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ABSTRACT. In this paper, we introduce and analyze one iterative algorithm by
hybrid shrinking projection method for finding a solution of the system of gener-
alized equilibrium problems with constraints of several problems: a generalized
mixed equilibrium problem, finitely many variational inclusions, and the common
fixed point problem of an asymptotically strict pseudocontractive mapping in the
intermediate sense and infinitely many nonexpansive mappings in a real Hilbert
space. We prove strong convergence theorem for the iterative algorithm under
suitable conditions.

1. INTRODUCTION AND FORMULATIONS

Let H be a real Hilbert space with inner product (-,-) and norm | - ||, C be a
nonempty closed convex subset of H and Pc be the metric projection of H onto C.
Let S : C' — H be a nonlinear mapping on C. We denote by Fix(S) the set of fixed
points of S and by R the set of all real numbers. A mapping V is called strongly
positive on H if there exists a constant 7 € (0, 1] such that

(1.1) (Va,z) > 7||z|? Vee H.

A mapping S : C' — H is called L-Lipschitz continuous if there exists a constant
L > 0 such that
ISz — Syl < Lllz =yl Va.yeC.

In particular, S is called a nonexpansive mapping if L = 1 and A is called a con-
traction if L € [0, 1).

Let ¢ : C — R be a real-valued function, A : H — H be a nonlinear mapping
and @ : C x C' — R be a bifunction. Peng and Yao [15] introduced the following
generalized mixed equilibrium problem (GMEP) of finding = € C such that

(1.2) O(z,y) + ¢(y) — p(z) + (Az,y —x) 20, VyeCl.

We denote the set of solutions of GMEP (1.2) by GMEP(©, ¢, A). The GMEP
(1.2) is very general in the sense that it includes, as special cases, optimization
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problems, variational inequalities, minimax problems, Nash equilibrium problems
in noncooperative games and others.

Throughout this paper, we assume as in [15] that @ : C x C' — R is a bifunction
satisfying conditions (H1)-(H4) and ¢ : C — R is a lower semicontinuous and
convex function with restriction (H5), where

(H1) O(z,x) =0 for all x € C;

(H2) O is monotone, i.e., O(z,y) + O(y,z) <0 for any x,y € C,

(H3) © is upper-hemicontinuous, i.e., for each x,y,z € C,

limsup O(tz + (1 — t)x,y) < O(z,y);
t—0+t

(H4) ©(x,-) is convex and lower semicontinuous for each = € C;

(H5) for each z € H and r > 0, there exists a bounded subset D, C C and
Y € C such that for any z € C'\ D,,

1

O(z,y2) +¢(yx) = 9(2) + ~{yo — 2,2 = 2) <0.

Given a positive number r > 0. Let SSQ’“D) : H — C is the solution set of the
auxiliary mixed equilibrium problem, that is, for each x € H,

SO (@) == {y € C: O(y,2)+(2) —w(y)+%<K’(y) —K'(z),2—y) 20, V2 € C}.

In particular, whenever K (z) = 1||z||%,Vz € H, SL9%) is rewritten as T,
Let ©1, 05 : C x C — R be two bifunctions, and A;, As : C — H be two nonlin-

ear mappings. Consider the following system of generalized equilibrium problems
(SGEP): find (z*,y*) € C' x C such that

1
O1(z*,z)+ (Aiy*, o —2*) + — (2" —y*, o —2") >0, VreCl,
41

(1.3)

1
G2y, y) + (Aaz”,y —y") + —{y" — 2"y —y") 20, Vyel,
2
where 1 > 0 and v > 0 are two constants. It is introduced and studied in [4]. When
61 = Oy = 0, the SGEP reduces to a system of variational inequalities, which is
considered and studied in [3]. It is worth to mention that the system of variational
inequalities is a tool to solve the Nash equilibrium problem for noncooperative

games.

In 2010, Ceng and Yao [4] transformed the SGEP into a fixed point problem in
the following way.

Proposition 1.1 (see [4]). Let 61,602 : C x C — R be two bifunctions satisfying
conditions (H1)-(H4) and let Ay : C — H be (i-inverse-strongly monotone for
k=1,2. Let vy € (0,2¢;) for k = 1,2. Then, (z*,y*) € C x C is a solution of
SGEP (1.3) if and only if x* is a fized point of the mapping G : C — C' defined by
G =T (I — 1 AT (I — 1o As) where y* = T2 (I — vpAg)x*. Here, we denote
the fized point set of G by SGEP(G).
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Let {7}, be an infinite family of nonexpansive mappings on H and {\,};
be a sequence of nonnegative numbers in [0,1]. For any n > 1, define a mapping
W,, on H as follows:

Un,n—i—l = I,

Un,n = )\nTnUn,n—l—l + (1 - )\n)Ia
Un,n—l = )\n—lTn—lUn,n + (1 - An—l)Ia

(1.4) Ungk = MTkUn g1 + (1 — A1,
Unji—1 = Me—1Th—1Up o + (1 = A1),

Una = MU, 3+ (1 — X)I,
W, = Un71 = )\1T1Un72 + (1 — )\1)1.

Such a mapping W, is called the W-mapping generated by T,,71,-1,..., 71 and
Any Ap—1, -0y AL

In 2011, for the case where C' = H, Yao, Liou and Yao [19] proposed the following
hybrid iterative algorithm

Oy, ) +0(2) — olym) + + (K'(y) — K'(wn), =~ ) > 0,
(1.5) z€ H,

Tnt+1 = an(u + 'Vf(xn)) + ann + ((1 - /Bn)j - an(I + NV))Wnym
Vn > 1,

where f : H — H be a contraction, K : H — R is differentiable and strongly
convex, {an}, {Bn} C (0,1) and o, u € H are given, for finding a common element
of the set MEP (6O, ) and the fixed point set N7°,Fix(7;,) of an infinite family of
nonexpansive mappings {7,,}5° ; on H. They proved the strong convergence of the
sequence generated by the hybrid iterative algorithm (1.5) to a point z* € 2 :=
N>, Fix(T,,) " MEP(O, ¢) under some appropriate conditions. This point z* also
solves the following optimization problem:

B Lo
(OPO) min 2(Var,2) + S o = ull® = h(a)

where h : H — R is the potential function of vf.

Let f: H — H be a contraction and V be a strongly positive bounded linear
operator on H. Assume that ¢ : H — R is a lower semicontinuous and convex
functional, that ©, 6,60 : H x H — R satisfy conditions (H1)-(H4), and that
A, A1, Ay : H — H are inverse-strongly monotone. Let the mapping G be defined
as in Proposition 1.1. Very recently, Ceng, Ansari and Schaible [2] introduced the
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following hybrid extragradient-like iterative algorithm

Zn :S£?"P) (xpn — TnAzy),

(1'6) Tn+1 :an(u + 'Yf(xn)) + Bnn
+ (1= B)] — an(I + puV))WyGzp,  Vn >0,

for finding a common solution of GMEP (1.2), SGEP (1.3) and the fixed point
problem of an infinite family of nonexpansive mappings {77, }°°; on H, where {r;,,} C
(0,00), {an},{Bn} C (0,1), v € (0,2¢k),k = 1,2, and z9,u € H are given. The
authors proved the strong convergence of the sequence generated by the hybrid
iterative algorithm (1.6) to a point z* € 2 := N>, Fix(7,,) N GMEP(6, ¢, A) N
SGEP(G) under some suitable conditions. This point z* also solves the following
optimization problem:

" Lo
(OP1) min £V, 2) + e — ull® — ()

where h : H — R is the potential function of ~f.

On the other hand, let B be a single-valued mapping of C into H and R be a
set-valued mapping with domain D(R) = C. Consider the following variational
inclusion [9]: find a point x € C such that

(1.7) 0 € Bx + Rx.

We denote by I(B, R) the solution set of the variational inclusion (1.7). It is known
that problem (1.7) provides a convenient framework for the unified study of optimal
solutions in many optimization related areas including mathematical programming,
complementarity problems, variational inequalities, optimal control, mathematical
economics, equilibria and game theory, etc. Let a set-valued mapping R : D(R) C

H — 21 be maximal monotone. We define the resolvent operator Jg » : H — D(R)
associated with R and A as follows:

Jra=(I+AR)"', VxeH,

where )\ is a positive number.

In 2011, for the case where C = H, Yao, Cho and Liou [17] introduced and
analyzed the following iterative algorithms for finding an element of the intersection
2 = N, Fix(T,) N GMEP(O, ¢, A) N I(B, R) of the solution set of the GMEP
(1.2), the solution set of the variational inclusion (1.7) and the fixed point set of a
countable family {T;,}7° ; of nonexpansive mappings: for arbitrarily given z; € H,
let the sequence {z,} be generated by

O (un, y) + ¢(y) — o(un) + (Y — tn, Azn)
1
—(y — — >
Tp+1 = an’)’f(xn) + 5n$n

+ (1 = B — anVIWyJr A (uyn, — ABuy), Vn >1,
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where {a, },{B,} are two sequences in [0, 1] and W, is the W-mapping defined by
(1.4). Tt is proven that under appropriate conditions the sequence {x,} converges
strongly to x* € {2, where z* = Pp(~f(x*) + (I — V)z*) is a unique solution of the
VIP:

(1.9) (Wf=V)z*,y —2") <0, VyeL

Next, we creall some concepts. Let C' be a nonempty subset of a normed space
X. A mapping S : C' — C is called uniformly Lipschitzian if there exists a constant
L > 0 such that

Recently, Kim and Xu [11] introduced the concept of asymptotically k-strict pseu-
docontractive mappings in a Hilbert space as below:

Definition 1.2. Let C be a nonempty subset of a Hilbert space H. A mapping
S :C — C is said to be an asymptotically k-strict pseudocontractive mapping with
sequence {vn} if there exists a constant k € [0,1) and a sequence {v,} in [0,00)
with limy, o v, = 0 such that

1"z — S"y|I* < (1 + )|z — yl* + kllz — "z — (y = S"y)II, ¥n2>1, Va,y e C.

