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There are several problems from nonlinear analysis, optimization and manage-
ment which are closely related to a complementarity problem. The fixed point
problem is one of them.

A fixed point problem defined by K and T is to find a point x∗ ∈ K such that
x∗ ∈ Tx∗.

Several equivalence relations between a complementarity problem and a fixed
point problem can be found in [1, 2] and the references therein.

In this paper, we use isotone projection cone and fixed point formulation of gen-
eralized complementarity problem to propose iterative schemes to find the solutions
of generalized complementarity problems.

The organization of this paper is as follows: In Section 2, we present some
basic definitions and results needed later on. The concept of isotone projection
cones [17] is the basic tool for the convergence of iterative algorithms to a solution
of GSNCP−(K,T ) that follow in the subsequent sections. For the sake of complete-
ness, we present the basic fact about the equivalence of solution of GSNCP−(K,T )
and the fixed point defined by PK ◦ (I − T ) and K employing Morea’s theorem.
This section also contains some new classes of monotone set-valued mappings. In
Section 3, we propose two iterative schemes followed by the results dealing with
the conditions under which the presented schemes are convergent to a solution of
GSNCP−(K,T ). We also consider the iterative scheme with mapping defined by a
positive scaling of T . As a particular case, we consider the problem of finding the
zeros of the mapping T (x ∈ K is a zero of T if 0 ∈ Tx).

2. Preliminaries

Let (H, ⟨., .⟩) be a real Hilbert space. A subset K of H is called a closed convex
cone if it is a closed convex set and for any λ > 0 and x ∈ K, λx ∈ K. A closed
convex cone K is called pointed if K ∩ (−K) = {0}. If K ⊆ H is a closed convex
cone, then

K∗ = {y ∈ H : ⟨x, y⟩ ≥ 0 for all x ∈ K}

is called the dual cone of K and

K◦ = {y ∈ H : ⟨x, y⟩ ≤ 0 for all x ∈ K}

is called the polar of K.
A relation ρ on H is called (a) reflexive if xρx for all x ∈ H; (b) transitive if xρy

and yρz imply xρz; (c) antisymmetric if xρy and yρx imply x = y; (d) translation
invariant if xρy implies (x + z)ρ(y + z) for any z ∈ H; (e) scale invariant if xρy
implies (λx)ρ(λy) for any λ > 0; (f) continuous if for any two convergent sequences
{xn}n∈N and {yn}n∈N with xnρyn for all n ∈ N we have x∗ρy∗, where x∗ and y∗ are
the limits of {xn}n∈N and {yn}n∈N, respectively (see for details [17]).

A relation ρ on H is called a preorder if it is reflexive and transitive. A preorder
is called order if it is antisymmetric.

The relation ρ on H is a continuous, translation and scale invariant preorder if
and only if it is induced by a closed convex cone K ⊆ H, that is, ρ =≤K , where
x ≤K y if and only if y − x ∈ K. For simplicity, we denote “ ≤K ” by “ ≤ ”. The
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closed convex cone K written as

K = {x ∈ H : 0 ≤ x}
is called the positive cone of the preorder “ ≤ ”. The triplet (H, ⟨., .⟩ ,K) is called
an ordered vector space. If the closed convex cone K is pointed, then the preorder
“ ≤ ” becomes an order [17].

A closed convex cone K is called regular if every decreasing sequence of elements
in K is convergent. The ordered vector space (H, ⟨., .⟩ ,K) is called a vector lattice
if for every x, y ∈ H, there exist

x ∧ y := inf{x, y}
and

x ∨ y := sup{x, y}.
In this case, we say that the cone K is lattical and for each x ∈ H, we denote
x+ = 0∨x, x− = 0∨(−x) and |x| = x∨(−x). Then, x = x+−x− and |x| = x++x−.

Recall that the pointed closed convex cone K ⊆ H is called an isotone projection
cone (see [10–14]) if y − x ∈ K implies that PK(y) − PK(x) ∈ K, where PK is a
metric projection onto K. By using the order relation defined by K, this condition
can be written as x ≤ y implies that PK(x) ≤ PK(y) (see [14]).

Every isotone projection cone is lattical and regular [11]. A closed generating
cone in Rn is an isotone projection cone if and only if it is polyhedral and correct.
For more details on isotone projection cones, we refer to [14].

Theorem 2.1 (Moreau’s Theorem). Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a
closed convex cone, K∗ the dual cone of K and K◦ be the polar cone of K. For
x, y, z ∈ H, following the statements are equivalent:

(a) z = x+ y, x ∈ K, y ∈ K◦ and ⟨x, y⟩ = 0.
(b) x = PKz and y = PK◦z.

We establish the equivalence between a solution of GSNCP−(K,T ) and a fixed
point of certain nonlinear mapping using Morea’s Theorem 2.1.

Lemma 2.2. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone, and
T : K ⇝ H a set-valued mapping. Then, x∗ is a solution of GSNCP−(K,T ) if and
only if x∗ is a fixed point of PK ◦ (I − T ).

