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ABSTRACT. In this paper we introduce a viscosity type algorithm to strongly
approximate solutions of variational inequalities in the setting of Hilbert spaces.
Moreover, depending on the hypothesis on the coefficients involved on the scheme,
these solutions are common fixed points of a nonexpansive mapping and of a L-
hybrid mapping or fixed points of one of them.

1. INTRODUCTION

Let H be a real Hilbert space with the inner product (-,-), which induces the
norm || - .
Let C be a nonempty, closed and convex subset of H. Let T be a nonlinear mapping
of C into itself; we denote with Fiiz(T') the set of fixed points of T', that is, Fiz(T) =
{z€C:Tz==z}.
In this paper, to approximate solutions of variational inequalities, we introduce a
viscosity type iterative method involving a nonexpansive mapping and a L-hybrid
mapping.
K. Aoyama, S. Iemoto, F. Kohsaka and W. Takahashi [2] first introduced the class
of L-hybrid mappings in Hilbert spaces. Let T': H — H be a mapping and L > 0
a nonnegative number. 7' is said L-hybrid, signified as T' € Hp, if

(1.1) ITx = Ty|* < ||lz — y||* + Lz — T,y = Ty), Vz,y€ H,
or equivalently

L
(12 2Ta =Tyl < o= Tyl 4y~ TalP =2 (1= 5 ) (o~ Ty =T,

Notice that for particular choices of L we obtain several important classes of non-
linear mappings. In fact
e H, is the class of the nonexpansive mappings;
e Hs is the class of the nonspreading mappings;
e 7 is the class of the hybrid mappings.
Moreover
o if Fix(T) # (), each L-hybrid mapping is quasi-nonexpansive mapping (see,
[2]), i.e.
Tz —p|| <|lz—pl, VzeC and pe Fiz(T);
2010 Mathematics Subject Classification. 47J20, 47J25, 49J40, 65J15.

Key words and phrases. Variational inequality, strongly monotone and Lipschtiz continuous
operators, nonexpansive mappings, L-hybrid mappings, averaged type mappings.



1620 F. CIANCIARUSO, G. MARINO, A. RUGIANO, AND B. SCARDAMAGLIA

e the set of fixed points of a quasi-nonexpansive mapping is closed and convex
(see, [7]);
e if T'€ Hyp, then T5 := (1 — 0)I + dT belongs to ’H% for 6 > 0 (see, [1]).

The problem of finding fixed points of a nonlinear mappings has been widely inves-
tigated by many authors.

Iemoto and Takahashi [8] approximated common fixed points of a nonexpansive
mapping 7" and of a nonspreading mapping S in a Hilbert space. In particular, they
obtained the weak convergence of the following iterative method based on Moudafi’s
iterative scheme [13]:

r1€C
Ty = (1 — an)zn + an[BrSen + (1 — Br) T2y,

for all n € N, where (a,)nen, (Bn)nen C [0, 1] satisfies appropriate conditions.

In [5], inspired by Iemoto and Takahashi [8], we introduced an iterative method
of Halpern’s type to approximate strongly fixed points of a nonexpansive mapping
T and a nonspreading mapping S. We obtained the following:

Theorem 1.1. Let H be a Hilbert space and let C' be a nonempty closed and convex
subset of H. Let T : C — C' be a nonexpansive mapping and let S : C — C be
a nonspreading mapping such that Fixz(S) N Fiz(T) # 0. Let Ts and Ss be the
averaged type mappings. Suppose that (o, )nen is a real sequence in (0, 1) satisfying
the conditions:

(1) lim ay, =0,

n—oo

(2) Zan = 00.
n=1

If (Bn)nen is a sequence in [0,1], we define a sequence (zy)nen as follows:
1 €C
Tnt1 = apu+ (1 — ap)[BnTszn + (1 — Br)Ssxyn], mneN.
Then, the following hold:

(i) IfZ(l—Bn) < 00, then (zn)nen strongly converges to p = Priy(ryu which is
n=1

the unique solution in Fix(T) of the variational inequality (u—p,z—p) < 0,
for all x € Fix(T).
oo

(ii) Ifz Bn < 00, then (T, )nen strongly converges to p = Ppigy(s)u which is the
n=1
unique solution in Fix(S) of the variational inequality (v — p,x — p) < 0,
for all x € Fixz(S).
(iil) If lini)inf Bn(l — Bn) > 0, then (zp)nen Strongly converges to py =
n—oo
Pris(mynriz(s)yt which is the unique solution in Fiz(T) N Fix(S) of the
variational inequality (u — po,z — po) < 0, for all x € Fix(T) N Fix(S).

Let D : H — H be a nonlinear operator and let C' be a nonempty closed and
convex subset of H. The variational inequality is formulated as finding a point
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p € C such that
(1.3) (Dp,p—y) <0, VyeC,

Variational inequalities were initially studied by Stampacchia [16] and there after
the problem of existence and uniqueness of solutions of (1.3) has been widely in-
vestigated by many authors in different disciplines as partial differential equations,
optimal control, optimization, mechanics and finance. It is known that the problem
(1.3) admits a unique solution if D is S-strongly monotone, i.e.

