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In this paper, using a mapping H : R+ → R we introduce a new type of set
contraction, calledH−set contraction and for these concrete mappingsH, we obtain
different kinds of set contractions of the type known from the literature, also k-set
contraction(s). We investigate the conditions under which one can guarantee the
existence of fixed points of this class of operators. In the other words, motivated by
[1, 8], we obtain a generalization of Darbo’s fixed point theorem and by using this
theorem we present the existence of solutions for some nonlinear functional integral
equations which include many key integral and functional equations that appear in
nonlinear analysis and its applications.

A scrutiny of the proof of Darbo’s theorem shows that we did not use the special
definition of the Kuratowski measure of noncompactness, but only its regularity,
its homogeneity, and its convex closure invariance. So Darbo’s theorem holds true
for any measure of noncompactness γ satisfying these conditions, in particular a
function γ : {B ⊂ X : B is bounded} → [0,∞) is said to be a measure of noncom-
pactness on a Banach space X, if it satisfies the following conditions:

(1) (invariance under closure and convex hull): γ( ¯coB) = γ(B),
(2) (regularity): γ(B) = 0 if and only if B is relatively compact,
(3) (semi-homogeneity): γ(αB) = |α|γ(B) for all α ∈ R.

The definition of measure of noncompactness given above is more general than that
of Kuratowski or Hausdorff measure of noncompactness given respectively by

α(B) = inf{r > 0 : B may be covered by finitely many sets of diameter ≤ r},

β(B) = inf{r > 0 : there exists a finite r-net for B in X},
(see [2, 4]).

A continuous operator T : X → X is said to be:

• a countable γ − k−set contraction: [14]
if γ(T (C)) ≤ kγ(C) for each countable bounded set C ⊆ X and for 0 ≤ k <
1,

• γ−countably condensing if γ(T (C)) < γ(C) for each countable bounded set
C ⊂ X with γ(C) > 0.

• a countable γ − φ−set contraction: [11]
if γ(T (C)) ≤ φ(γ(C)) for some φ ∈ Φ = {φ : R+ → R+, φ(t) < t for t >
0, φ(0) = 0} and each countable bounded set C ⊆ X.
Clearly, every countable γ − k−set contraction is a countable γ − φ−set
contraction where φ(t) = kt.

2. Main results

In this section we state our main definition which determines an important class of
operators including linear bounded operators, nonexpansive operators, completely
continuous operators and k-set contractive operators.

Definition 2.1. Let H : R+ → R be a mapping satisfying:

(H1) H is strictly increasing, i.e. H(α) < H(β) for all α, β ∈ R+ such that α < β.
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(H2) For each sequence {an}n∈N of positive numbers limn→∞ an = 0 if and only
if limn→∞H(an) = −∞.

A mapping T : X → X is said to be a countable H−set contraction if there exists
τ > 0 such that for all countable bounded sets C ⊆ X

(2.1) (γ(T (C)) > 0) ⇒ τ +H(γ(T (C))) ≤ H(γ(C)).

Remark 2.2. From (H1) and (2.1) it is easy to conclude that every H−set con-
traction is a condensing map. Also, every γ−condensing map T with γ(T (C)) ̸= 0
(for every countable bounded set C) is an H−set contraction.

Remark 2.3. Considering different types of the mapping H in (2.2), one can obtain
a variety of set contractions as follows.

Example 2.4. Let H : R+ → R be given by H(x) = lnx. It is clear that H satisfies
(H1) and (H2). Each mapping T : X → X satisfying (2.1) is an H−set contraction
such that

(2.2) γ(T (C)) ≤ e−τγ(C),

for all countable set C ⊂ X with γ(T (C)) > 0. It is clear that for a countable set
C ⊂ X if γ(T (C)) = 0 the inequality (2.2) also holds, i.e. T is a countable k−set
contraction with k = e−τ .

Example 2.5. Let H : (0,∞) → R be given by H(x) = ln(x2 + x). Obviously H
satisfies (H1) and (H2) and for any H−contraction T and any countable set C ⊂ X
with γ(T (C)) > 0, the following condition holds:

γ(T (C))(γ(T (C)) + 1)

γ(C)(γ(C) + 1)
≤ e−τ .

Example 2.6. Let H : (0,∞) → R be given by H(x) = lnx + x. Obviously H
satisfies (H1) and (H2) and for any H−contraction T and any countable set C ⊂ X
with γ(T (C)) > 0, the following condition holds:

γ(T (C))

γ(C)
eγ(T (C))−γ(C) ≤ e−τ .

Example 2.7. Let H : (0,∞) → R be given by H(x) = −1√
x
. Then H satisfies (H1)

and (H2) and for any H−contraction T , we have

γ(T (C)) ≤ 1

(1 + τ
√

γ(C))2
γ(C),

for all countable set C ⊂ X with γ(T (C)) > 0. Here we obtained a special case of
φ−set contractions.

