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Fang et al. [13] investigated some equivalent statements for weak, strong and sta-
ble Lagrange dualities and extended Farkas lemmas for DC infinite programs with
DC constraint. Fang et al. [16] introduced some new constraint qualifications and
obtained some complete characterizations of stable and total Fenchel dualities for
DC optimization problems in locally convex spaces.

On the other hand, composed convex programming has also received consid-
erable attention since it offers a unified framework for treating different kinds of
optimization problems and many optimization problems generated practical fields
like location and transports or economics and finance involve composed convex
functions. Because of this important property, many important results have been
established for composed convex optimization problems under various conditions
in the last decades; see [4, 5, 6, 9, 10, 18, 19] and the references therein. Here we
just mention some work of [4, 5, 19]. In [4], Boţ et al. obtained some equivalent
statements for the formulae of the conjugate function of the sum of a convex func-
tion and a composite convex function in separated locally convex spaces. In [5],
Boţ et al. obtained two generalized Moreau-Rockafellar-type results for the sum
of a convex function and a composite convex function in separated locally convex
spaces. By using the properties of the epigraph of the conjugated functions, Li et
al. [19] obtained some necessary and sufficient conditions for the stable strong and
total dualities of a composed convex optimization problem.

Motivated by the works mentioned above, in this paper, we consider an opti-
mization problem which contains constrained DC optimization problem, convex
optimization problem with a linear operator and composed convex optimization
problem as special cases. The purpose of this paper is to establish duality results
for this optimization problem. We make three key contributions in this research.
First, we establish a Fenchel-Lagrange dual problem for this optimization problem
which provides a new generalization of the celebrated Fenchel-Lagrange dual prob-
lem for convex and DC optimization problems [2, 4, 5, 6, 21, 25]. Then, we obtain
Fenchel-Lagrange duality results and extended Farkas lemmas for this optimization
problem by using a closedness qualification condition. As an application of these re-
sults, we obtain sufficient conditions for an alternative type theorem. Moreover, the
results obtained here underline the connections that exist between Farkas lemmas
and alternative type theorems and, on the other hand, the duality.

The paper is organized as follows. In Sect. 2, we recall some notions and give some
preliminary results. In Sect. 3, we introduce an generalized optimization problem
and construct its dual problem. Then, we prove the weak duality and strong duality.
By using the duality assertions, we also obtain some extended Farkas lemmas for
this problem. In Sect. 4, we give some special cases of our general results, which
have been treated in the previous papers.

2. Mathematical preliminaries

Throughout this paper, let X and Y be two real locally convex Hausdorff topo-
logical vector spaces with their dual spaces X∗ and Y ∗, endowed with the weak∗

topologies w(X∗, X) and w(Y ∗, Y ), respectively. Let K ⊆ Y be a nonempty closed
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convex cone which defined the partial order “ ≤K” of Y , namely:

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K, for any y1, y2 ∈ Y.

We attach an element ∞Y ̸∈ Y which is a greatest element with respect to “ ≤K”
and let Y • := Y ∪ {∞Y }. Then, for any y ∈ Y •, one has y ≤K ∞Y and we define
the following operations on Y •:

y + (∞Y ) = (∞Y ) + y = ∞Y and t(∞Y ) = ∞Y , for any y ∈ Y and t ≥ 0.

Moreover, let D be a set in X, the interior (resp. closure, convex hull, convex
cone hull) of D is denoted by int D (resp. cl D, co D, cone D). Thus if W ⊆ X∗,
then cl W denotes the weak∗ closure of W . We shall adopt the convention that
cone D = {0} when D is an empty set. Let D∗ := {x∗ ∈ X∗ : ⟨x∗, x⟩ ≥ 0, ∀x ∈ X}
be the dual cone of D. The indicator function δD : X → R := R ∪ {+∞} of X is
defined by

δD(x) :=

{
0, if x ∈ D,
+∞, if x ̸∈ D.