They studied weak and strong convergence theorems for this class of mappings.
It is important to note that every asymptotically k-strict pseudocontractive
mapping with sequence {7,} is a uniformly £-Lipschitzian mapping with £ =

sup {H— W n > 1}. Subsequently, Sahu, Xu and Yao [9] considered the
concept of asymptotically k-strict pseudocontractive mappings in the intermediate

sense, which are not necessarily Lipschitzian.

Definition 1.3. Let C be a nonempty subset of a Hilbert space H. A mapping
S C — C is said to be an asymptotically k-strict pseudocontractive mapping in
the intermediate sense with sequence {~,} if there exist a constant k € [0,1) and a
sequence {7V} in [0,00) with lim, oo ¥ = 0 such that
limsup sup (|[S"z — S"y[* = (1 + )|z =yl — kllz — §"2 — (y — S"y)|*) < 0.
n—oo z,yeC
Put ¢, := max{0, sup, ,cc(|S"x — S"y|* — (1 + )z — yl|* — kllz — 5™z — (y —
S")||12)}. Then ¢, >0 (Vn > 1), ¢, — 0 (n — oo) and (1.4) reduces to the relation

HS”x . SnyHQ S(l 4 ’Yn)”x — yH2 + kH[I} - S"r — (y - Sny>H2

1.10
( ) +cn, VYn>1, Vx,yeC.

Whenever ¢, = 0 for all n > 1 in (1.10), then S is an asymptotically k-strict
pseudocontractive mapping with sequence {7,}. In 2009, Sahu, Xu and Yao [16]
derived the weak and strong convergence of the modified Mann iteration processes
for an asymptotically k-strict pseudocontractive mapping in the intermediate sense
with sequence {7,}. More precisely, they first established one weak convergence
theorem for the following iterative scheme

{ x1 = x € C chosen arbitrary,

Tnt1 = (1 —ap)zp + apS"zy, Yn>1,



1646 A.S. M. ALOFI, A. E. AL-MAZROOEI, A. LATIF, AND J. C. YAO

where 0 < 0 < o, < 1—k =0, Y070 ancy < o0 and > o7 4, < 00; and then
obtained another strong convergence theorem for the following iterative scheme

x1 = x € C chosen arbitrary,

Yn = (1 — ap)xy + apS™xy,

Crn={2€C:|lyn — z[” < [l&n — z[* + 0},
Qn=1{2€C:(xyn—2z,x—1x4) >0},

Tnt1 = Po,ng,, Vn > 1,

where 0 < § < a,, <1—k, 0, = ¢y + 7 Ay and A, = sup{||z, — 2% : z € Fix(5)} <
00.

Motivated and inspired by the above results, we aim to introduce and analyze
an iterative algorithm by hybrid shrinking projection method for finding a solution
of the system of generalized equilibrium problems with constraints of several prob-
lems: a generalized mixed equilibrium problem, finitely many variational inclusions,
and the common fixed point problem of an asymptotically strict pseudocontractive
mapping in the intermediate sense and infinitely many nonexpansive mappings in a
real Hilbert space. Strong convergence theorem for the iterative algorithm will be
established under mild conditions.

We remark that some more recent and related results can be found, e.g., in [1, 6].

2. PRELIMINARIES AND TOOLS

Throughout this paper, we assume that H is a real Hilbert space whose inner
product and norm are denoted by (-,-) and || - ||, respectively. Let C' be a nonempty
closed convex subset of H. We use the notations x,, — x and x,, — x to indicate the
weak convergence of {x,} to x and the strong convergence of {z,} to x, respectively.
Moreover, we use wy, () to denote the weak w-limit set of {z,}, i.e.,

ww(zy) == {x € H : z,, — z for some subsequence {z,,} of {x,}}.
Definition 2.1. A mapping A : C — H is called
(i) monotone if
(Ax — Ay, x —y) >0, Vaz,y € C,
(ii) n-strongly monotone if there exists a constant > 0 such that
(Az — Ay, —y) 2 llz —yl*, Vz,y € C;
(iii) ¢-inverse-strongly monotone if there exists a constant ¢ > 0 such that
(Az — Ay,x —y) > (||Az — Ay|?, va,y € C.

It is easy to see that the projection Pc is 1-ism. Inverse strongly monotone (also
referred to as co-coercive) operators have been applied widely in solving practical
problems in various fields.

Definition 2.2. A differentiable function K : H — R is called:
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(i) convez, if
K(y) — K(z) 2 (K'(z),y —x), VYo,y€H,

where K'(x) is the Frechet derivative of K at x;
(ii) strongly convex, if there exists a constant o > 0 such that

K(y) = K(2) = (K'(2),y —a) = Tle —ylP, Va,y € H.

It is easy to see that if K : H — R is a differentiable strongly convex function
with constant o > 0 then K': H — H s strongly monotone with constant o > 0.

The metric projection from H onto C is the mapping Po : H — C which assigns
to each point x € H the unique point Pox € C satisfying the property

— Poz|| = inf |jz — y|| =: d(z, O).
lz = Pox|| = inf [lz -yl =: d(z,C)

Some important properties of projections are listed in the following proposition.

Proposition 2.3. For given x € H and z € C':
(i) z=PFPex & (r—2z,y—2) <0, VyeC;
(i) z=Pox & |lo—2|* <z -yl - |ly—2I?, Yy € C;
(iii) (Pcx — Poy,z — y) > ||Pox — Poyl|?, Yy € H. (This implies that P is
nonexpansive and monotone.)

By using the technique of [7], we can readily obtain the following elementary
result where MEP(O, ¢) is the solution set of the mixed equilibrium problem [2].

Proposition 2.4 (see [2, Lemma 1 and Proposition 1]). Let C' be a nonempty closed
convez subset of a real Hilbert space H and let o : C'— R be a lower semicontinuous
and convex function. Let © : C x C' — R be a bifunction satisfying the conditions
(H1)-(H4). Assume that

(i) K : H — R is strongly convex with constant ¢ > 0 and the function x —
(y —x, K'(x)) is weakly upper semicontinuous for each y € H;

(ii) for each x € H andr > 0, there exists a bounded subset D, C C' and y, € C
such that for any z € C'\ Dy,

62, 1:) + plun) — 9(2) + - {K'(2) ~ K'(2), g — 2) < 0.

Then the following hold:
(a) for each z € H, 5192 (z) #0;
(b) 5199 s single-valued;

(c) Sﬁe"p) is nonexpansive if K' is Lipschitz continuous with constant v > 0
and

(K'(21) = K'(22), w1 — u2) < (K'(u1) — K'(u2),u1 —u2), V(z1,22) € H x H,

where u; = S (x;) fori=1,2;
(d) for all s,t >0 and x € H

<K/(S§9,<p)x) _ K’(St(@’@)x),sg(,@”")x _ SIE@M)LL’)
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< P UK ) - K (), 509 - 5O,
(e) Fix(S\”%)) = MEP(6, );
(f) MEP(O, ) is closed and convex.

Remark 2.5. In Proposition 2.4, whenever © : CxC — R is a bifunction satisfying
the conditions (H1)-(H}) and K (z) = 3||z||?,Vz € H, we have for any z,y € H,

5(69) — S{ODY| < (50D - 5Oy, —y)

(Sﬁe,@) is firmly nonexpansive) and

-t
150 - 5095 < E= g0, 4 vsts00enm
5
If, in addition, o =0, then TT(Q’@) is rewritten as T2 ; see [4, Lemma 2.1] for more
details.

We need some facts and tools in a real Hilbert space H which are listed as lemmas
below.

Lemma 2.6. Let X be a real inner product space. Then there holds the following
inequality
|z +yl* < ll2]® + 2(y, & +y), Va,y € X.

Lemma 2.7. Let H be a real Hilbert space. Then the following hold:
(@) llz—yl? = l]]* — !sz —2(w—y,y) for all z,y € H;
() [[Az + pyll® = Az + pllyll® — Aullz =yl for all z,y € H and A, p € [0, 1]
with A\ +p=1;
(¢) If {zn} is a sequence in H such that x, — x, it follows that
limsup ||z, — y||* = limsup ||z, — z||* + |z —y||>, Yy <€ H.
n—oo n—oo

We have the following crucial lemmas concerning the W-mappings defined by
(1.4).

Lemma 2.8 (see [13, Lemma 3.2]). Let {T,,}°°, be a sequence of nonerpansive
self-mappings on H such that NS Fix(T,,) # 0 and let {\,} be a sequence in (0, b]
for some b € (0,1). Then, for every x € H and k > 1 the limit lim, o U, 1@ exists,
where Uy, is defined by (1.4).

Lemma 2.9 (see [13, Lemma 3.3]). Let {T,,}32, be a sequence of nonexpansive
self-mappings on H such that NS> Fix(T},) # 0, and let {\,} be a sequence in (0, b]
for some b € (0,1). Then, Fix(W) = N>, Fix(T5,).