(Dx — Dy,x —y) > Blle —y|* Va,ye H;
and if D is p-Lipschitz continuous operator, i.e.
Dz — Dy|| < pllz —yl, Vz,yeH.
G. Marino and L. Muglia in [10] considered a viscosity type iterative method:
20 € H, zpi1 = an(I — pnD)zp + (1 — ) Wiz

where W,, is an appropriate family of mappings and they proved the strong conver-
gence to the unique solution of the variational inequality (1.3) on the set of common
fixed points of a family of mappings.

Inspired by [10] and [5], in this paper, we introduce the following viscosity type
algorithm

xr1 € C
Tn4+1 = Oén(I - MnD)fL'n + (1 - 04n)[BnT6eTn + (1 - 6n)55$n]7 nc N7

where Ts = (1 — 0)I + T, Ss = (1 —6)I + 0S5, 6 € (0,1) are the averaged type
mappings with T' is a nonexpansive mapping and S is a L-hybrid mapping and D
is a B-strongly monotone and a p-Lipschitzian operator.

The introduced iterative scheme is very interesting because some well known itera-
tive methods can be obtained by it.

For example, if p,, = pand D = I_T“, where u is the constant contraction, we obtain
the algorithm proposed in [5].

I=f

Instead, if we consider u, = 4 and D = - where f is a contraction, we have a

viscosity method

(1.4) Tnt1 = Anf(xn) + (1 — an)[BuTsxn + (1 — Brn)Ssxn).

For (B, = 1 this scheme (1.4) was proposed by A. Moudafi in [12]. He proved
the strong convergence of algorithm (1.4) to the unique solution z* € C of the
variational inequality

(I- f)z*,oz* —z) <0, VzeCl,

where f is a contraction, in Hilbert spaces.

In [18] Xu extended Moudafi’s results in a uniformly smooth Banach space.
Moreover, for D = (I — «f), where f is a contraction with coefficient o and 0 <
v < z, we have

Tptl = QpYn + (1 - an)[ﬁnTéxn + (1 - 517,)56-7/%]
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where yn = iy f(#n) + (1 — pin) T
If A: H — H is a strongly positive operator, i.e. there is a constant 7 > 0 with the
property

(Az,z) > 7|z|?, Ve H.

and f is a contraction, we can take D = A—~f that is a strongly monotone operator
(see, [11]).

In [6], [11], [13], the authors consider iterative methods approximating a fixed point
of nonexpansive mappings that is also the unique solution of the variational inequal-
ity problem

(1.5) (A=~f)z*,x* —2) <0, VeeCl.

(1.5) is the optimality condition for the minimization problem

1
min o (Az,z) — h(x),

where h is a potential function for v f, i.e., h'(z) = vf(x) for z € H.

Depending on the choice of controll coefficients «,, and f,,, we prove the strong
convergence of our iterative method to the unique solution of a variational inequality
(1.3) on the set of common fixed points of 7" and S or on the fixed points of one of
them. As in [5], the regularization with the averaged type mappings plays a crucial
role for the strong convergence of our iterative method.

2. PRELIMINARIES

To begin, we collect some Lemmas which we use in our proofs in the next section.
In the sequel, we denote by H a real Hilbert space, by C' a nonempty closed convex
subset of H, by T a nonexpansive mapping and by S a L-hybrid mapping.

Lemma 2.1. The following known results hold:
(1) fltz + (1 =)yl = tllz]> + (1 = OllylI* — t(1 = t)]]a - yl|*,
for all x,y € H and for all t € [0,1].
(2) llz+yl? < llzl® + 2y, = + y),
for all x,y € H.
(3) 2(z —y,2 —w) = |lz — w|> + ly — 2l = [z — 2| = |y — w]?,
for all z,y,z,w € H.

To prove our main Theorem, we need some fundamental properties of the involved

mappings in the variational inequality.
2
Let By, := I — ppD and 7 := %. It is known that B, is a contraction [19],
that is,
[Bnz — Byl < (1 — po7) ||z — yl,Vo,y € H.

The following result summarizes some significant properties of I — T if T is a non-
expansive mapping ([3],[4]).

Lemma 2.2. Let C be a nonempty closed convexr subset of H and let T : C — C
be nonexpansive. Then:
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() I-T:C— H is %-im}e?“se strongly monotone, i.e.,

ST = T)z = (1= TYy|P < (o —y, (1~ Ta— (T~ T)y),

for all x,y € C;
in particular, if y € Fix(T) # (), we get,

1
(2.1) Sl = Tall? < (e - y,2 — Ta)

(2) moreover, if Fiz(T) # 0, I — T is demiclosed at 0, i.e. for every sequence
(Tn)nen weakly convergent to p such that x, —Txz, — 0 asn — oo, it follows
p € Fiz(T).

If T is a nonexpansive mapping of C into itself, Byrne [3] defined the averaged
mapping as follows

(2.2) Ts=(01—-8)I+6T=1-05(I-T)

where § € (0,1).

Moreover, Byrne [3] and successively Moudafi [14], proved some properties of the
averaged mappings; in particular, they showed that T is a nonexpansive mapping.
In [5], we defined the averaged type mapping Vs as in (2.2) for a nonlinear mapping
V . C — C; we notice that Fiz(V) = Fix(Vy).

It is easy to verify that if S is a L-hybrid mapping of C' into itself and Fixz(S) # 0
the averaged type mapping S is quasi-nonexpansive and consequently the set of
fixed points of Sy is closed and convex.

The following Lemma shows the demiclosedness of I — .S at 0.

