...,w,) € A" is

another n-dimensional best proximity point of F', that is,
d(wi, F(wi,wiﬂ, ey, W, W1, W2, ... ,wi_l)) = d(A, B)

foralli € {1,2,...,n}. Again, using 2 of Lemma 4.1, we deduce that d,(W,TpW) =
dn (A", B™), which means that W is a best proximity point of 7. As it is unique,
we conclude that W = Z. Hence, Z is the unique n-dimensional best proximity point
of F. O

Example 5.5. Let A and B be the subsets of the complete metric space (RQ, d E)
given in Example 2.4. Recall that (A, B) has the weak P-property. Given n € N,
notice that

A" ={((21,0),(22,0),..., (2,,0)) € R* 1 2y, 29,...,2, > 0 }.
Let us consider the mapping F': A™ — B defined by
F ((21,0),(x2,0),...,(zn,0))
=(—|sin(z1 +x2+ ...+ )|, cos(z1+x2+ ...+ 7))
for all z1,x2,...,2, > 0. Then
F(A") ={(z,y) € X:2<0, 2 +y* =1} = By.
In particular, F' (A?) C By. Furthermore, as Ag = { (0,0) }, then AZ = { (0,0, ?",0) }.

As a consequence, the contractivity condition (d) of Theorem 5.4 holds. Since
F' is continuous, the aforementioned theorem guarantees that F' has a unique n-

dimensional best proximity point, which is (0,0, (2n), 0) € Af.

We can present different consequences modifying the contractivity condition (for
instance, avoiding the antecedent condition or replacing Ay by A).

Corollary 5.6. Theorem 5.4 also holds if we replace condition (d) by one of the
following assumptions.

(d') There exists 1 € U such that
d(F(xlaIEQa--'7$n)7F(y17y27"'7yn))

< max d(z;,y;) — ¥ <maX d(%’;?ﬁ))

~ 1<i<n 1<i<n

for all points x1,xa, ..., Tn,Y1,Y2,---,Yn € Ap.
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(d") There exists 1 € ¥ such that
d(F(xla'rQa--'7$n)7F(y17y27"'7yn))

< o) .
= 112%}% d(xza yz) dj <1IE?*<}% d(xza yz)>

for all points x1,xa,...,Tn,Y1,Y2,---,Yn € A.
(d"™) There exists k € [0,1) such that

d<F(x17x27‘-'7xn)7F(y17y27"'7yn)) S k m.aX d(xlay%)
1<i<n

for all points x1,x2,...,Tn,Y1,Y2,...,Yn € Ag.

Proof. Notice that (d”)=-(d")=-(d), and item (d"”) is based on taking ¢ (t) = (1—k)t
for all ¢ > 0, which is in W. O

For the sake of completeness, we particularize the previous results to the cases
n=2and n=23.

Corollary 5.7. Let A and B be closed subsets of a complete metric space (X, d) such

that Ag # @ and let F : A> — B be a mapping such that the following properties
hold.

(a) F(A}) € Bo.

(b) F is continuous.

(c) (A, B) has the weak P-property.
(d) There exists 1 € U such that

d(F($7 y)? F(“? 1))) < max {d(x, u)v d(y7 1))} - 1/) (max {d(‘rv ’U,), d(yv U)})
for all x,y,u,v € Ay such that
max (d(z, F(z,v)),d(y, F(y,x))) < max{d(z,u),d(y,v)} + d(A, B).

Then the mapping F' has a unique coupled best proximity point, that is, there exist
unique x,y € A such that

d(z, F(z,y)) = d(y, F(y,z)) = d (A, B).

Corollary 5.8. Let A and B be closed subsets of a complete metric space (X, d) such

that Ag # @ and let F : A3 — B be a mapping such that the following properties
hold.

(a) F(A3) C By.

(b) F is continuous.

(¢) (A, B) has the weak P-property.
(d) There exists 1 € U such that

d(F(z,y,2), F(u,v,w)) <max{d(z,u),d(y,v),d(z,w)}
- ¢ (max {d(.TU, u): d(ya U): d (zv w)})
for all x,y, z,u,v,w € Ay such that
max (d(z, F(2,y,2)),d(y, F(y, 2,2)), d(z, F (2,2, y)))
< max {d(z,u),d(y,v),d (z,w)} + d(A, B).
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Then the mapping F' has a unique tripled best prorimity point, that is, there exist
unique x,y,z € A such that

d(z, F(z,y,2)) = d(y, F(y, 2,2)) = d(z, F(z,2,y)) = d (A, B).
In the next results, we avoid the antecedent condition, and we replace Ay by A.

Corollary 5.9. Let A and B be closed subsets of a complete metric space (X, d) such
that Ag # @ and let F : A> — B be a mapping such that the following properties
hold.

(a) F(A3) C By.

b) F is continuous.

c) (A, B) has the weak P-property.
d) There exists 1 € ¥ such that

d(F(z,y), F(u,v)) < max{d(z,u),d(y,v)} — ¢ (max{d(z,u),d(y,v)})
for all x,y,u,v € A.

(
(
(

Then the mapping F' has a unique coupled best proximity point.

Corollary 5.10. Let A and B be closed subsets of a complete metric space (X, d)
such that Ay # @ and let F : A> — B be a mapping such that the following
properties hold.

(a) F(A3) C By.
(b) F is continuous.
(¢) (A, B) has the weak P-property.
(d) There exists 1 € U such that
A(F (2,9, 2), F(u,0,w)) < max {d(w,w), d(y, v),d (2, w)}
- ¢ (max {d(xv U), d(y7 U), d (Za w)})
for all x,y, z,u,v,w € A.

Then the mapping F' has a unique tripled best proximity point.
Finally, we present a version of Theorem 5.4 in which A = B = X.

Corollary 5.11. Let (X,d) be a complete metric space and let F : X™ — X be a
continuous mapping. Assume that there exists 1 € U such that

d(F(xlaw27"'7wn)7F(y17y27"‘7yn))

< max d(z;,y;) — ¥ <HlaX d@%!/z‘))

1<i<n 1<i<n

for all points x1,x9,...,%Tn, Y1,Y2,-..,Yn € X verifying
max d(x;, F(x;, Tix1,...,Tn, T1,2T2,...,Ti—1)) < max d(x;,y;).
1<i<n ( I3 ( iy Li+1, yebmy L1y L2, 5 Lg 1)) = 1 <i<n ( ’Hyl)

Then F has a unique n-dimensional fized point, that is, there exist unique
21,292,...,2n € X such that

2i = F(Ziy Zig1y ooy Zns 21,22, - - -5 2i—1)  for alli € {1,2,...,n}.

We left to the reader to particularize the previous corollary to the cases n = 2
and n = 3.
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