Let f : X → R be an extended real valued function. The effective domain and the
epigraph are defined by

dom f := {x ∈ X : f(x) < +∞}
and

epi f := {(x, r) ∈ X × R : f(x) ≤ r},
respectively. f is said to be proper, iff its effective domain is nonempty and f(x) >
−∞. The conjugate function f∗ : X∗ → R of f is defined by

f∗(x∗) := sup
x∈X

{⟨x∗, x⟩ − f(x)}.

Let A : X → Y be a linear continuous mapping. The adjoint mapping A∗ : Y ∗ → X∗

of A is defined by

⟨A∗y∗, x⟩ := ⟨y∗, Ax⟩, for any (x, y∗) ∈ X × Y ∗.

The infimal function Af : Y → R of f through A is defined by

Af(y) := inf {f(x) : x ∈ X,Ax = y}, for any y ∈ Y.

By convention, if {f(x) : x ∈ X,Ax = y} is empty, then Af(y) = ∅.
Moreover, let G : X → Y • be an extended vector valued function. The domain

and the K-epigraph of G are defined by

dom G := {x ∈ X : G(x) ∈ Y },
and

epiK G := {(x, y) ∈ X × Y : y ∈ G(x) +K},
respectively. G is said to be proper, iff dom G ̸= ∅. G is said to be a K-convex
function, iff for any x, y ∈ X and t ∈ [0, 1], we have

G(tx+ (1− t)y) ≤K tG(x) + (1− t)G(y).

For any subset W ⊆ Y , we denote

G−1(W ) := {x ∈ X : there exists y ∈ W such that G(x) = y}.
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Moreover, let λ ∈ K∗. The function (λG) : X → R is defined by

(λG)(x) :=

{
⟨λ,G(x)⟩, if x ∈ dom G,
+∞, otherwise.

We say that G is star K-lower semicontinuous, iff (λG) is lower semicontinuous, for
any λ ∈ K∗.

Now, let us recall the following results which will be used in the following section.

Lemma 2.1 ([2]). Let f1, f2 : X → R be proper, convex and lower semicontinuous
functions such that dom f1 ∩ dom f2 ̸= ∅. Then, the following relation holds

epi (f1 + f2)
∗ = cl (epi f∗

1 + epi f∗
2 ),

where the closure is taken in the product topology of (X∗, τ) × R, for any locally
convex topology τ on X∗ giving X as dual.

Lemma 2.2 ([26]). Let f1, f2 : X → R be two proper, convex and lower semicon-
tinuous functions. Then

inf
x∈X

{f1(x)− f2(x)} = inf
x∗∈X∗

{f∗
2 (x

∗)− f∗
1 (x

∗)}.

3. Main results

In this paper, we deal with a new class of DC programming involving a composite
function given in the following form:

(P ) inf
x∈X

{
f(x) + g ◦G(x)− h(x)

}
,

where f, h : X → R and g : Y → R are three proper, convex and lower semi-
continuous functions, and G : X → Y • is a proper, K-convex and star K-lower
semicontinuous function. Let G(dom f ∩ dom h) ∩ dom g ̸= ∅. Moreover, we as-
sume that g is a K-increasing function, that is,

for any x, y ∈ Y such that x ≤K y, we have g(x) ≤ g(y).

Now, we first construct the dual problems of (P ), and then present the duality
assertions. By using the duality assertions, we also investigated some extended
Farkas lemmas for (P ). In order to introduce the dual scheme for (P ), we need the
following lemma.

Lemma 3.1 ([2]). For any x feasible to the problem (P ), we have

h(x) = sup
x∗∈X∗

{⟨x∗, x⟩ − h∗(x∗)}.

Proof. Since h is proper convex, and lower semicontinuous function, we have

h(x) = h∗∗(x) = sup
x∗∈X∗

{⟨x∗, x⟩ − h∗(x∗)} .