Lemma 2.3 ([2]). Let C be a nonempty, closed and convex subset of H. Let
S :C — H be a L-hybrid mapping such that Fix(S) # (. Then I — S is demiclosed
at 0.

In the next Lemma we prove a suitable property of I — S. We follow the same
line in [8] but for completeness we report the proof of Lemma,

Lemma 2.4. Let C' be a nonempty, closed and convex subset of H. Let S : C' — C
be a L-hybrid mapping. Then

I(Z = S)z — (I - S)yl?

1
< (@9l $)o = (1= S + 5 (I = el + Iy = Syl?
for all x,y € C.

—2<P—§>@—S%y—5w)
Proof. Put A=1-S. For all z,y € C we have
|4z — Ayl = (Az — Ay, Az — Ay)
= ((&—y) - (Sz - Sy), Az — Ay)
(2.3) = (z—y,Ax — Ay) — (Sx — Sy, Az — Ay).
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Using , we obtain
2(Sx — Sy, Ax — Ay) = 2(Sz— Sy,(x —y) — (Sz — Sy))
= 2(Sz — Sy, x —y) — 2||Sz — Sy|]?
(by Lemma (2.1)) > [z = Sy|* + |ly — Sz[* — | — Sz[* — ||y — Sy|*

Oy 12) = (o= Syl +lly - Sal? 200 - $)lo  Say—5u))

L
—|lz — Sz||> — [|Sy — y|I* +2(1 — 5) (@ = S,y = Sy)

L
(2.4) = —[42)* = [Ay[* + 2(1 - 5)(z — Sz,y - Sy).
So, from (2.3) and (2.4), we can conclude
I = S)x — (I - S)yl?

1
< (@9l $)o = (1= S + 5 (I = el + Iy = Syl?

—2(1— g)(x —Sx,y— Sy>).
U

Remark 2.5. If p € Fiz(S) # 0, we have,
1
(7 = S)all* < (& = p, (T = S)z) + ST = )z,
in particular,
1
(2.5) (o —p,(I=8)z) 2 SlI(I - S)z||*.

We prove that the averaged type mapping Ss is quasi-firmly type nonexpansive
mapping, i.e. if there exists k € (0, +00) such that
(26) 1S5z —pl* < llz = pl|* = kllz — Ssz||*, Ve e C, Vpe Fix(S)#0.

The proof is similar to that in [5] for the nonspreading mappings, but we include it
for completeness.

Proposition 2.6. Let C' be a nonempty closed and convex subset of H and let
S : C — C be a L-hybrid mapping such that Fix(S) is nonempty. Then the averaged
type mapping S —

(2.7) Ss=(1—-0)I+6S,
is quasi-firmly type nonexpansive mapping with coefficient k = (1 —4§) € (0,1).
PrROOF
Proof. We obtain
1S5z — Ssyll* = II(
(by Lemma 2.1) = (1

1 —6) (& —y) +3(Sz — Sy)|
—6) ||z = yl* + 6|5z — Sy||?
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— 5(1=0)|(z — Sz) — (y — Sy)|I”
(by (L1) < (1=8) 2 =yl +6 [lle — vl + Lz = Sy — So)]
— (1 =0)|(z — Sz) — (y — Sy)|I”
L
= Hm—yH2+3<5(:c—5:c),5(y—5y))
1-5
16 (z — Sz) — & (y — Sy)|*

0
L
(by (2.7)) = llz = yl* + 5 (x — S5z, y — Ssy)

5
1-6
—— Iz = Ss52) = (y = Ssw) |

L
< o =yl + 5 (o = Sszy — Soy)
— (1= 8) (@ — S52) — (y — Ssu) .

In particular, we have
L
(2.8) 852 = S5yll* < llz—yl*+ 5 (2= Ssz, y = S59) = (1=0) [ (z = S52) — (y = Ssw) I

Observe that Ss is Z-hybrid. Moreover, choosing in (2.8) y = p, where p € Fiz(S) =
Fixz(Ss) we obtain

(2.9) 1S5z = plI* < ]z = plI* — (1 = 6) o — S5

A pertinent tool for us is the well-known Lemma of Xu [17].

Lemma 2.7. Let (ay)nen be a sequence of non-negative real numbers satisfying the
following relation:

Ap+41 < (1 - an)an + anop + v, N = 07

where,

b (an)TLEN - [07 1]7 Zan = o0y

n=1
e limsupo, <0;
n—oo
o0
e v >0, Z'Vn<oo'
n=1

Then,

lim a, = 0.
n—oo

Finally, the next result is of crucial importance for the techniques used in this
paper.
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Lemma 2.8. [9] Let (Vn)nen be a sequence of real numbers such that there exists a
subsequence (Vn;)jeN Of (Yn)nen such that vn; < yn;41, for all j € N. Consider the
sequence of integers (7(n))nen defined by
7(n) :=max{k <n: v <Y1}

Then (1(n))nen 18 a nondecreasing sequence for all n > ng, satisfying

e lim 7(n) = oo;

n—oo
® Vrn) < Yr(n)+1> Vn 2> no;
® Yn < Vr(n)+1 Vn > ng.