Now we state our main theorem:

Theorem 2.8. (Generalized Darbo’s theorem) Let C ̸= ∅ be a bounded, closed and
convex subset of a Banach space X, γ be the measure of noncompactness on X and
suppose that T : C → C is a continuous H-set contraction. Then T has a fixed
point.
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Proof. We put C0 = C and define a decreasing sequence of sets Cn+1 = co(T (Cn))
for n = 0, 1, .... Then it follows by (1) and hypothesis that

γ(Cn+1) = γ(co(T (Cn))) = γ(T (Cn)).

Without loss of generality we suppose that γ(T (Cn)) ̸= 0 for n = 0, 1, ..., since T is
an H-set contraction there exists τ > 0 such that

τ +H(γ(T (Cn))) ≤ H(γ(Cn)).

Therefore we have

τ +H(γ(Cn+1)) ≤ H(γ(Cn)),

hence

H(γ(Cn)) ≤ H(γ(Cn−1))− τ ≤ H(γ(Cn−2))− 2τ ≤ . . . ≤ H(γ(C0))− nτ,

and so

lim
n

H(γ(Cn)) = −∞.

Now it follows by (H2) that

lim
n

γ(Cn) = 0.

Therefore C∞ =
∩∞

n=1Cn ̸= ∅ is compact. Since C∞ is also closed and convex, T
has a fixed point by Schauder’s fixed point theorem. □

3. An application to a functional integral equation

In this section we provide applications of the generalization of Darbo’s fixed
point theorem contained in Theorem 2.8 to prove the existence of solutions of a
functional integral equation of Volterra type. We will work in the Banach space
BC(R+) consisting of all real functions defined, bounded and continuous on R+.
The space BC(R+) is furnished with the standard supremum norm i.e., the norm
defined by

||x|| = sup{|x(t)| : t ≥ 0}.
For any nonempty bounded subset X of BC(R+), x ∈ X, T > 0 and ϵ ≥ 0, let

ωT (x, ε) = sup{|x(t)− x(s)| : s, t ∈ [0, T ], |t− s| ≤ ε}, X(t) = {x(t) : x ∈ X},

(3.3)
ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},
ωT
0 (X) = limε→0 ω

T (X, ε),
ω0(X) = limT→∞ ωT

0 (X),

(3.4) diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X},
and

(3.5) µ(X) = ω0(X) + lim sup
t→∞

diamX(t).

Banaś has shown in [7] that the function µ is a measure of noncompactness in
the space BC(R+). The kernel of this measure contains nonempty and bounded
sets X such that functions belonging to X are locally equicontinuous on R+ and
”the thickness of the bundle” formed by functions from X tends to zero at infinity.
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Consider the following conditions:

(A0) The function f : R+ ×R → R is continuous but for any nonempty bounded
subset X of BC(R+), the family of {f(t, x) : x ∈ X} is not equi-continuous
and for all t ∈ R+ The function t → f(t, 0) is a member of the space
BC(R+). Moreover there exists τ > 0 such that

|f(t, x)− f(t, y)| ̸= 0 ⇒ τ +H(|f(t, x)− f(t, y)|) ≤ H(|x− y|).

(A1) The function g : R+×R+×R → R is continuous and there exist continuous
functions a, b : R+ → R+ satisfying

|g(t, s, x)| ≤ a(t)b(s),

for all t, s ∈ R+ with s ≤ t and x ∈ R, where

lim
t→∞

a(t)

∫ t

0
b(s)ds = 0.

(A2) There exists a positive solution r0 of the inequality

H−1(H(r0)− τ) + q ≤ r0,

where q is the constant defined by the equality

q = sup{|f(t, 0)|+ a(t)

∫ t

0
b(s)ds : t ≥ 0}.

Theorem 3.1. Let (A0), (A1), (A2) be satisfied, then the nonlinear integral equation

(3.6) x(t) = f(t, x(t)) +

∫ t

0
g(t, s, x(s))ds, t ∈ R+

has at least one solution in the space BC(R+).

Proof. Define T on the space BC(R+) by

(Tx)(t) = f(t, x(t)) +

∫ t

0
g(t, s, x(s))ds, for t ∈ R+.

By the imposed assumptions, Tx is continuous on R+, further for arbitrary fixed
function x ∈ BC(R+) we have

|(Tx)(t)| ≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|+
∫ t
0 |g(t, s, x(s))|ds

≤ H−1(H(|x(t)|)− τ) + |f(t, 0)|+ a(t)
∫ t
0 b(s)ds,

therefore

||Tx|| ≤ H−1(H(||x(t)||)− τ) + q,

where q = sup{|f(t, 0)| + a(t)
∫ t
0 b(s)ds : t ∈ R+}. Since q is finite by assumption

(A2) there exists x0 ∈ BC(R+) such that ||x0|| = r0 and

||Tx0|| ≤ ||x0||.
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Thus T maps the space BC(R+) into itself and T is a self mapping of the ball Br0 .
In what follows we show that T is continuous on the ball Br0 . In order to do this
fix an arbitrary ε > 0. Then for x, y ∈ Br0 such that ||x− y|| ≤ ε, we have

|(Tx)(t)− (Ty)(t)| < |x(t)− y(t)|+
∫ t
0 |g(t, s, x(s))− g(t, s, y(s))|ds

< |x(t)− y(t)|+
∫ t
0 |g(t, s, x(s))|ds+

∫ t
0 |g(t, s, y(s))|ds

≤ ε+ 2c(t),

for t ∈ R+ and c(t) = a(t)
∫ t
0 b(s)ds.