This completes the proof. □
Since h is lower semicontinuous, the standard convexification technique can be

applied. Then, by Lemma 3.1, the problem (P ) can be rewritten as

inf
x∈X

{
f(x) + g ◦G(x)− sup

x∗∈X∗
{⟨x∗, x⟩ − h∗(x∗)}

}
,
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which is equivalent to

(P ) inf
x∗∈X∗

inf
x∈X

{
f(x) + g ◦G(x) + h∗(x∗)− ⟨x∗, x⟩

}
.

Note that for any x∗ ∈ X∗, the inner infimum of the last formula

(P x∗
) inf

x∈X

{
f(x) + g ◦G(x) + h∗(x∗)− ⟨x∗, x⟩

}
is a composed convex optimization problem, and its Fenchel-Lagrange dual problem
is

(Dx∗
) sup

λ∈K∗,u∗∈X∗

{
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

}
.

Thus, this reformulation motivates us to define the following dual problem of (P ):

(D) inf
x∗∈X∗

sup
λ∈K∗,u∗∈X∗

{
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

}
.

Here and throughout this paper, following Boţ [2], Fang et al. [16] and Zălinescu
[28], we adapt the convention that

(+∞)− (+∞) = (−∞)− (−∞) = (+∞) + (−∞) = (−∞) + (+∞) = +∞,

0 · (+∞) = +∞ and 0 · (−∞) = 0.

Now, we will study the weak and strong dualities between (P ) and (D). For the
optimization problem (P ), we denote by val(P ) its optimal objective value, and
this notation is extended to the optimization problems that we use in this paper.

Definition 3.2. We say that

(i) the weak duality between (P ) and (D) holds, iff val(P ) ≥ val(D).
(ii) the strong duality between (P ) and (D) holds, iff val(P ) = val(D), and for

any x∗ ∈ X∗ satisfying val(Dx∗
) = val(D), the dual problem (Dx∗

) has an
optimal solution.

Remark 3.3. It is easy to see that the strong duality between (P ) and (D) holds
if and only if

val(P ) = inf
x∗∈X∗

max
λ∈K∗,u∗∈X∗

{
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

}
.

Theorem 3.4. The weak duality between (P ) and (D) is fulfilled, namely, val(P ) ≥
val(D).

Proof. Let x ∈ A := dom h∗ ∩ dom f∗ ∩ G−1( dom g∗). For any x ∈ A, λ ∈ K∗,
and x∗, u∗ ∈ X∗, by the definition of conjugate functions, one has

h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

≤ h∗(x∗)− ⟨u∗, x⟩+ f(x)− ⟨λ,G(x)⟩+ g(G(x))− ⟨x∗ − u∗, x⟩+ (λG)(x)

= h∗(x∗)− ⟨x∗, x⟩+ f(x) + g(G(x)).



1612 X.-K. SUN, X.-L. GUO, AND Y. ZHANG

Thus, for any x ∈ A, we have

inf
x∗∈X∗

sup
λ∈K∗,u∗∈X∗

{
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

}
≤ inf

x∗∈X∗
{h∗(x∗)− ⟨x∗, x⟩}+ f(x) + g(G(x))

= −h∗∗(x) + f(x) + g(G(x))

= f(x) + g(G(x))− h(x),

which means that val(P ) ≥ val(D), and the proof is complete. □

In order to obtain the strong duality assertions between (P ) and (D), we introduce
the following closedness condition.

Definition 3.5 ([5]). The problem (P ) is said to satisfy the closedness qualification
condition (CQC), if the set

(CQC) epi f∗ +
∪

λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
,

is weak∗ closed in the space X∗ × R.

The next lemma provides several characterizations of the closedness qualification
condition (CQC). Moreover, the condition will be crucial in the sequel and it also
deserves some attention for its independent interest.

Lemma 3.6 ([5]). The condition (CQC) holds if and only if for any x∗ ∈ X∗,

(f + g ◦G)∗(x∗) = min
λ∈K∗,u∗∈X∗

{
f∗(u∗) + g∗(λ) + (λG)∗(x∗ − u∗)

}
.