3. MAIN RESULTS

In all section, (8,)nen C [0,1] denotes a real sequence and U, : C' — C denotes
the convex combination of Ty and Sy, i.e.
Un = BnTsxn + (1 — B,)Ssxpn, neN.
Further we assume that
e Fiz(S)N Fix(T) # 0;
e (an)nen C (0,1) a real sequence such that lim «, = 0;

n—oo
e O(1) is any bounded real sequence;

e D: H — H is a -strongly monotone and p-Lipschitzian operator;
e (in)nen is a sequence in (0, ) such that p < i—é.

We start with the two following Lemmas.
Lemma 3.1. Let (xn)nen be the sequence defined by
Tnt1 = (1 — pp D)y, + (1 — ap)Upxy,
where
Un - /BnT(S + (1 - Bn)sé
Then

(1) Uy is quasi-nonexpansive for all n € N.

(2) (zn)nens (Szn)nen, (Txn)nen, (SsZn)nen, (TsTn)nen, (Un®n)nen are bounded
Sequences.

Proof. (1) To simplify the notation, we set
(3.1) By :=1— pu,D.
We observe that U, is quasi-nonexpansive, for all n € N; since Ty is a nonexpansive

mapping and Ss is a quasi-nonexpansive mapping.

(2) First we prove that (x,)nen is bounded.
Moreover, we recall that B,, is a contraction.
For g € Fiz(T) N Fiz(S), we have

[Zn+1 —qll = llan(Bnzn —q) + (1 — an)(Unzn — 9|
< anl|Brzn — qll + (1 — an)|[Unzn — g
(U, quasi-nonexpansive) < au||Bpzy, — ¢l + (1 — an)||zn — ¢
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< an||Bazn — Bugl|l + anl|Bng — 4|
+(1 = an)lzn — ql|
(B, contraction) < an(1 — pp7)||zn — ¢l + anl|Brg — q||
+(1 = an)lzn — ql|
= (I = anpn7) |70 — gl + || Bng — 4|l

Dq
(3.2) by 31)) = (1= annr)|n — gl + QnpinT ’ I
Since
D
”wl - QH S max {HT(:Z||7 ”1’1 — q”},

and by induction we assume that

Dq|
T max{”’, a1 — qu},

T

then

IN

D D
fowsr =l < w1280 oy — g} 4 121

D D
maox L2704 e {1221,y — g1}

12dl,
D
— 2 {20 g}

Thus (z,)nen is bounded. Consequently, (Tszp)nen, (SsZn)nen, (UnZn)nen and
(BnZn)nen are bounded as well.

IN

O

Lemma 3.2. Let C' be a nonempty closed and convex subspace of H, let D : H - H
be a B-strongly monotone and p-Lipschitzian operator.

(i) LetV be a nonlinear mapping from C' into itself such that I—V is demiclosed
at 0 and Fix(V) # 0. Consider a bounded sequence (yn)nen C C such that
lyn — Vynl|l = 0, as n — oo, then:

hHlSU.p <D]§aﬁ - yn> é Oa

n—oo

where p is the unique point in Fix(V') that satisfies the variational inequality
(3.3) (Dp,p—z) <0, Vze& Fiz(V).

(ii) Let V,W be a nonlinear mappings from C into itself such that I —V and
I —W are demiclosed at 0 and Fiz(V)N Fiz(W) # (0. Consider a bounded
sequence (Yn)neny C C such that ||y, — Vynl| = 0 and ||y, — Wyn| — 0, as
n — 0o, then:

lim sup (Dpo, po — yn) < 0,

n—oo
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where pg is the unique point in Fiz(V)NFiz(W) that satisfies the variational
mequality
(3.4) (Dpo,po —z) <0, Vz e Fiz(V)N Fiz(W).
Proof. (i) Let p satisfying (3.3). Let (yn, )ken be a subsequence of (yn)nen for which
limsup (Dp,p — yn) = lim (Dp,p — Yn,) -
n—00 k—o00
Select a subsequence (ynkj )jen of (yn, )ken such that Yni, — v (this is possible by

boundedness of (yn)nen). By the hypothesis ||y, — Vyn|| — 0, as n — oo, and by
demiclosedness of I — V at 0 we have v € Fiz(V), and

limsup (Dp, p — yn) = lim (Dp, 5~ yn, ) = (D55~ v).
J—0 J

n—oo

so the claim follows by (3.3).

(ii) Select a subsequence (yn, )ken Of (Yn)nen such that
lim sup (Dpo, po — yn) = lim (Dpo,po — Yn,) »
n—00 k—o00
where pg satisfies (3.4). Now select a subsequence (ynkj )jen of (yn, )ken such that
Yny,, — W Then by demiclosedness of I —V and I — W at 0, and by the hypotheses

lyn — Vynl| — 0 and ||y, — Wy,|| — 0, as n — oo, we obtain that w = Vw = Ww,
ie. we Fiz(V)N Fiz(W). So,

lim sup (Dpo,po — yn) = lim <Dpo,po - ynk.> = (Dpo,po — w) ,
J—00 J

n—oo

so the claim follows by (3.4). O
Now, we prove our main Result.

Theorem 3.3. Let H be a Hilbert space and let C' be a nonempty closed and convex
subset of H. Let T : C — C be a nonexpansive mapping and let S : C — C be a
L-hybrid mapping such that Fiz(S) N Fiz(T) # 0. Let Ts and Ss be the averaged
type mappings, i.e.