Lemma 2.10 (see [8, Demiclosedness principle]). Let C' be a nonempty closed con-
vex subset of a real Hilbert space H. Let T be a nonexpansive self-mapping on C.
Then I — T is demiclosed. That is, whenever {x,} is a sequence in C weakly con-
verging to some x € C' and the sequence {(I —T)x,} strongly converges to some vy,
it follows that (I —T)x =vy. Here I is the identity operator of H.
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Lemma 2.11 ([16, Lemma 2.5]). Let H be a real Hilbert space. Given a nonempty
closed conver subset of H and points x,y,z € H and given also a real number a € R,
the set

{veC:ly—v)? < llz—ol* + (2,0) +a}
is convex (and closed).

Recall that a set-valued mapping T : D(T) C H — 2 is called monotone if for
all z,y € D(T), f € Tx and g € Ty imply

(f—g,2—y)>0.
A set-valued mapping 7T is called maximal monotone if 7" is monotone and (I +
AT)D(T) = H for each A > 0, where I is the identity mapping of H. We denote
by G(T') the graph of T. It is known that a monotone mapping 7' is maximal if
and only if, for (z, f) € H x H, (f — g,z —y) > 0 for every (y,9) € G(T') implies
feTx.

Assume that R : D(R) C H — 2 is a maximal monotone mapping. Let A > 0.
In [9], there holds the following property for the resolvent operator Jg : H —

D(R).

Lemma 2.12. Jy ) is single-valued and firmly nonexpansive, i.e.,
<JR7>\QZ — JR7,\y,$ — y> > HJRAJZ — <]1:57,\ng27 Vr,y € H.
Consequently, Jg » is nonexpansive and monotone.

Lemma 2.13 (see [5]). Let R be a mazimal monotone mapping with D(R) = C.
Then for any given A > 0, u € C is a solution of problem (1.7) if and only if u € C
satisfies

u = Jr(u— ABu).

Lemma 2.14 (see [21]). Let R be a mazimal monotone mapping with D(R) = C
and let B : C — H be a strongly monotone, continuous and single-valued mapping.
Then for each z € H, the equation z € (B + AR)x has a unique solution x for
A> 0.

Lemma 2.15 (see [5]). Let R be a mazimal monotone mapping with D(R) = C
and B : C — H be a monotone, continuous and single-valued mapping. Then
(I + AR+ B))C = H for each A > 0. In this case, R+ B is mazimal monotone.

Lemma 2.16 (see [20]). Let C be a nonempty closed convex subset of a real Hilbert
space H, and g : C — R U 400 be a proper lower semicontinuous differentiable
convex function. If x* is a solution the minimization problem

9(z") = inf g(x),
then,
(¢ (z),z —2*) >0, Vxel.
In particular, if ©* solves (OP), then

(ut(vf = (U +pV))z"z —2%) <0.
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Lemma 2.17 (see [16, Lemma 2.6]). Let C be a nonempty subset of a Hilbert space
H and S : C — C be an asymptotically k-strict pseudocontractive mapping in the
intermediate sense with sequence {y,}. Then

1
15" = §"y|| < 7= (kllz — yll + V1= E)y)lz = yl? + (1= k)ca)
forallx,y € C and n > 1.

Lemma 2.18 ([16, Lemma 2.7]). Let C be a nonempty subset of a Hilbert space H
and S : C — C be a uniformly continuous asymptotically k-strict pseudocontractive
mapping in the intermediate sense with sequence {v,}. Let {x,} be a sequence in C
such that ||zy — xpy1|| — 0 and ||z, — S™zy|| — 0 as n — oco. Then ||z, — Sxy,|| — 0
asn — oo.

Lemma 2.19 (Demiclosedness principle [16, Proposition 3.1]). Let C' be a nonempty
closed convex subset of a Hilbert space H and S : C — C be a continuous asymp-
totically k-strict pseudocontractive mapping in the intermediate sense with sequence
{}. Then I — S is demiclosed at zero in the sense that if {x,} is a sequence
in C such that x, — x € C and limsup,,_, limsup,,_, . ||z, — S™xy| = 0, then
(I —S)z=0.

Lemma 2.20 (see [16, Proposition 3.2]). Let C' be a nonempty closed convex sub-
set of a Hilbert space H and S : C — C be a continuous asymptotically k-strict
pseudocontractive mapping in the intermediate sense with sequence {v,} such that
Fix(S) # 0. Then Fix(S) is closed and convex.

Lemma 2.21 ([14, p. 80]). Let {an}>2q, {bn}>2y and {0,}52, be sequences of
nonnegative real numbers satisfying the inequality
apt1 < (1 + 5n)an +0bn, Vn>1
If Y22 1 0p <00 and > 02 by < 00, then limy, o0 ay, exists. If, in addition, {an}5
has a subsequence which converges to zero, then limy, . a, = 0.
Recall that a Banach space X is said to satisfy the Opial condition [19] if for any

given sequence {x,} C X which converges weakly to an element x € X, there holds
the inequality

limsup ||z, — x| < limsup ||z, —y|, Yy e X, y#x.

n—oo n—oo

It is well known in [19] that every Hilbert space H satisfies the Opial condition.

Lemma 2.22 (see [10, Proposition 3.1]). Let C' be a nonempty closed convex subset
of a real Hilbert space H and let {x,} be a sequence in H. Suppose that

Hxn—&-l _pH2 S (1 + )\n)”l'n _pH2 + 6?17 vp € Ca n Z 17

where {\,} and {3, } are sequences of nonnegative real numbers such that > > | A, <
oo and Y .7 | 6p < 00. Then {Poxy,} converges strongly in C.

Lemma 2.23 (see [12]). Let C be a closed convex subset of a real Hilbert space
H. Let {z,} be a sequence in H and uw € H. Let ¢ = Pou. If {x,} is such that
wy(zn) C C and satisfies the condition

ln — ull < lu—ql, forall n,
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then x, — q as n — oo.

3. STRONG CONVERGENCE THEOREM

In this section, we will prove the strong convergence of an iterative algorithm
by hybrid shrinking projection method for finding a solution of the system of gen-
eralized equilibrium problems with constraints of several problems: a generalized
mixed equilibrium problem, finitely many variational inclusions, and the common
fixed point problem of an asymptotically strict pseudocontractive mapping in the
intermediate sense and infinitely many nonexpansive mappings in a real Hilbert
space. This iterative algorithm is based on the extragradient method, viscosity ap-
proximation method, Mann-type iterative method and shrinking projection method.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let N be an integer. Let ©, 01, Oy be three bifunctions from C x C to R satisfying
(H1)-(H4) and ¢ : C — R be a lower semicontinuous and convex functional. Let
R; : C — 29 be a mazimal monotone mapping and let A, A, : H — H and
B; : C — H be (-inverse strongly monotone, (p-inverse strongly monotone and
ni-inverse strongly monotone, respectively, where k € {1,2} and i € {1,2,..., N}.
Let S : C'— C be a uniformly continuous asymptotically k-strict pseudocontractive
mapping in the intermediate sense for some 0 < k < 1 with sequence {v,} C [0, 00)
such that limy,_yo0 v, = 0 and {c,} C [0,00) such that lim,,_,o0 ¢, = 0. Let {T,,}72
be a sequence of nonexpansive mappings on H and {\,} be a sequence in (0, D]
for some b € (0,1). Let V be a 7-strongly positive bounded linear operator and
f + H — H be an l-Lipschitzian mapping with vl < (1 + p)y. Let W,, be the
W -mapping defined by (1.4). Assume that 2 := N3, Fix(T,,) " GMEP(O, ¢, A) N
SGEP(G) NN, 1(B;, R;) N Fix(S) is nonempty and bounded where G is defined as
in Proposition 1.1. Let {r,} be a sequence in [0,2¢] and {an},{Bn} and {0,} be
sequences in (0,1) such that lim, oo ap =0 and k < 6, < d < 1. Pick any z9 € H
and set C; = H, x1 = Po,xo. Let {x,} be a sequence generated by the following
algorithm:

Up = Sﬁf’@)(l —rpA)zy,

Zn = JRy Awn (I = AN BN) IRy 1 an_10 (L = AN—10BN-1) - -
JRix (L = A1 B1)un,

(3.1) kn = 6pzn + (1 —0,)58" 2,

Yn = an(u+7f(2n)) + Bukn + [(1 = Bn)I — an(I + pV) W, Gk,

Cr1 = {2 € Cp : |lyn — 2[” < [l — z[” + 60},

| Tn+1 = Po,,41 %0, Vn > 0,

where 0, = (ay + ) Lo + cno, Tn = sup{||zn — pl|? + [|lu+ (vf — (I + pV)p|? :
pE N} <oo, and o = < 00. Assume that the following conditions are
satisfied:
(i) K : H — R is strongly convex with constant o > 0 and its derivative K’
is Lipschitz continuous with constant v > 0 such that the function x —
(y —x, K'(x)) is weakly upper semicontinuous for each y € H;

1—sup,, > an
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(ii) for each x € H, there exist a bounded subset D, C C' and z, € C such that
for any y ¢ Dy,

Oy, ) + p(z) — ply) + + (K/(y) ~ K'(2), 2 — ) <

(iii) 0 < liminf 8, <limsup 8, < 1 and 0 < liminf r, < limsupr, < 2(;
n—00 n—00 n—00 n—o0
(iv) vk € (0,28), k € {1,2} and {\in} C [a;, b)) C (0,2m;), Vie {1,2,...,N}.
Suppose that Sﬁe’@ s firmly nonexpansive. Then the following statements
hold:
(I) {zn} converges strongly to x* = Poxo;
(IT) {zn} converges strongly to x* = Ppxo which solves the following opti-
mization problem provided 7, + ¢, = o(aw,) and ||z, — yn| = o(aw):

in M Lie -
(OP2) min 5(Vz, ) + 5llz — ull® — h(z)

where h : H — R is the potential function of v f.