Theorem 3.7. If the condition (CQC) is fulfilled, then, the strong duality between
(P ) and (D) holds, namely, val(P ) = val(D), and for any x∗ ∈ X∗ satisfying
val(Dx∗

) = val(D), the dual problem (Dx∗
) has an optimal solution.

Proof. It follows from Lemma 2.2 that

(3.1) inf
x∈X

{
f(x) + g ◦G(x)− h(x)

}
= inf

x∗∈X∗
{h∗(x∗)− (f + g ◦G)∗(x∗)}.

By Lemma 3.6 and the condition (CQC), we get

(f + g ◦G)∗(x∗) = min
λ∈K∗,u∗∈X∗

{
f∗(u∗) + g∗(λ) + (λG)∗(x∗ − u∗)

}
.

This equality and (3.1) lead to

val(P ) = inf
x∈X

{
f(x) + g ◦G(x)− h(x)

}
= inf

x∗∈X∗

{
h∗(x∗)− min

λ∈K∗,u∗∈X∗

{
f∗(u∗) + g∗(λ) + (λG)∗(x∗ − u∗)

}}
= inf

x∗∈X∗
max

λ∈K∗,u∗∈X∗

{
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

}
.

Thus, by Remark 3.3, the strong duality between (P ) and (D) holds, and the proof
is complete. □
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By using the duality assertions presented in the previous theorems, we can obtain
the following extended Farkas lemmas.

Theorem 3.8. If the condition (CQC) is satisfied, then, for any α ∈ R, the fol-
lowing statements are equivalent:

(i) f(x) + g ◦G(x)− h(x) ≥ α, ∀x ∈ X.

(ii) (0,−α) + epi h∗ ⊆ epi f∗ +
∪

λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
.

(iii) For any x∗ ∈ X∗, there exist λ ∈ K∗ and u∗ ∈ X∗, such that

h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗) ≥ α.

Proof. (i) ⇒ (ii). Suppose that (i) holds. Then, for any x ∈ X, (f + g ◦ G)(x) ≥
h(x) + α. This follows that (h+ α)∗ ≥ (f + g ◦G)∗. In turn, this gives that

(0,−α) + epi h∗ = epi (h+ α)∗ ⊆ epi (f + g ◦G)∗.

Moreover, since the condition (CQC) is satisfied, it follows from [5, Corollary 3.6]
that

epi (f + g ◦G)∗ = cl

epi f∗ +
∪

λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
= epi f∗ +

∪
λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
.

Thus,

(0,−α) + epi h∗ ⊆ epi f∗ +
∪

λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
,

and (ii) holds.
(ii) ⇒ (iii). Suppose that (ii) holds. As (x∗, h∗(x∗)) ∈ epi h∗, by (ii), we have

(x∗, h∗(x∗)− α) ∈ epi f∗ +
∪

λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
.

Then, there exist λ ∈ dom g∗ ⊆ K∗, (u∗, α1) ∈ epi f∗, (v∗, α2) ∈ epi (λG)∗ such
that

(x∗, h∗(x∗)− α) = (u∗, α1) + (v∗, α2) + (0, g∗(λ)),

which means that

(3.2) x∗ = u∗ + v∗

and

(3.3) h∗(x∗)− α = α1 + α2 + g∗(λ).

Since f∗(u∗) ≤ α1 and (λG)∗(v∗) ≤ α2, it follows from (3.2) and (3.3) that

h∗(x∗)− α ≥ f∗(u∗) + (λG)∗(v∗) + g∗(λ)

= f∗(u∗) + (λG)∗(x∗ − u∗) + g∗(λ).

Thus,
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗) ≥ α,

and (iii) holds.
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(iii) ⇒ (i). Suppose that (iii) holds. Then, for any x∗ ∈ X∗, there exist λ ∈ S∗

and u∗ ∈ X∗ such that

h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗) ≥ α,

which implies that

sup
λ∈K∗,u∗∈X∗

{
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

}
≥ α.

Therefore, it comes that

inf
x∗∈X∗

sup
λ∈K∗,u∗∈X∗

{
h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗)

}
≥ α.