Ts=(1-=0)I+T, Ss=(1-086)I1+6S,6¢€(0,1).
Let D : H — H be a (-strongly monotone and p-Lipschitzian operator. Suppose
that (fin)nen is a sequence in (0, u), p < i—@, and (o)nen is a sequence in (0,1),
satisfying the conditions:

(1) nh_)rg() an =0,

(2) lim 2% =0,

oo
(3) Z Qb = 00.
n=1

If (Bn)nen is a sequence in [0,1], we define a sequence (xy)nen as follows:

1 €C
Tnt1 = (I — pup D)y + (1 — o) [BnTsxn + (1 — B)Sstn], n €N,



ON STRONG CONVERGENCE OF VISCOSITY TYPE METHOD 1629

Then, the following hold:

(i) If Z(l — Bpn) < 00, then (xn)nen converges strongly to p € Fix(T) which is
n=1

the unique solution in Fix(T') of the variational inequality (Dp,p — x) < 0,
for all x € Fix(T).
o

(i) If Zﬁn < 00, then (xp)nen converges strongly to p € Fix(S) which is the

n=1

unique solution in Fix(S) of the variational inequality (Dp,p — z) <0, for

all x € Fix(9).

(iii) If liH—l>in Brn(1 = By) >0, then (zy)nen converges strongly to py € Fix(T) N
n oo

Fix(S) which is the unique solution in Fix(T) N Fixz(S) of the variational
inequality (Dpo,po — x) < 0, for all x € Fix(T) N Fiz(S).

Proof of (i). We rewrite the sequence (Zp+1)nen as

(3.5)

Tntl1 = Oéanxn + (1 - an)T(ixn + (1 - /Bn)E’m

where E,, = (1 — ay)(Sszn — Tsxy,) is bounded, ie. ||E,| < O(1).
We begin to prove that lim ||z, — Tsz,| = 0.
n—oo

Let p the unique solution in Fiz(T) = Fix(Tj) of the variational inequality

We have

41 = Bl

( by Lemma 2.1)

(by (2.1))

and hence

IA A

(3.6)

IN

IN

IN

(Dp,p—x) <0, Vze Fiz(T).

llotn By + (1 — ap)(1 —0)xy,
+(1 = )T, + (1 — Ba) En — Pl
I[(1 = an)d(Tzp — 2n) + 20 — D
o (Bpan — on) + (1 — 5n)Enw2
(1 = @)d(Txn — p) + 0 — DI
+2{a,(Bpxy — xn) + (1 — Brn) Eny Tny1 — D)
(1 = an)d(Txy — ) + x, — B
+20(Bpxy — Ty, Tpt1 — D) + 2(1 — Bn)(En,y Tny1 — D)
(1 = )8 || Ty, — o + (|20 — P
—2(1 — ap)d{xy — P,y — Txy)
+20n || Bazn — znlll|zn41 — Bl + 2(1 = Ba)l| Enll[|2n+1 — DIl
|Zn _T?HZ +(1— O‘n)252||$n - TanQ
—(1 = an)d||lzn — Tznl* + 0, O(1) 4+ (1 — B,)O0(1)
|27, _ﬁHZ — (1= )01 = 6(1 — )]l wn — TwnH2
+a,0(1) + (1 — 5,)0(1)

(1 —apn)o[l — (1 — an)]|lxn — Tl’n||2
20 = PI* = 201 — PlI* + cnO(1) + (1 — 8,)O(1).
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We turn our attention on the monotony of the sequence (||zy, — P||)nen-
We consider the following two cases.

Case A. ||zp+1 — P|| is definitively nonincreasing.

Case B. There exists a subsequence (2, )ren such that

Zn, — Bll < |n,41 — 5| for all k € N.

Case A. Since ||z, — B||)nen is definitively nonincreasing, lim ||z, — p||* exists.
n—oo

From (3.6), nhﬁnolo a, =0 and Z 1 — Bn) < oo, we have

0 < limsup ( (1 —an)o[l — 6(1 — an)]|lxn — T:L’n||2>
n—oo
< hmsup (Hxn P> = [|wns1 — B

Fan0(1) + (1 - B,)0(1 >) _o,

so, we can conclude that

lim ||z, — Tz,|| =0
n—oo
and
(3.7) lim ||z, — Tsz,| = lim 0|z, — T, = 0.
n—o00 n—00

Since lim |z, —Txy| = 0 and from I — T is demiclosed at 0, we can use Lemma
n—oo
3.2 (i), so we get
(3.8) limsup(Dp,p — =) < 0.

n—oo

Finally, we prove that (x,),en converges strongly to p.
We compute

|Zn+1 — ]3|’2 < Nlen(Bpxy —P) + (1 — o) (Tszn, — p) + (1 = Bn) En ||2
(by Lemma 2.1) < ||(1 — ay)(Tsz, — )|
+2((1 = Bp)Ey, + an(Bpxp — D), Tnt1 — D)
(1- O‘n>2HT5xn - pH2 + 200 (Bpy — D; Tnt1 — P)
+(1=5,)0(1)
(Ts nonexpansive) < (1— an)QH:cn — 1?)||2 + 200, (Bpn — Bpp, Tny1 — D)
+20, (Bpp — P, Tnt1 — p) + (1 — Bn)O(1)
(B, contraction) < (1 —ap)?||z, —7|?
+20 (1 = pn7)||25 = Pll||Zn41 — Dl
+20, (Bnp — P, Tnt1 — P) + (1 — Bn)O(1)
(1 = an)?[lz — Bl

IN

(Bn = (1 - MTLD))

IN
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+an(1 = pn7) | |20 _]3"2 + [|Znt1 _17“2

_2anﬂn<Dﬁ7 Tn+1 _ﬁ> + (1 - /BTZ)O(1>7
Then it follows that
1 — (14 pp7)on +a?