Proof. Since limy,_,o0 ap, = 0 and 0 < liminf,,_, 8, < limsup,,_, Brn < 1, we may
assume, without loss of generality, that o, < (1 — 8,)(1 + p||V]|)~!. Since V is a

~-strongly positive bounded linear operator on H, we know that
VI = sup{(Vu,u) : w € H, |[u]| = 1}.
Observe that

(=BT —an(I+ pV))u,u) =1-= L5, —ap — apu(Vu,u)
>1- /Bn — Op — an,U,HVH
>0,

that is, (1 — Bu)I — an(I + pV) is positive. It follows that
11 = Ba)] = an (I + pV)|| = sup{{((1 = Bp)I — an(I + pV))u,u) 1 u € H, |uf = 1}
=sup{l — B — ap — apu(Vu,u) :u € H,||ul]| =1}
<1-—0,—anp— apuy.
Put
A = Jg, (I = 1iBi) IR,y s (I = pic1Bic1) -+ Ry (I — g By)

for all i € {1,2,..., N}, and A° = I, where I is the identity mapping on H. Then
we have that z, = AN u,.

We divide the rest of the proof into several steps.

Step 1. We show that {z,} is well defined. It is obvious that C), is closed and
convex. As the defining inequality in C,, is equivalent to the inequality

(2(zn — yn), 2) < zal® = llynll* + 6n,

by Lemma 7?7, we know that C,, is convex for every n > 1.
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First of all, let us show that 2 C C,, for all n > 1. Suppose that 2 C C,, for
some n > 1. Take p € {2 arbitrarily. Since p = Sﬁ?"p) (p — rnAp), A is (-inverse
strongly monotone and 0 < r,, < 2(, we have, for any n > 1,

lun = plI* = [|SS9(T = rpA)zy — ST = r A)p]®
<[ = rad)z, — (I —raA)p|®
= |[(zn = p) = ra(Azn — Ap)|®
(32) = ||lzn = plI* = 2rn (@, — p, Ay — Ap) + ri|| Az, — Apl|?
<l = plI? = 2rall|Azy, — Ap|® + || Az, — Ap|®
= |l = pl* + rulrn — 20) || Az, — Ap|®
< [|lzn _pHg'
Since p = Jr; .z, (I — XinBi)p, Aip = p and B; is n;-inverse strongly monotone,

where \;, € (0,2n;), ¢ € {1,2,..., N}, by Lemma 2.12 we deduce that for each
n>1

2 = 2ll = 1y (= Ann B AN "t = Ty (1 = AvanBu) 42 ']
< = AN BN) AR g — (I = Ann By) A )|
<[ A7 un — AT

(3.3)
< HAgz"Tn - A?lpH
= [lun = pll.
Combining (3.2) and (3.3), we have
(3-4) Iz = pll < llzn = pl|.

By Lemma 2.7 (b), we deduce from (3.1) and (3.4) that
1k = 2l = [160(z0 = p) + (1 = 6,) (8™ 2 — p)|°
= Onllzn = plI* + (1= 8a) 15" 20 — plI* = 60(1 = 6n)l|20 — "z ?
< bullza = plI* + (1 = 62)[(L +)llzn = pII* + Kllzn — 8™ 2nl|* + cn]

(3.5) — (1 = 6p) |2 — SnanQ
= [1+ (1l = d)lllzn — pH2 + (1= 6n)(k = dn)llzn — SnanZ
+ (1 —0pn)cn

< (14 7)llzn _pH2 + (1 = 6n)(k = 6n)l2n — Snan2 +cn
< (1 + )z _pH2 + Cn.

Since p = Gp = T2 (I — 11 A1) T2 (I — v2A2)p, Ay is (j-inverse-strongly monotone
for k=1,2, and 0 < v, < 2(;, for k = 1,2, we deduce that, for any n > 1,

|Ghn — p||? = | T2 (I — i ADT,22 (I — v2A2)ky — T (I — 11 A1) T,S? (I — 1o As)p||?
< (I =i ANTE2 (I — v2 Ag)ky — (I — v1ANTE? (I — o Ag)p||?
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= [[T,9° (I — vaAg)kn — T,9%(I — v2Ag)p]
— [AlTlgg (I — VQAQ)kn — AlTlgg (I — VQAQ)p]”2
< T2 (I — vo o)k — T,52 (I — v Ag)p|®
=+ I/l(Ul — 2C1)|’A1T1/§2 (I — VQAQ)kn — AlTlgg (I — V2A2)p||2
< || T,22 (I — voAg)kn — T,9° (I — v2A2)p|?
< (I = vaAsg)ky — (I — 2 A2)pl|®
= || (kn — p) — va(Azkn — Aop)|?
< lkn = plI* + va(va — 2G2) || A2k — Asp|?
< ||k — pl*.

(This shows that G is nonexpansive.) Set V = I + uV. By Lemma 2.6 we deduce
from (3.1), (3.4)-(3.6) and vl < (1 + )7 that

Hyn -

= [lan(u+7f(@n)) + Bukn + [(1 = Bu)] — an(I + pV) Wy Gkn — p||?
= llan(u+~f(zn) = Vp) + Bulkn —p) + (1 = Bu)] — 0, V)W, Gk,
— (1= B)I = an V)W, Gp|?
= [lany(f(zn) = f(p)) + Bulkn —p) + (1 = Bu)] — V)W, Gy,
— (1= BT = anV)WoGp + an(u + 7 f(p) = V)|
< ey (f(zn )—f( ) + Bu(kn — )
+((1 = Ba)I = anV) (Wi Ghn — Wi Gp)|I?
+ 200, (u + vf(p) — VP, yn — )
< [any[lf(zn) = FP)I + Bullkn — pll
+ (1 = B) I — anV|[[|WnGhy — W, Gp|]?
+ 20 (u+7f () = Vp,yn — )
< lanyl||zn — pl| + Bullkn — 2|
+ (1= Bn — an — anpt?)|| Gk — Gp||)?
+ 20 (u+vf(P) = Vp,yn — D)
< [anylllzn = pll + Ballkn — pll + (1 = B — an(L + w)3)|[kn — pll}
+ 20 (u+vf(p) = Vp,yn — p)
<lJan(1+ pAllzn = pll + (1 = an(1+ 1)) lkn — pll]?
+ 20 (u+7f(p) = Vp,yn — D)
< an(1+ wAlan —pl* + (1 = an(1 + @)7)|kn — pl?
+ 20 [lu+~f(p) = Vplllyn — pll
< an(1+ p)lzn — pH2 + (1 = an(1+m)¥) (1 +yn)llzn — pH2 + ¢cn)
+an([lu+ (vf = V)pI? + llya = 2[1%)
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< an(L+ pllen = pl* + (1 = an(l + w)3) (1 + ) len = pl* + cn)
+ag(llu+ (v f = V)pl® + llyn — pII*)
= [lzn — pH2 + (1 = an(l+ @) vmllzn — p||2 + (1 —an(l+p)¥)en
+an(fu+ (v f = V)pl® + llyn — 2[1%)
< (L+)llzn = pl* + en + an(lu+ (vf = V)pl* + llyn = pII),
which hence yields

I+~ «a %
2 < 27 2 n —V)pll2
lyn — plI” < 1_aonn pll +1_anIIU+(’vf il T
Qp + Vn 2 Qg = 2
=14+ — — -V
(1 S =l 4 T2t (0f = VIl + =
Oy + Yn 2 Qn + Yn = 2
<(1+—— — —_— -V
< @+ T oy = plP o+ 5k (3F = VP + e
ap + 7, _
(3.7) = lzn = plI> + =" (20 = plI” + lu+ (vf = V)p[?) + Cn
1—oay, 1—oay

< lwn = pll* + (@ + ) o(lzn = plI* + lu+ (vf = V)pl*) + ocn

< [|lzn _pH2 + (an + ) o+ cno

= ||z — pII* + On,
where 0,, = (p+3n) Lno+cno, Tn = sup{||zn—p|*+|lu+(vf=V)p|? : p € 2} < o0,
and o = Tswp,oran < ™ (due to {a,} C (0,1) and lim, oo o, = 0). Hence
p € Cpy1. This implies that 2 C C,, for all n > 1. Therefore, {z,} is well defined.

Step 2. We prove that ||z, — k|| — 0 as n — oc.
Indeed, let * = Ppxzgy. From x, = P¢,z¢ and z* € {2 C C),, we obtain
(3.8) [#n — @ol| < [[2" — @ol|-

This implies that {x,} is bounded and hence {u,},{z,},{kn} and {y,} are also
bounded. Since z,4; € Cpy1 C C,, and x,, = Pg, x, we have

[2n = @oll < l|#nt1 — 2oll, V=1

Therefore lim,,_, o ||xn — xo|| exists. From z, = Pg,z9, xny1 € Cpy1 C Cp, by
Proposition 2.3 (ii) we obtain

[Zn41 = 2nll? < llwo — 2ppa || = llzo — 2|,
which implies

(3.9) [ €041 = @[l = 0.

lim
n—oo
It follows from @41 € Cpy1 that ||yn — Zns1l|? < |2 — nt1|* + 6, and hence
|z = ynll® < 2(l2n = 2nt1l® + 2nr1 = ynll?)