Moreover by assumption (A1) there exists a number L > 0 such that

2a(t)

∫ t

0
b(s)ds ≤ ε,

for each t ≥ L.
Thus for an arbitrary t ≥ L we get

|(Tx)(t)− (Ty)(t)| ≤ 2ε.

Since the function g(t, s, x) is uniformly continuous on the set [0, L]×[0, L]×[−r0, r0]
one can infer that ωL(g, ε) → 0 as ε → 0, where

ωL(g, ε) = sup{|g(t, s, x)− g(t, s, y)| : t, s ∈ [0, L], x, y ∈ [−r0, r0], |x− y| ≤ ε}.
For arbitrary fixed t ∈ [0, L] we have

|(Tx)(t)− (Ty)(t)| ≤ ε+

∫ L

0
ωL(g, ε)ds = ε+ LωL(g, ε).

Therefore we can deduce that T is continuous on Br0 .
In the sequel, let us take a set X ⊆ Br0 , X ̸= ∅. Further, we fix the numbers
L > 0, ε > 0 and a function x ∈ X. Then, choosing t, s ∈ [0, L] such that s < t and
|t− s| ≤ ε we get by our assumptions

|(Tx)(t)− (Tx)(s)| ≤ |f(t, x(t))− f(s, x(s))|

+
∣∣∣ ∫ t

0
g(t, ι, x(ι))dι−

∫ s

0
g(s, ι, x(ι))dι

∣∣∣
≤ |f(t, x(t))− f(s, x(t))|+ |f(s, x(t))− f(s, x(s))|

+
∣∣∣ ∫ t

0
g(t, ι, x(ι))dι−

∫ t

0
g(s, ι, x(ι))dι

∣∣∣
+
∣∣∣ ∫ t

0
g(s, ι, x(ι))dι−

∫ s

0
g(s, ι, x(ι))dι

∣∣∣
≤ ωL

1 (f, ε) + |x(t)− x(s)|+
∫ t

0
|g(t, ι, x(ι))− g(s, ι, x(ι))|dι

+

∫ t

s
|g(s, ι, x(ι))|dι

≤ ωL
1 (f, ε) + ωL(f, ε)

+

∫ t

0
ωL
1 (g, ε)dι+ a(s)

∫ t

s
b(ι)dι

≤ ωL
1 (f, ε) + ωL(f, ε)
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+LωL
1 (g, ε) + ε sup{a(s)b(t) : t, s ∈ [0, L]}

where

ωL
1 (f, ε) = sup{|f(t, x)− f(s, x)| : t, s ∈ [0, L], x ∈ [−r0, r0], |t− s| ≤ ε},

ωL
1 (g, ε) = sup{|g(t, ι, x)− g(s, ι, x)| : ι, t, s ∈ [0, L], x ∈ [−r0, r0], |t− s| ≤ ε}.

Further ωL
1 (f, ε) → 0 and ωL

1 (g, ε) → 0 as ε → 0, because of the uniform continuity
of f on the set [0, L]× [−r0, r0] and g on the set [0, L]× [0, L]× [−r0, r0]. Moreover
since the functions a = a(t) and b = b(t) are continuous on R+, we have that

sup{a(s)b(t) : t, s ∈ [0, L]}

is finite. Hence, from (3.5) we derive

ωL
0 (TX) < ωL

0 (X)

and finally

(3.7) ω0(TX) ≤ ω0(X).

Now, choose two arbitrary functions x, y ∈ X. Then for t ∈ R we have

|(Tx)(t)− (Ty)(t)| ≤ |f(t, x(t))− f(t, y(t))|

+

∫ t

0
|g(t, s, x(s))|ds+

∫ t

0
|g(t, s, y(s))|ds

< |x(t)− y(t)|+ 2a(t)

∫ t

0
b(s)ds

= |x(t)− y(t)|+ 2c(t).

which yields

diam(TX)(t) < diamX(t) + 2c(t).

Consequently we have

(3.8) lim sup
t→∞

diam(TX)(t) ≤ lim sup
t→∞

diamX(t).

Linking (3.7) and (3.8)

ω0(TX) + lim sup
t→∞

diam(TX)(t) ≤ ω0(X) + lim sup
t→∞

diamX(t),

or equivalently

µ(TX) ≤ µ(X),

where µ is the measure of noncompactness defined in the space BC(R+). Since
TX is not equi-continuous by assumption, then µ(TX) ̸= 0. Therefore there exists
τ > 0 such that

τ +H(γ(TX)) ≤ H(γ(X)),

the above inequality in conjunction with Theorem 2.8 allows us to deduce that there
exists a solution x(t) of equation (3.6) in the space BC(R+).

□
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