=2 < n =12
fonr =B < S e, g
200 hn _ _
_ D _
1—-(1- MnT)Oén< Py Tnt1 D)
1- ﬁn
+ O(1
1— (1= ppm)ay, ()
1—(14+ pp7m)a _
< oUdmmon,, 5
1— (1= ppm)ay,
200 hn _ _
_ D _
1—-(1- /,LnT)an< P> Tnt1 ~P)
1— 0, a?
O(1) + = O(1
1- (1 - Mn'r)an ( ) 1- (1 - MnT)an ( )
2 T Ot 12
< 1- —
< (1o =2 o -5l
2y Tty 1, _ O,
— (D — o1
1= (1= jinr)cun [ T< Ds Tni1 — D) + e (1)
1- ﬂn
+ O(1
1— (1= ppm)a, (1)
Notice that by
lim — KT
n—oo 1 — (1 — pp7)ay
it follows that 5
0< HnT % <1, definitively.

1— (1= ppm)ay,

(o] (o]
. _ B . % o
Moreover, using Zanun = o0, nZ::l(l Br) < o0, (3.8) and nh_)n(}o o 0, we can

n=1
apply Lemma 2.7 and conclude that

lim ||z,+1 —P|| = 0.
n—0o0

Case B. There exists a subsequence (zp, )ken such that
|20, =PIl < l[#n,+1 =PIl for all k € N.

Then by Maingé Lemma 2.8 there exists a sequence of integers (7(n))nen that it
satisfies
(1) (7(n))nen is nondecreasing;
—00

(3) ||x7(n) _T?H < ”':UT(H)-‘rl _T?H;
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(4) [lzn =Dl < [[#7(m)+1 — DIl
Consequently,

0 < timnt (o2~ 1 = llor) 1)

< limsup <||$7' n)+1 — pll — ||$7—(n) _pH>
n—oo
< limsup <||£L‘n+1 pll — llzn p|>
n—oo
(by (3.5)) = limsup (||an ntn — Tszn) + Tsrp —D

n—0o0

(1= B)Eull = 2 —pu)

(Ts nonexpansive) < limsup <an0(1) + ||z — P

n—o0

+(1 = B,)O1) — ||, — p||) —

SO

(3.9) lim <||xT<n>+1—pu T —p||) 0

n—oo

By (3.6), we have
0 < (1= amm)d[l =01 = arm)l@rm) = Tormll?
< er(n) _T)H H.’IJ n)+1 — p”2 + anO(l) + (1 - 67'(71))0(1)7

from (3.9), nhﬁnolo oy =0 and Z(l — ) < 0o we get

n=1

n—0o0

By (3.10), as in the Case A, we have

hmsup<DT)7T) - xT(n)> <0

n—00
and

n—o0

then, in the light of property (d) of Maingé Lemma 2.8 and (3.9) we conclude that
lim ||z, —p| =0.
n—oo

Proof of (ii). Now, we rewrite the sequence (Zp4+1)nen as

(3.11) Tnt1 = nBpn + (1 — ay)Sstpn + BnEn,
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where E,, = (1 — ay)(Tszy, — Ssxy) is bounded, i.e. [|[E,| < O(1).
We begin to prove that li_)m |zn — Ssxn|| = 0.
n—oo

Let p the unique solution in Fiz(S) = Fix(Ss) of the variational inequality
(Dp,p — ) <0, for all z € Fiz(S). We have

|lzns1 = DI* =

( by Lemma 2.1) <

IN

IN

(by25) <

and hence

<
(3.12) <

|zn —

llotn By + (1 — ap)(1 — 0)xy,

+(1 = n)3Sxy + Bl — I
(1 — an)d(Szp — xp) + 4 — P

+an(Bnrn — zn) + 5nEn”|2
1(1 = @n)8(Swn — xn) + 2 — DI
+2(an(Brxy — Tn) + BnEn, Tnt1 — D)
1(1 = n)d(Sz, — xn) + 20 — DI
+2a0,(Bpxy, — T, Tp1 — P) + 260 (Eny T — D)
(1 — an)20||San — 2| + ||2n — Pl
—2(1 — an)d{xy — P, Ty — Sxp)
+a,0(1) + 5,0(1)
l2n = BII* + (1 = n)?0% |2y — S|
—(1 = apn)é||ay — Sz |* + @, O(1) + B,0(1)
|zn — I/)\HQ = (1= )01 = 6(1 — a)]||n — Smn”2
+a,0(1) + 5,0(1)

(1 —ap)d[l —6(1 — an)]||lxn — anH2

Pl = llzns1 = BI? + 0nO(1) + 5,0(1).

Again, we turn our attention on the monotony of the sequence (||z,, — D||)nen. We
consider the following two cases.

Case A. ||zp+1 — p|| is definitively nonincreasing.

Case B. There exists a subsequence (z, )ren such that

|zn, — Pl < ||zn,+1 — p|| for all k € N.