< 2|l — xn+1||2 + llzn — $n+1||2 + 6)

= 2(2||zn - $nJrlHQ + O).
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From (3.9) and lim,,—, 6, = 0, we have
(3.10) Jim [, — yn| = 0.
Also, utilizing Lemmas 2.6 and 2.7 (b) we obtain from (3.1), and (3.4)-(3.6) that
lyn = pII* = lln(u + 7 f(xn) = VWaGka) + Bu(kn — p) + (1 = Ba) (Wi Ghn — p)|?
< 1Bn(kn =) + (1 = Bo) (WnGhin — p)|*
+ 200 (u+ v (20) = VWnGhn, yn — )
= Bnllkn _pH2 + (1= Bp)[WnGky, — p”2 = Bu(1 = Bn)||kr — WnGknuz
+ 20 ||+ v f(20) = VWL Ghallllyn —
< Bullkn _pH2 + (1 = Bn)llkn — pH2 = Bn(L = Bu)llkn — WnGan2
+ 20w+ f(2n) = VWG| llyn —
= [|kn _pH2 — Bn(1 = Bu)llkn — WnGanQ
+ 2aplu + 7 f(2n) — VIV Ghall[lyn — pl|
< (1 +m)ll2n _PH2 + cn = Bu(l = Bn)|kn — WnGanQ
+ 20 ||+ v f(20) = VIWLGhallllyn —
< (I +w)llwn — pH2 + cn = Bn(l = Bn)llkn — WnGan2
+2ap|lu+ v f(2n) = VWaGkal|lyn —
which leads to
Bn(1 = Bn)[kn — WnGanQ < [lzn — p”2 —lyn — p”2 + o llzn _pH2 + ¢n + 20 |u
+7f (@) = VWaGhallllyn — ]
<l = yall(lzn = 2l + llyn = 2I) + Anllzn = p? +
+ 20 ||u + v f(20) = VW Ghallllyn — pl-

Since limy, 00 @, = 0, limy, 500 7, = 0 and lim,, o ¢, = 0, it follows from (3.10)
and condition (iii) that

(3.11) nh_)ngo \lkn, — WGk, || = 0.
Note that
Un — kn = an(u+~vf(xn) — VIWoGkn) + (1 — Bn) (WnGhy — ky),
which yields
[2n = Enll < ll2n = ynll + llyn — Fanll

< lzn = yall + llean(u +7vf(@n) = VIWaGhn) + (1 = Bp) (W Ghn — k)|
< Nlzn = ynll + anllu+vf(2n) = VWG|l + (1 = Ba) [WnGn — Ky |
< |lwn — ynll + anllu +vf (2n) — VWLGEL|| + [|[Wh Gy — ky||.

So, from (3.10), (3.11) and lim, o a, = 0, we get

(3.12) |zn — kn]| = 0.

lim
n—oo
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Step 3. We prove that ||z, — un|| = 0, ||un — 2zn|| = 0, ||kn — Gkyn|| — 0, ||kn —
Wky| — 0 and ||z, — Sz,|| = 0 as n — oo.
Indeed, from (3.4) and (3.5) it follows that

1k = plI* < [1+0(1 = 8a)]llz0 — p]1?

(313) + (L= 8)(k = 8p) |20 — S" 2> + (1 — 6)en
< lzn — p||2 + Ynllzn — p||2 +cn
< lzn — p||2 + nllzn — p”2 + ¢n-

Next let us show that
(3.14) nh_)nolo |z, — un|| = 0.
For p € {2, we find that

lun = pl* = 1S} DI = rpA)an — ST = ra A)p|?

<N = rad)zn — (I = raA)p]®

(3.15) 2

= llzn —p —rn(Az, — Ap)
<l = plI* + 70 (rn — 2¢) || Az, — Ap||.
Combining (3.3), (3.13) and (3.15), we obtain
Ik = pII* < ll2n = plI* +Anllzn — l* + cn
< lun = plI* + mllzn = plI? + cn
< lzn — pH2 + rp(rn — 20)||Azn — APH2 + Y llzn — pH2 + Cn,
which immediately implies that
rn(2C = o) | Az — Apl* < [l = pl|* = [kn = pI* + mllzn — I + cn
< lln = kall(lzn = pll + [k = pll) + Yallzn = plI* + cp-

Since limy, 00 Y = 0, limy, 00 ¢, = 0 and {z,,} and {k,} are bounded sequences,
it follows from (3.12) and condition (iii) that

(3.16) lim [|Az, — Ap|| = 0.
n—oo

Furthermore, from the firm nonexpansivity of Sﬁ?"p), we have

Hun - p||2 = ||S1£n97cp)(] - 7”nA):Un - ST(*TL@W)(I - TnA)pHQ
< <(I - TnA)xn - (I - rnA)paun - p>
1
= ST = rad)zy — (I — raA)p|l* + llun — plI?
— (I = rpA)zy — (I =10 A)p — (un — p)||°]

IN

1
Slllzn = pl* + llun = plI* = llon = un = ra(Azy — Ap)|]

1
= Sllln =PI + lun = pII* = llzn = wn|l* + 2rn (A, — Ap, 2 — un)
— il Azn — Ap?),
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which leads to
(3.17) [un = plI* < llzn — Pl = |20 — unl® + 27| Az, — Apl|l|lzn — un |-
From (3.13) and (3.17), we have
[ En — p||2 < |lzn _pH2 + Yo llTn — p||2 +cn
< ||un _pH2 + Yo llTn — p||2 +cn
< |lzn _pH2 — ||z — unH2 + 27y || Ay — Apl||| 2 — unp |
+nllzn = plI* + cn,
which hence implies that
20 = unl]* < |on — plI* = [|kn — pII* + 2rnl| Azn — Apl|[|2n — ]|
+ 771”3377, —PH2 +cn
<|lzn = kall(lzn — pll + |kn — pll) + 270 | Az, — Apl[[|l2n — ua|
+ 7n||33n - pH2 + cp.

Since limy, 00 ¥ = 0, limy, 00 ¢y, = 0 and {x,}, {u,} and {k,} are bounded se-
quences, it follows from (3.12) and (3.16) that (3.14) holds.
Next we show that lim,, o ||B;A%u, — Bipl| =0, i = 1,2,..., N. Observe that

145 un = plI? = TR Ar (T = A Bi) Ay un = TR, n,, (I = Ain Bi)pl|?
<N = XinBi) A5, u — (I = X Bi)pl?
(3.18) < A5 un = Pl 4 X (Nin — 2m) || Bidy,  un — Bip|?
< un = plI* + Nin (Vi — 200) | Bi 45, un — Bip||?
< wn = plI? + NinNin — 200) | Bi A5, un — Bip||*.
Combining (3.13) and (3.18), we have
(| %z, _pH2 <llzn _pH2 + YullTn —p||2 + Cn
< |45 un = |l + ynllzn — plI* + cn
< lwn = pl* + Nin(Nim — 2m)|| Bidy,  un — Bip|®
+ Ynllzn _pH2 + Cn,
which yields
Xin (20 = Xin) | Bidy,  un = Bipl|* < |ln — pl1* = [[kn = plI* + vnllzn — plI> + cn
< |lzn = knll(llzn — pll + |50 — pl)
+ Ynllzn — pH2 + Cn.

From {\;,} C [a;,b;] C (0,2m;),i € {1,2,..., N}, limy 007, = 0, limpyo0cp =0
and (3.12), we obtain

(3.19) lim |BiAS  u,, — Bip|| =0, i=1,2,...,N.
By Lemma 2.12 and Lemma 2.7 (a), we obtain
|45 un = I = | TR A (T = NinBi) Ay un = TR, (I = Ain Bi)pl|?
< (I = N Bi) AL My — (I = X Bi)p, Alyuy, — p)
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= 5 IT = AinBi) Ay Y = (I = XinBi)pl)? + [ 45,10 — plf?
= X B) A — (1= X Bi)p — (A un — p) )

1. . . . , .

< S UM = pl* + 145 un = pI* = A3 = Ay = X (Bi Ay un = Bip)[*)
1 , . . .

< S (lun = pl* + [ A5 = pII* = 145 = A = Xign(Bidyy = Bip)[[*)

1 , . . .
< S (lzn = plI* + 45w = pI* = 145 = A = Ain(Bidyy " = Bip)[|%),

which implies
1A = plI* < llan —plI? = 145 un = Aun = Xin(Bidy un — Bip)|®
= [l = pl* = 147 un — A unl® = A2, | Bid  un — Bip|®
(3.20) + 2N (AL gy — Ay, Bi AL uy, — Bip)
< lzn _pH2 - HAib_lun - A%unHZ
+ 200 | A5 g — A ||| BiAy ug — Bipl|.
Combining (3.13) and (3.20) we get
i = B2 < llon = pI2 + 3mllm = I +
< [ 45 un = plI* + nllzn — pl? + cn
< lwn = plI* = 145 un — Ajunl?
+ 20| A5 g — A ||| Bl un — Bipll + vl — pl* + e,
which yields
145 1 — Aun|® < Jlzn = plI* = [k — 2]
+ 2N | Ay, — Al ||| Bi AL u, — Bip|
+ llzn — p”2 tcn
< llen = Enll(l2n — pll + n = pll)
+ 20| 45 — A ||| Bi A5 — Bip|
+Ynllzn — Pl + .