Then,
val(D) ≥ α.

By Theorem 3.4, we obtain that

val(P ) ≥ α,

and the proof is complete. □
The previous result can be reformulated as a theorem of the alternative in the

following way.

Corollary 3.9. Suppose that the condition (CQC) holds. Then, for any α ∈ R,
precisely one of the following statements is true

(i) There exists x ∈ X, such that f(x) + g ◦G(x)− h(x) < α.
(ii) For any x∗ ∈ X∗, there exist λ ∈ K∗ and u∗ ∈ X∗, such that

h∗(x∗)− f∗(u∗)− g∗(λ)− (λG)∗(x∗ − u∗) ≥ α.

4. The special cases

In this section, we will give some special cases of our general results, which have
been treated in the previous papers.

4.1. A composed convex optimization problem. When h(x) = 0, (P ) becomes
the following composed convex optimization problem:

(P1) inf
x∈X

{
f(x) + g ◦G(x)

}
.

Since

h∗(x∗) =

{
0, if x∗ = 0,
+∞, if x∗ ̸= 0,

the dual problem of (P1) is

(D1) sup
λ∈K∗,u∗∈X∗

{
− f∗(u∗)− g∗(λ)− (λG)∗(−u∗)

}
.

As some consequences of the results which have been treated in Section 3, we
obtain the following results for (P1). In this particular case, the following results
coincide with the results obtained in [2, 5].

Theorem 4.1. The weak duality between (P1) and (D1) is fulfilled, namely val(P1)
≥ val(D1).
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Theorem 4.2. If the condition (CQC) is fulfilled, then val(P1) = val(D1), and the
dual problem (D1) has an optimal solution.

Theorem 4.3. If the condition (CQC) is satisfied, then, for any α ∈ R, the fol-
lowing statements are equivalent:

(i) f(x) + g ◦G(x) ≥ α, ∀x ∈ X.

(ii) (0,−α) ⊆ epi f∗ +
∪

λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
.

(iii) There exist λ ∈ K∗ and u∗ ∈ X∗, such that

−f∗(u∗)− g∗(λ)− (λG)∗(−u∗) ≥ α.

The previous result can be reformulated as a theorem of the alternative in the
following way.

Corollary 4.4. Suppose that the condition (CQC) holds. Then, for any α ∈ R,
precisely one of the following statements is true

(i) There exists x ∈ X, such that f(x) + g ◦G(x) < α.
(ii) There exist λ ∈ K∗ and u∗ ∈ X∗, such that

−f∗(u∗)− g∗(λ)− (λG)∗(−u∗) ≥ α.

4.2. A constrained DC optimization problem. In this subsection, let C ⊆ X
be a nonempty closed convex set and ϕ : X → R be a proper, convex, lower
semicontinuous function. Now, we intend to apply our results to the case when f =
ϕ+δC and g = δ{−K}. Obviously, g is a proper, convex, lower semicontinuous andK-
increasing function, while the feasibility condition becomes G(dom f) ∩ (−K) ̸= ∅.
Then, (P ) becomes the following DC optimization problem:

(P2) inf
x∈C,

G(x)∈−K

{ϕ(x)− h(x)}.

Since g∗ = δK∗ , we obtain that dom g∗ = K∗. Then, the condition (CQC) becomes

(CQC)1 epi (ϕ+ δC)
∗ +

∪
λ∈K∗

epi (λG)∗ is weak∗ closed in the space X∗ × R.

Moreover, the dual problem of (P2) is

(D2) inf
x∗∈X∗

max
λ∈K∗,u∗∈X∗

{
h∗(x∗)− (ϕ+ δC)

∗(u∗)− (λG)∗(x∗ − u∗)
}
.

It is worth mentioning that the following results were recently obtained in [2, 11,
12, 23, 25] under some similar closedness qualification conditions.

Theorem 4.5. The weak duality between (P2) and (D2) is fulfilled, namely val(P2)
≥ val(D2).

Theorem 4.6. If the condition (CQC)1 is fulfilled, then val(P2) = val(D2).