Case A. Since (||z,, — P||)nen is definitively nonincreasing, lim ||z, — p||? exists.
n—oo

o
From (3.6), li_>m apn =0 and Zﬁn < 00, we have
n—,oo

0 < limsup

n—oo

IN

lim sup
n—o0

n=1

(1= awolt - 801 - an)ll, = S0, ?)

(Hxn ZBIP e — I
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+anO(1) + Bn0(1)> —0,

hence
(3.13) 7}1_)120 |zn, — Ssxp|| = nlg]go ||z — Szy| = 0.
Since lim |z, — Szy| = 0 and from I — S is demiclosed at 0, we can use Lemma
3.2 (i) aggov?re have
(3.14) limsup(Dp,p — z,,) < 0.

n—oo

Finally, we can prove that (x,)nen converges strongly to p as in the proof (7).

oo
So, using Zan,u,n = 00, Z/B" < 00, (3.14) and lim Gn 0, we can apply

Lemma 2.7 and conclude that
Jim[|z, 41— plf = 0.
Case B. There exists a subsequence (z, )ren such that
|zn, — Pl < ||zn,+1 — p|| for all k € N.

Then by Maingé Lemma there exists a sequence of integers (7(n)),en that it satisfies
(1) (7(n))nen is nondecreasing;
(2) lim 7(n) = oc;
n—oo
(3) ||‘T7(n) —ﬁH < ||x‘r(n)+1 _ﬁH;
(4) [lzn =PIl < |lZ7(m)+1 — DIl
Consequently,

0 < hmlnf <Hx7(n =l = llz7(n) —2/9\“)

< limsup <’ Lr(n)+1 _Z/)\H H"L‘T(n) _ﬁH)
n—oo
< limsup (”xnﬂ pll = llzn —ﬁH)
n—oo
(by (3.11)) = limsup <Han nTn — Ssxn) + Sstn — D+ BnEn||
n—0o0

e —ﬁll)

(S5 quasi-nonexpansive) < limsup <an0(1) + |lzn — Dl + 8O(1) — ||z — ﬁ||>

n—oo

= 0,

SO

(3.15) i (11 =71 = sy = 71) =0

n—
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By (3.12), we obtain
0 < (1= arm)d[l =81 = arm)ll@rm) — Strm?
< HxT(n) - ]/9\||2 - ||':C’T(7’l)+1 - ﬁ”2 + OénO(l) + ﬁT(n)O(l)a
from (3.15), lim a;, =0 and Z Bn < 0o we get

n—00
n=1

(3.16) lim ||$T(n) - SmT(n)H =0.

n—o0

By(3.16), as in the Case A, we get
lim Sup<Dﬁaﬁ7 $T(n)> <0,

n—oo
and
nh—{glo Hx’r(n) - p” =0,
then, from property (d) of Maingé Lemma and (3.15) it follows that

lim [, — 5] = 0.

Proof of (iii). We recall that the sequence (x,+1)nen is defined as
(3.17) Tnt1 = W Brxy + (1 — ap)Upxy,

where U,, = B, Tsxy, + (1 — Bn)Ssy,
We first show that li_}rn |zn, — Tsxy|| = 0 and li_}m |xr, — Sszy| = 0.

Let pp € Fiz(T) N Fiz(S) is the unique solution of the variational inequality
(Dpo,po —z) <0, for all x € Fiz(T) N Fiz(S). We compute

[Unzn — poll* = 11Bn(Tsxn — po) + (1 = Bn)(Sszn — po)|>
(by Lemma 2.1) = B,||Tszn — poll* + (1 — Bn)||Sszn — pol|*
—Bn(1 = Bn) | Ts52n — Ssnll®
(Ts nonexpansive and by (2.9)) < Bullzn — poll®> + (1 = Ba)||lzn — pol|?
—(1 = Ba)(1 = )[lzn — Ssznll?
~Bn(1 = Ba)l Tszn — Ssanll?
= lzn —poll® = (1 = Bu) (1 = )|z — Ssal?
—Bn(1 = B Tszn — Ssn|?.
So, we get
(3.18)
1Unzn—pol* < |20 =poll* = (1=Bn) (1=6) |20 —Ssn|* — Bn (1= ) | Tswn — S — 0 |
We have

HZL'nJrl - P0||2 HUnxn — Do+ Oln(ann - Unxn)||2
|Un2n — pol?

+an(an||Bprn — nanQ + 2[|Unzr — polll| Bnn — Unnl|)

IN
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|Unan — pOH2 + an0(1)
(by (3.18)) |z = poll® = (1 = Bu)(L = )| zn — Ssz®
(3.19) —Bn(1 = Bl Tszn — Ssnl* + nO(1),
From (3.19), we derive
(320) (1= Ba)(1 = &)llzn = Sszal® < llzn = poll* = 241 = pol* + @ O(1).
and
(321)  Bu(l = Bu)llTszn — Sszall® < lzn — poll* = lzns1 — poll* + anO(1).

Now, also we consider two cases.

<
<

Case A. ||zp+1 — pol| is definitively nonincreasing.

Case B. There exists a subsequence (zp, )ken such that

| Zn, — poll < |Zn,+1 — pol for all k € N.