Since lim, 00 7, = 0, lim, o0 ¢, = 0 and {x,}, {u,} and {k,} are bounded se-
quences, we obtain from (3.12) and (3.19) that

(3.21) lim ||A5 Yy, — ALy =0, i=1,2,..,N.

n—o0

From (3.21) we get
[un — znll = ||A9Lun - Agunll

(3.22) < ||A2un - A}munH + HAvlen - A%UTLH +oeee HArjy_lun - quzvunH
—0 asn — oco.
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By (3.14) and (3.22), we have
(3.23) lzn — 20l < llzn — unll + lun — 2all
—0 asn — oco.
From (3.9) and (3.23), we have
lzne1 — znll < |2n41 — Tngall + [|[Tng1 — zull + |20 — 24|
—0 asn — oco.
By (3.12) and (3.23), we get
1kn — znll < |[kn — 20|l + |20 — 24|
—0 asn — oco.

(3.24)

(3.25)

We observe that
kn—2zn=(1—0,)(S"2n — 2n).
From 6, < d < 1 and (3.25), we have
(3.26) lim || S"z, — z,|| = 0.
n—oo
We note that
1S™ 2 — Sn—HZnH <520 = zall + 120 — 201
+llznr1 = 8"z || 4+ 18" zpan — 8™ 2.
From (3.24), (3.26) and Lemma 2.17, we obtain
(3.27) lim [|S"z, — 8" 1z,| = 0.
n—oo
On the other hand, we note that
120 = Szl < ll2n = S"2nll + 1820 = ™ zp || + 15" 20 — Sznll.
From (3.26), (3.27) and the uniform continuity of S, we have
(3.28) lim ||z, — Sz,| = 0.
n—oo
On the other hand, for simplicity, we write p = TV?Q (I — 1rA9)p, v, =
TIEQ(I — 19 Ag)k, and v, = Gk, = Tl,?f (I —11A1)v, for all n > 1. Then
p = Gp = TV?J (I - I/1A1)ﬁ = Tl,él)l (I - V1A1)Tlg)2 (I — VQAQ)p.

We now show that lim,_,« ||Gky, — ky| = 0, i.e., limy, o0 |0y, — kpn| = 0. As a
matter of fact, for p € 2, it follows from (3.1), (3.4)-(3.6) and (3.13) that

lyn = plI* = llany(f (zn) = £ () + Bulkn — p) + (1 = Bu)I — anV)(WyGhn — p)
+an(u+vf(p) = Vp)|?
< Nlany(f(@n) = F()) + Bulkn —p) + (1 = Bu) I — anV) (WG — p)|?
+ 200 (u+7f(p) = Vp,yn — p)
< a1 f (@n) = FO) + Ballkn = pll + (1 = Bu)T — anV|[[|[WnGhn — p|]?
+ 2anllu+ (vf = V)pllllyn — pll
(329) < lanllwn — pll + Bullkn — pll + (1 = Bn — an — anp?)||Gkn — pl|]?



SYSTEMS OF GENERALIZED EQUILIBRIA 1661

+ 20 [lu+ (vf = V)plllyn — pll
< [an(1 + wAlan = pll + Ballkn = pll + (1 = Bn — (1 + )7)||Ghn — p||)?
+ 20 [lu+ (vf = V)plllyn — pll
< an(L+ pAllen = pl* + Ballkn = plI* + (1 = Bn — an(1+ )7)[|5n — plI?
+ 20 flu+ (vf = V)plllyn — pll
< an(L+ p)illen = plI* + Ballkn = plI* + (1 = Bn — an(1 + w3 [lva — bl
+ (v = 20) [ Ao — AplPP] + 2anlu+ (vf = V)plllyn — pl
< an(L+ p)illen — plI* + Ballkn = plI* + (1 = B — an(1 + ) [lkn — ol
+ va(va — 2a) || Agky — Aapl® + 11(11 — 2¢1) | 41w — A1)
+ 20 [lu+ (vf = V)plllyn — pll
= an(1+ p)llzn = pl* + (1 — an(1 + 1)7)|1kn — p|*
+ 20 [lu+ (vf = V)plllyn — pll
+ (1= B — an(1+ p)7)[va(va — 26)|| Ak — Asp|?
+ (v = 2G| Aron — Aip|)?)
< ap (1 + p)yllzn — PH2 + (1= an(1 4+ ) (1 +30)ll2n _pH2 + ¢n)
+ 2ap)lu+ (vf = V)plllya —
+ (1= B — an(1+ p))[va(va — 26) || Akn — Asp|?
+vi(v1 — 21 [|Aron — A1)
< an(1+4 p)¥l|zn — pHQ + (1 = an(1+ )Y (1 + ) llzn — p||2 + ¢cn)
+ 2ap)lu+ (vf = V)plllya —
+ (1= Bn = an(1+ p)7) [va(ve — 2G2) || Agky — Azpl|?
+ (v = 2G| Aron, — Aip|)?)
= ||lzn _pH2 + (1 = an(1+ @)7) (yllzn — p”2 + cn)
+ 20 flu+ (vf = V)plllyn — pll
+ (1= B — an(1+ p)7)[va(va — 26)|| Azkn — Asp|?
+ui(vr = 2G) | Arvn — A%
< lwn = plI? + llen — plI* + ¢ + 2anllu+ (vf = V)pllllyn — pl
+ (1= B — an(1+ p)7)[va(va — 26) || Akn — Aspl|?
+ 1 (1 — 2G) | Arvn — A1B)?),
which immediately implies that
(1= B — an(1 + 1)7) [v2(2(2 — va) || Agky — Agpl|®
+v1(26 — )| Aron, — Aupf’]
< Nzn = plI* = lgn — pI* + llzn — ol
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+ ¢ 4 200w+ (vf = V)pllllyn — 2|
< lzn = ynll(|zn — 2l + llyn — 2I) + Yllzn — I
+ cn + 2 llu + (v f = V)pllllyn — plI-

Since limy 00 @ = 0, limy 00 = 0, lim, o0y = 0, limsup,, ., Bn < 1 and
{z,} and {y,} are bounded sequences, we conclude from (3.10) and condition (iv)
that

(3.30) li_}m ||A2ky, — Aap|| =0 and li_>n1 |A1v, — A1p|| = 0.

Also, in terms of the firm nonexpansivity of Tl,(ik and the (j-inverse strong mono-
tonicity of Ay for k = 1,2, we obtain from vy € (0,2(x), k € {1,2} and (3.6) that

Jon = B11? = T (T — maAa)ley — T (T — ma As)p?
< (I — vaAg)kn — (I — v2A2)p, v — D)
= ST — vo Aok — (T = 1o Aol + [fon — I
U~ va Aok — (I~ 12 A2)p — (v — B)P)
[l = I + o = BI” ~ [k — va) ~ v2(Askn — Aop) ~ (p — )
= I + llom = B1” = kn — va) — (0~ )P
+205((kn — vn) — (p — ), Azkn — Aop) — 13| Ak, — Azp|?],

l\')\l—‘[\')\H

and
[0 — pl12 = TS (I — 1 Ar)on — T (T~ An)p?
(I —v1Ay)vy — (I — v AL)D, Op — D)
ST = AV, — (= AP + (15—l
T = Ao — (= A~ (5 = )P

1 -
Sllon =Bl + 50 = plI* = [|(vn = o) + (0 — §)*

IA

IA

+ 2u1 (A1vn, — A1p, (v — ) + (p — P)) — vi||Arv, — A1p||?]

IN

)

1

S llkn = plI* + o0 = pl* = [(vn = T0) + (0 = D)
+ 2v1(Arvn, — A1p, (vn — On) + (p — P))]-

Thus, we have

lon = BI* < l[kn = plI* = [|(kn = va) = (0 = B)II?

(3.31) i ) )
+ 2v9((kn, — vn) — (p — D), Aoky, — Aap) — V5| Aoky, — Aspl|”,

and

(3.32) [T = plI”> < lkn — plI* = [[(vn — ) + (p — D)7

+ 21| Avon — Aapll[l(vn = 0n) + (2 = D)
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Consequently, from (3.29) and (3.31) it follows that

1yn = plI* < (14 wAkn =PI + Ballkn = plI> + (1 = Bn — an(1 + )¥)l|5n — pI?

+ 2anllu + (vf = V)pllllyn —

< an(L+ wAllkn = pl* + Bullkn = plI* + (1 = B — an(1 + p))[[on — Bl
+ 2anllu+ (vf = V)pllllyn — 2l

< an(1+ p)llkn = plI* + Bullkn — plI?
+ (1= Bn = an(1+ @A) Ik = plI* = |(kn — va) — (p — DI

+ 2v9((kn — vn) — (p — P), A2kn — Aop) — V3 [| Aok — Asp|?]