Theorem 4.7. If the condition (CQC)1 is satisfied, then, for any α ∈ R, the
following statements are equivalent:

(i) x ∈ C,G(x) ∈ −K ⇒ ϕ(x)− h(x) ≥ α.
(ii) (0,−α) + epi h∗ ⊆ epi (ϕ+ δC)

∗ +
∪

λ∈K∗ epi (λG)∗.
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(iii) For any x∗ ∈ X∗, there exist λ ∈ K∗ and u∗ ∈ X∗, such that

h∗(x∗)− (ϕ+ δC)
∗(u∗)− (λG)∗(x∗ − u∗) ≥ α.

The previous result can be reformulated as a theorem of the alternative in the
following way.

Corollary 4.8. Suppose that the condition (CQC)1 holds. Then, for any α ∈ R,
precisely one of the following statements is true

(i) There exists x ∈ C,G(x) ∈ −K, such that f(x)− h(x) < α.
(ii) For any x∗ ∈ X∗, there exist λ ∈ K∗ and u∗ ∈ X∗, such that

h∗(x∗)− (ϕ+ δC)
∗(u∗)− (λG)∗(x∗ − u∗) ≥ α.

4.3. A convex optimization problem with a linear operator. Let h ≡ 0 and
G(x) = Ax, for any x ∈ X, where A : X → Y is a linear continuous mapping.
Taking K = {0}, one has that G is a K-convex function and K∗ = Y ∗. So, the
problem (P ) becomes

(P3) inf
x∈X

{f(x) + g(A(x))}.

Since

(λG)∗(−u∗) =

{
0, if A∗λ = −u∗,
+∞, otherwise,

the dual problems of (P3) is

(D3) sup
λ∈Y ∗

{
− f∗(−A∗λ)− g∗(λ)

}
.

Moreover, since

epi (λG)∗ = {(u∗, r) ∈ X∗ × R : u∗ = A∗λ, r ≥ 0},
we get

epi f∗ +
∪

λ∈ dom g∗

(
epi (λG)∗ + (0, g∗(λ))

)
= epi f∗ + (A∗ × idR) epi g

∗,

where idR denotes the identity mapping on R. Thus, the condition (CQC) becomes
in this special case:

(RCA) epi f
∗ + (A∗ × idR) epi g

∗ is weak∗ closed in the space X∗ × R.
In this particular case, it is worth mentioning that the results given in Theorem

4.11 and Corollary 4.12 are new while the ones in Theorems 4.9 and 4.10 have been
established recently in [2, 4, 5, 6].

Theorem 4.9. The weak duality between (P3) and (D3) is fulfilled, namely val(P3)
≥ val(D3).

Theorem 4.10. If the condition (RCA) is satisfied, then val(P3) = val(D3), and
the dual problem (D3) has an optimal solution.

Theorem 4.11. If the condition (RCA) is satisfied, then, for any α ∈ R, the
following statements are equivalent:

(i) x ∈ X ⇒ f(x) + g(A(x)) ≥ α.
(ii) (0,−α) ⊆ epi f∗ + (A∗ × idR) epi g

∗.
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(iii) There exists λ ∈ Y ∗, such that −f∗(−A∗λ)− g∗(λ) ≥ α.

The previous result can be reformulated as a theorem of the alternative in the
following way.

Corollary 4.12. Suppose that the condition (RCA) holds. Then, for any α ∈ R,
precisely one of the following statements is true

(i) There exists x ∈ X, such that f(x) + g(A(x))) < α.
(ii) There exists λ ∈ Y ∗, such that −f∗(−A∗λ)− g∗(λ) ≥ α.

enumerate

5. Conclusions

In this paper, we investigate some duality results for a generalized optimization
problem which contains convex and nonconvex constrained optimization problems
as special cases. Our results generalize and rediscover some results given in the past
in the literature. Moreover, the results obtained here underline the connections that
exist between Farkas lemmas and alternative type theorems and, on the other hand,
the duality.
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