Case A. Since (||zn — pol|)nen is definitively nonincreasing, li_>m |2n — pol|? exists.
n—oo

From (3.20), lim «;, = 0 and since liminf 5,,(1 — 3,) > 0 we conclude
n—00 n—00
(3.22) lim ||z, — Ssx,|| = lim §||z, — Sz,| = 0.
n—oo n—oo

Furthermore, from (3.21) we have

(3.23) |Ssxn, — Tsxy|| = ILm 8||Sxy, — Tay|| = 0;

lim
n—o0
since

[#n — Tan|| < [|[#n = Swal + [|Szn — Tan,
by (3.22) and (3.23) we obtain
(3.24) lim ||z, — Tsxy,|| = lim 0|z, — Tz,| = 0.
n—o0 n—oo
By (3.24) and (3.22) and by the demiclosedness of I — T at 0 and of I — S at 0,
we can conclude using Lemma 3.2 (i)

(3.25) lim sup (Dpo, po — zpn) < 0.

n—o0

Finally, (2, )nen converges strongly to pg.

We compute
|Zn+1 *POHz = [lan(Bnzn —po) + (1 — an) (Unzn — po)||2
(by Lemma 2.1) < (1 — an)?|Unzn — pol|?
+2a0, (Bpxy, — Po, Tnt1 — Do)
(1- an)2”Un5Un - p0H2
+20(Bnxn — Bnpo, Tnt1 — Po)
+20an (Bnpo — Po, Tnt+1 — Po)
(U, quasi-nonexpansive) < (1 — ay)?||z, — pol|?

(B, contraction) +2a, (1 = pn7) |20 — polll|Tn+1 — pol|
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+2an(Bnpo — Po, Tn+1 — Po)
(Bp:=(1-p,D)) < (1- an)Q”fvn —po||2

+an (1 = pn7) (|7 _p0H2 + [|Tnt1 — pOHQ)

—2anfin(Dpo, Tn+1 — Po)

Then, it follows that
1—(1+ pnm)am + o
1— (1= pp7)o,
. 20 pin,
1—(1— ppr)am,
1— (14 pn7)an
1—(1— ppm)ay,

042

200 i,
+ . o(1) —
1—(1— pp7)am, (1) 1—(1— pp7)am,

2unTor
< (1= Yo - ol
— ) n

®[ln — poll?

|Znt1 —pol* <

(Dpo, Tn+1 — Po)

IN

2 = pol|?

(Dpo, Tn+1 — Do)

(1 — pn7)x
2Un T, 1 Qp
3.26 — 2 {Dpo, i1 — o()|.
(3.26) e B )

oo
Using Zan,un = 00, (3.25) and lim S _ 0, we can apply Lemma 2.7 and

n—oo /’LTL

conclude that
lim ||zp+1 — pol| = 0.
n—oo

So, (zn)nen converges strongly to a fixed point of Fiz(T) N Fix(S).
Case B. (||z, — pol|)nen does not be definitively nonincreasing. This means that
there exists a subsequence (z, )ren such that

|z, — poll < |Zn,+1 — pol| for all & € N.

Then by Maingé Lemma 2.8 there exists a sequence of integers (7(n))nen that it
satisfies some properties defined previous.
Consequently,

n—o0

0 < 1t (Lesysa = poll = orgr — o]

< timsup [yt — poll - Hxﬂn)—pou)

n—oo

n—oo

(by (3.17)) = limsup

n—oo

l|otn (Brn — po)

< limsup <||£L'n+1 poll — ||zn —pOH)

(1~ ) (Unrn — po)]| — 12 —pon)
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(U,, quasi-nonexpansive) < limsup <anO(l) + ||zn — poll — ||zn — p0|]> =
n—oo

hence

(3.27) lim (umﬂmﬂ — poll = s —pou) —0

n—oo
By (3.20) we get
(3‘28) (1_67-(71))(1_6)Hx‘r(n)_S§$T(n)”2 < ”xr(n) _p0||2_||xn+1_p0H2+aT(n)O(1)7
and by(3.21) we have
(3.29)
Briny (X = B | Ts2r(n) — SsT7m) I < [127(m) — PolI> = |Zns1 — poll> + arm)O(1),
As in the Case A., we get
(1) nlggo HxT(n) - Sl‘T(n)H =0
(2) nlggo HxT(n) - Txr(n) H =0.
By (a) and (b), as in the Case A, we have
(330) lim SUP<DPOap0 - :L'T(n)> <0.

n—oo

Finally, we prove that (x,),en converges strongly to py.
oo

As in the Case A., using Z Qnlbn, = 00, lim n _ 0, and (3.30) we can apply Xu’s

n—o0 /‘I’TL

n=1
Lemma 2.7 and we yield that
lim ||z, — pll =0,

n—oo

then, from property (d) of Maingé Lemma and (3.27) we can derive

lim ||z, — po| = 0.
n—oo

Example 3.4. The sequences

satisfy the conditions:

(1) (an)nen is a sequence in (0, 1),
(2) (tn)nen is a sequence in (0, 1), p <
(3) lim a, =0,
(4)

n~>oo
4
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Remark 3.5. We remark that (i) and (ii) of Theorem 3.3 actually hold for a wide
class of nonlinear mappings. In fact, in (i) we can substitute a L-hybrid mapping
S with a quasi-nonexpansive mapping because we use only the boundedness of

(Sémn)nEN .
For the same reason, in (i) we can replace a nonexpansive mapping 7' with a
quasi-nonexpansive mapping.
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