+ 2anllu + (vf = V)pllllyn —

< kn =2l = (1 = Bn — a1+ @A) (kn — va) — (0 = P)|I?
+ 2v||(ky — vn) — (p — D) ||| A2kn — Asp||
+ 2anllu + (vf = V)pllllyn — pll;

which hence leads to

(1= Bn — a1+ )| (kn — va) — (0 — DI
< lkn = plI* = lyn — pII” + 202l (kn — vn) — (0 — D) ||| A2kn — Asgp]|
+ 20 |lu+ (vf = V)pllllyn — 1l
<k = ynll([En = Pl + lyn — pII) + 202/ (kn — va) — (p — D)|I[| Azkn — Aspl|
+ 2anflu+ (vf = V)pllllyn — pll
< (Ikn = 2all + 20 = yal) (1 = pll + llyn — plI)
+ 2v||(kn — vn) — (p — D)||[[A2kn — A2p|
+ 2a)lu+ (v f = V)pllllyn — pl.-

Since limy 00 v, = 0, limsup,, o Bn < 1 and {ky,}, {v,} and {y,} are bounded
sequences, we conclude from (3.10), (3.12) and (3.30) that

(3.33) Tim [(ky — va) — (= 5)| = 0.
Furthermore, from (3.29) and (3.32) it follows that
lyn = plI* < an(@ + p)Fllkn = pI* + Ballkn = plI* + (1 = B — an(1 + p)7) 100 — pl>
+ 20mlu+ (vf = V)pllllyn — pl
< an(L+ @)k = plI* + Ballkn = plI? + (1 = B — an(L + w)7) [ kn — p|I?
—[1(vn =) + (p = B)II* + 201[| Aron — A1 [|(vn — Tn) + (0 = D) ]
+2anu+ (vf = V)pllllyn — pll
< lkn = pl* = (1 = B = an(L + @)l (v = B5) + (p = D)
+ 2v1[|Avon, — Auplll|[(vn = On) + (p = D)
+ 2 |lu+ (vf = V)pllllyn — pll,
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which hence yields

(1= Bn = an(L+ W) (00 — 00) + (0 = D)|1?
< |k = plI* = llyn — PII* + 201 ]| Aron — A1pll]|(vn — Tn) + (p — D)
+ 2ap)lu+ (vf = V)pllllyn — ol
< Nlkn = ynll(lkn = pIl + llyn — pll) + 2011 Aron — A1l (ve — 00) + (p — D)
+ 2an|lu+ (vf = V)pllllyn — 2l
< (Ikn = znll + 120 = yal)(1kn = Il + llyn — 2l
+ 2u1||Arvn, — A1p|||[ (v — Tn) + (p — D) ||
+ 2an)lu+ (vf = V)pllllyn — -

Since lim, oo, = 0, limsup,_,.o B < 1 and {k,},{vn},{yn} and {0,} are
bounded sequences, we conclude from (3.10), (3.12) and (3.30) that

(3.34) lim [|(v, —0n) + (p — P)[| = 0.

n—oo

Note that
1En = Onll < [|(kn —vn) = (p = D)l + [[(von — Bn) + (p — D).
Hence from (3.33) and (3.34) we get
(339 Jim [ = 5] = lim [y — G| =0,
which together with (3.11) and (3.35), implies that
\kn — Whkn|l < |lkn — WoGEy|| + |WnGky, — Wik, ||

(3.35) < Wl — WG| + |Gl —
—+0 asn — oo.
Also, observe that
[n, = Whn|l < [|kn = Wakn|| + [[Wnkn — Whka||.
From (3.36), [18, Remark 3.2] and the boundedness of {k,} we immediately obtain
lim ||k, — Wky| = 0.
n—oo

Step 4. We prove that x,, — x* = Ppxg as n — oo.

Indeed, since {z,} is bounded, there exists a subsequence {z,, } which converges
weakly to some w. From (3.12), (3.14), (3.21) and (3.23), we have that k,, —
w, Up, = w, A7up, — w and z,, — w, where m € {1,2,...,N}. Since S is
uniformly continuous, by (3.28) we get lim, o ||2n, — S™2,|| = 0 for any m >
1. Hence from Lemma 2.19, we obtain w € Fix(S). In the meantime, utilizing
Lemma 2.10, we deduce from k,, — w, (3.35) and (3.37) that w € SGEP(G)
and w € Fix(W) = N°Fix(7,) (due to Lemma 2.9). Next, we prove that w €
ﬁ%zll(Bm,Rm). As a matter of fact, since B, is my-inverse strongly monotone,

B, is a monotone and Lipschitz continuous mapping. It follows from Lemma 2.15
that R,,+ By, is maximal monotone. Let (v, g) € G(R,,+ Bpn,), i.e., g— Bpv € Ryv.
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Again, since Ajun = JRr, Apmn (I — A B ) AT M yn > 1,m € {1,2,..., N}, we
have
AP Mty — N B AT Yy, € (14 Ay Rin) A

n

that is,
1
(A7 = A = A B A7 i) € R A7 .
m,n
In terms of the monotonicity of R,,, we get
1
<U - Anmuna g — Bpv — b\ (Ag_lun - A?un - )\m,anA?_lun» >0
m,n
and hence
(v — AUy, g) > <v — AUy, Bpv + 3 (Azi—lun — Ay, — )\m7an/121—1un)>
m,n
= <U — AUy, By — By A uy, + B A7 gy, — Bm/l?_lun
1
+ b\ (AT_lun - A?“ﬂ>>
m,n
> (v — A™uy,, By A™u, — B A" tuy,)
1
(0= Aty (A7 = An) ).
m,n

In particular,
(V= A Un;, g) > (v — A Up,, B A7 U, — Bm/l:l”i_lun)

1
(AT Ly, — Agj_um)>.

— Ay,
+ <v n; Un; Py
Since || A7y, — AT Ly, || — 0 (due to (3.21)) and || By AT uy, — By A7 Ly, || — 0 (due
to the Lipschitz continuity of By,), we conclude from A7'u,, — w and condition
(iv) that
lim (v — A7 up,, g) = (v —w, g) > 0.

71— 00
It follows from the maximal monotonicity of By, + Ry, that 0 € (R,, + By,)w, i.e.,
w € I(Bp, Ry). Therefore, w € NN_,1(B,y,, Rpn).
Next, we show that w € GMEP (6O, ¢, A). In fact, from u,, = S’ﬁn@’@) (I —rpA)zy,
we know that
1
Q(Um y) +90(y> _So(un) + <A33m y_un> + 7,7<K/(un) _K,($n>v y_un> >0, VyedC.

n

From (H2) it follows that
1

P(y) — p(un) + (Azn, y — up) + 7<K/(Un) = K'(zp),y —un) > Oy, un), VyeC.

Replacing n by n;, we have

K/(um) — Kl(xni)

Tn,;

(3

7y_un2>
Z Q(yvunz)’ vy € C

(3:36) (y) = @lun,) + (ATn,sy — un) +
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Put uy =ty + (1 —t)w for all ¢ € (0,1] and y € C. Then, from (3.38) we have
<ut — Un,, Aut> = <ut = Uny, Aut> - @(ut) + So(um) - <ut = Un,, A:En7,>
_ <K/(un7,) — K,('/an)

Tn;

, Ut — unz> + @(ut?uni)

> (ur — Up,, Aup — Aup,) + (Ut — U, , A, — Axy,)
KI(“M) — Kl(xnz)

Tn,

—plur) + plun,) = ( = ) + O, ).

Since ||un, — zpn,|| — 0 as i — oo, we deduce from the Lipschitz continuity of A
and K’ that ||Auy,, — Azy,|| = 0 and || K/ (un,) — K'(2p,)|| — 0 as i — oo. Further,

from the monotonicity of A, we have (u; — up,, Aus — Auy,,) > 0. So, from (H4), the
K/(Uni)fK/(zni)

(3.37) (ug —w, Aug) > —p(ug) + e(w) + O(ug, w), as i — oo.
From (H1), (H4) and (3.39) we also have
0= O(ut,ur) + p(ur) — p(u)

weakly lower semicontinuity of ¢, — 0 and u,;, — w, we have

<tO(ut,y) + (1 — 1) O(ug, w) + tp(y) + (1 — t)p(w) — p(uy)

=t[O(u, y) + o(y) — p(u)] + (1 = )[O(ur, w) + p(w) — p(w) — p(ur)]
< t[O(u, y) + o(y) — p(u)] + (1 — ) (ur — w, Auy)

= t[O(us,y) + o(y) — @(ug)] + (1 = t)t{y — w, Auy),

and hence
0 < O(ur,y) +¢(y) = plur) + (1 =)y — w, Auy).
Letting t — 0, we have, for each y € C,
0< O(w,y) +¢(y) — p(w) + (Aw, y — w).

This implies that w € GMEP(6, ¢, A). Consequently, w € 2 = Ny, Fix(T),) N
GMEP(0, ¢, A)NSGEP(G) NN, 1(B;, R;) NFix(S). This shows that wy,(x,) C 2.
From (3.8) and Lemma 2.23, we infer that =, — 2* = Ppxg as n — oc.

Finally, assume additionally that 7, + ¢, = o(ay,) and ||z, — yn|| = o(ay,). It is
clear that

(V =)z = (V=yfly,x—y) = (1+ w7 —)llz —yl*, Va,y € H.
So, we know from 0 < 4l < (1 + u)¥y that V —f is (1 + )y — ~l)-strongly
monotone. In the meantime, it is easy to see that V' —~f is (||V[| 4-I)-Lipschitzian
with constant ||[V'|| +~{ > 0. Thus, there exists a unique solution p in 2 to the VIP
(u+(vf=V)p,v—p) <0, Yove

Consequently, we deduce from (3.10) and z,, — =* = Ppxg (n — o) that

limsup(u + (vf = V)p,yn — p) = limsup((u + (vf — V)p, zn — p)

+(u+ (vf = V)p,yn — xn))
= limsup(u + (vf — V)pa Tp —p)

n—o0

=(u+(vf—V)p,z* —p) <0.

(3.38)
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Furthermore, by Lemma 2.6 we conclude from (3.1) and (3.4)-(3.6) that

yn = plI* = llen(w +5(f(2n) = VP)) + Bu(kn — p)
+ (1= BT — anV) (W, G — p)|I?
= [leny(f(20) — f(P)) + Bulkn — p)
+ (1= Bu)I = anV)(WnGkn — p) + an(u+~f(p) — Vp)|?
< leny(f(xn) = f(p)) + Bulkn — p)
+((1 = ) — anV) (Wi Gk — p)|I?
+ 20 (u+ (v = V)p,yn — )
< lany I f(zn) = FP)I + Bullkn — pll
+ (1 = Ba) I — anV|[[|[Wn Gy — pll)?
+ 20 (u+ (vf = V)p,yn — )
< [anyll|zn = pll + Ballkn — pll + (1 = B — an(1 + w)7) [k — pll}®
+ 20 (u+ (vf = V)p,yn — D)

l
= lan(1+ )3 = o =l + Bl = p]

+ (1= Bn = an(1 + )7 |kn — pll]?
+ 2an(u+ (vf = V)p,yn — p)

— [an(1 +u>v(”luxn —pl + (1 = an(1+ @A)k — pl?

1+ p)y
+ 20 (u+ (vf = V)p,yn — )
(v)?

(1 + )2*2
+ (1= (1 + wWA)kn — I + 200 (u+ (vf = V)p,yn — p)
(v)?

(14 p)?5?

+ (1= (1 + W) (1 +3) 20 — Dl + c0)
+ 2an(u+ (vf = V)p,yn — p)
<o, (v)* Iz
"y
+ (1= (1 + )7) (ynllzn — plI* + c4)
+ 2an(u+ (vf = V)p,yn — p)
(14 p)*3* = (41)*
(1+p)y
+ 2an(u+ (vf = V)p,yn — 1),

< an(l+ )y |z — plI?

|z — plI?

< an(l+p)y

= pl* + (1 = an(L+ @)7) zn — pl®

<(1-—ay )Hxn—pHZ""YnHwn_pHQ"i‘cn
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and hence
(14 p)?5* — (41)? o Nlen =l = llyn —pI? | Ynllon —pl? + cn
- |zn — pl|” < -
(L4 p)y an, O
+2(u+ (vf = V), yn — )
|zn — y
< =l ol 4 g — )
Qp
+c
+ 2 (la — )% + 1)
n
+2(u+ (vf = V)p,yn — ).
Since vy, + ¢, = o(aw), ||[Tn — yn| = o(ayn) and z, — x* = Pgxp, we infer from

(3.40) and 0 < vl < (1 4 p)7 that as n — oo

(1+ p1)*3* = (41)?
(1+p)y
That is, p = 2* = Ppxo. By Lemma 2.16, we infer that z* also solves the following
optimization problem:

l=* — pl* < 0.

in # Lo upz—
(0P2) min &V, @)+ 3z — ul? ~ h(z)
where h : H — R is the potential function of vf. This completes the proof. g

Corollary 3.2. Let C' be a nonempty closed convexr subset of a real Hilbert space
H. Let ©, 01,0y be three bifunctions from C x C to R satisfying (H1)-(H4) and
0 : C = R be a lower semicontinuous and convezx functional. Let R; : C — 21
be a mazximal monotone mapping and let A, A : H — H and B; : C — H be
(-inverse strongly monotone, (i-inverse strongly monotone and n;-inverse strongly
monotone, respectively, for k = 1,2 and i = 1,2. Let S : C — C be a uniformly
continuous asymptotically k-strict pseudocontractive mapping in the intermediate
sense for some 0 < k < 1 with sequence {~v,} C [0,00) such that lim, o 7, = 0 and
{en} C [0,00) such that lim,_,oc ¢, = 0. Let {T},}5° be a sequence of nonexpansive
mappings on H and {\,} be a sequence in (0,b] for some b € (0,1). Let V be a
~-strongly positive bounded linear operator and f : H — H be an l-Lipschitzian
mapping with vyl < (1 + p)y. Let W, be the W-mapping defined by (1.4). Assume
that 2 := Ny, Fix(T,,) N GMEP(O, ¢, A) N SGEP(G) N I(Ba, R2) N I(B1, R1) N
Fix(S) is nonempty and bounded where G is defined as in Proposition 1.1. Let {r,}
be a sequence in [0,2¢] and {an},{Bn} and {6,} be sequences in (0,1) such that
limy, oo 0, =0 and k <9, < d < 1. Pickanyzo € H and set C; = H, x1 = Pc, .
Let {z,,} be a sequence generated by the following algorithm:

Uy, = Sﬁf’“") (I —rpA)xy,

Zn = JRydg (I — A2nB2) IRy Ay, (I — Ao B1) U,

kp = 0nzn + (1 —6,)S8" 2y,

Yn = an(u+7f(2n)) + Brkn + [(1 = Bp) I — an(I + pV) Wy, Gk,
Crt1 = {2 € Cp : [lyn — 2[I” < [l&n — 2[* + 00},

Tny1 = Po,. 70, Yn >0,

(3.39)
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where 0, = (o + yn) 1no + cno, T = sup{||lzn — p|? + llu+ (vf = (T + ©V))p[* -
pE N} <oo, and o = < 00. Assume that the following conditions are

satisfied:

(i) K : H — R is strongly convex with constant o > 0 and its derivative K’
is Lipschitz continuous with constant v > 0 such that the function r —
(y —z, K'(x)) is weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C' and z, € C such that

for any y & Dy,
Oy, 22) +plza) = ol0) + (K (y) = K'(2), 2 — ) <0

(iii) 0 < liminf 8, <limsup B, <1 and 0 < liminfr, <limsupr, < 2¢;
n—oo n—00 n—0o0 n—00
(iv) v € (0,2¢) and {Nin} C [ai, b;) C (0,2n;) for k=1,2 and i =1,2.
Suppose that 5’,(19’@) is firmly nonexpansive. Then the following statements
hold:
(I) {xn} converges strongly to =* = Poxg;
(IT ) {xn} converges strongly to z* = Pgxy which solves the following

1—sup, > an

optimization problem provided vy, + ¢n, = o(aw,) and ||zn — yn|| = o(awm):
M 1 2
P L Slla — ul|? —
(OP3) min (Va,z) + 2Ha: ul|® — h(x)

where h : H — R is the potential function of v f.

Corollary 3.3. Let C' be a nonempty closed convexr subset of a real Hilbert space
H. Let ©,601, 0y be three bifunctions from C x C to R satisfying (H1)-(H/j) and
¢ : C — R be a lower semicontinuous and convex functional. Let R: C — 21 be a
mazximal monotone mapping and let A, A, : H — H and B : C — H be (-inverse
strongly monotone, (i-inverse strongly monotone and n-inverse strongly monotone,
respectively, for k =1,2. Let S : C' — C be a uniformly continuous asymptotically
k-strict pseudocontractive mapping in the intermediate sense for some 0 < k < 1
with sequence {vy,} C [0,00) such that lim, oo v, = 0 and {c,} C [0,00) such
that limy,, oo cp, = 0. Let V be a 7-strongly positive bounded linear operator and
f: H— H be an l-Lipschitzian mapping with vyl < (1 + p)7y. Assume that £ :=
GMEP(0, ¢, A) N SGEP(G) N1(B, R) NFix(S) is nonempty and bounded where G
is defined as in Proposition 1.1. Let {r,} be a sequence in [0,2¢] and {ca,},{Bn}
and {6, } be sequences in (0,1) such that lim, oo o, =0 and k <6, < d < 1. Pick
any xo € H and set Cy = H, x1 = Po,xo. Let {x,} be a sequence generated by the
following algorithm:

Uy, = Sﬁf"ﬂ) (I —rpA)zy,

2n = JRp, (I — pnB)un,

kp = 0nzn + (1 — 6,)S" 2,

Yn = an(u+vf(2n)) + Bukn + [(1 = B)I — an(I + pV)|Gkn,
Cot1 = {2 € Cn : |lyn — 2[1* < [|lzn — 2[I* + 60},

Tny1 = Po,. 20, Vn >0,

(3.40)
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where 6y, = (o + ) Tno + cno, T = sup{|lzn — p||* + [lu+ (vf = (I + pV))p|?

pE N} <oo, and o =

T=Subn5; an < 00. Assume that the following conditions are

satisfied:

(i) K : H — R is strongly convex with constant o > 0 and its derivative K’
is Lipschitz continuous with constant v > 0 such that the function x —
(y —x, K'(x)) is weakly upper semicontinuous for each y € H;

(ii) for each x € H, there exist a bounded subset D, C C and z, € C such that

for any y & Dy,

O(y, zz) + p(2z) — p(y) +

(iii) 0 < liminf B, <limsup B, <1 and 0 < liminfr, <limsupr, < 2¢;
n—o0 n—00 n—o0 n—o00
(iv) v € (0,2¢) and {pn} C [a,b] C (0,2n) for k =1,2.
Suppose that 5’7(@’@) is firmly nonexpansive. Then the following statements
hold:
(I) {zn} converges strongly to =* = Poxg;
(I1) {xn} converges strongly to =* = Ppxg which solves the following opti-

()~ K@), 2 — ) <O

mization problem provided ~y, + ¢, = o(ay,) and ||z, — yn|| = o(an):
1
(OP4) min £V, @) + e — ul® - h(z)

(1]
2]

3]

(4]

(5]

[10]

(11]

where h : H — R is the potential function of v f.
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