Proof. Let x∗ be a solution of GSNCP(K,T ). Then, there exists y∗ ∈ Tx∗ ∩ K∗

such that ⟨x∗, y∗⟩ = 0. Let

z = x∗ − y∗ = x∗ + y,

where −y∗ = y. As y∗ ∈ K∗, so −y∗ ∈ K◦. By Morea’s Theorem 2.1, we have

x∗ = PKz = PK(x∗ − y∗) ∈ PK ◦ (I − T )x∗.

Conversely, let x∗ ∈ PK ◦ (I − T )x∗. Thus, there exists y∗ ∈ Tx∗ such that

x∗ = PK(x∗ − y∗) = PKz,

where z = x∗ − y∗ = x∗ + y. As x∗ = PKz for all c ∈ K, we have

⟨x∗ − z, x∗ − c⟩ ≤ 0.
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In particular, if c = 0, then we get ⟨x∗ − z, x∗⟩ ≤ 0, that is,

(2.1) ⟨y, x∗⟩ ≥ 0.

If c = 2x∗, then we get ⟨x∗ − z,−x∗⟩ ≤ 0, that is,

(2.2) ⟨y, x∗⟩ ≤ 0.

Inequalities (2.1) and (2.2) give

(2.3) ⟨y, x∗⟩ = 0.

Now for an arbitrary p ∈ K, we have

⟨y, p⟩ = ⟨y, p⟩+ ⟨y,−x∗⟩ = ⟨z − x∗, p− x∗⟩ ≤ 0.

This implies that y ∈ K◦. Also, for any q ∈ K◦, we have

⟨z − y, q − y⟩ = ⟨x∗, q⟩ − ⟨x∗, y⟩ = ⟨x∗, q⟩ ≤ 0.

Hence, y = PK◦z. Since z = x∗ + y and x∗ = PKz, by Moreau’s Theorem 2.1, we
have ⟨x∗, y⟩ = ⟨x∗, y∗⟩ = 0. Hence, x∗ is a solution of GSNCP−(K,T ). □

Recently, Németh [17] considered the following recursion formula in connection
with nonlinear complementarity problem of a single-valued mapping f : K → H

(2.4) x0 ∈ K, xn+1 = PK(xn − fxn),

where PK is the projection onto K.

We define an order on the class of subsets of ordered vector space H.

Definition 2.3. Let A and B be two nonempty subsets of a Hilbert space H. Then,
A ≤ B if and only if a ≤ b for every a ∈ A and for every b ∈ B.

Definition 2.4. Let T : K ⇝ H be a set-valued mapping, {xn} ⊆ K and {zn} be
such that zn ∈ Txn. The set-valued mapping T is said to be upper hemicontinuous
if a sequence {xn} converges to x and {zn} converges to z implies that z ∈ Tx.

Definition 2.5. Let (H, ⟨., .⟩) be a Hilbert space K ⊆ H a closed convex cone
and ≤ be the preorder. The mapping T : K ⇝ H is called (a) strongly monotone
decreasing if for all x, y ∈ K, x ≤ y implies that Ty ≤ Tx; (b) strongly monotone
increasing if for all x, y ∈ K, x ≤ y implies that Tx ≤ Ty.

Example 2.6. Let H = R and K = R+ be an isotone projection cone. Then, the
set-valued mapping defined by

Tx = [1− x, 2− x],

is strongly monotone decreasing.

Definition 2.7. Let (H, ⟨., .⟩) be a Hilbert space K ⊆ H a closed convex cone and
≤ a preorder. The set-valued mapping T : K ⇝ H is called (a) weakly monotone

decreasing if for all x, y ∈ K with x ≤ y and for every y
′ ∈ Ty, there exists a

x
′ ∈ Tx such that y

′ ≤ x
′
; (b) weakly monotone increasing if for all x, y ∈ K with

x ≤ y for every x
′ ∈ Tx there exists a y

′ ∈ Ty such that x
′ ≤ y

′
.

Note that every strongly monotone decreasing (increasing) set-valued mapping
is weakly monotone decreasing (increasing) mapping. Converse does not hold as
shown in the following example.
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Example 2.8. Let H = R and K = R+. A set-valued mapping T : K ⇝ H defined
by

Tx =

 [0, 2− x], if 0 ≤ x ≤ 2,
[x− 2, 2], if 2 < x ≤ 4,
[6− x, 2], if 4 < x,

is not strongly monotone decreasing as for 3 < 4, 2 ∈ T4 = {2} and 1 ∈ T3 = [1, 2],
we have 2 ≰ 1. On the other hand, A mapping T is weakly monotone decreasing as

for all x, y with x < y, there is an element 2 in Tx such that y
′ ≤ 2 for all y

′ ∈ Ty.

Németh [17] introduced the notion of pseudomonotone decreasing mapping f :
K → H. Following is set-valued version of the concept of pseudomonotone decreas-
ing mapping.

Definition 2.9. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone and
≤ a preorder. A mapping T : K ⇝ H is called strongly pseudomonotone decreasing
if for all x, y ∈ K with x ≤ y, {0} ≤ Ty implies {0} ≤ Tx.

Definition 2.10. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone and
≤ a preorder. The set-valued mapping T : K ⇝ H is called weakly pseudomonotone
decreasing if for all x, y ∈ K with x ≤ y and for all y

′ ∈ Ty such that 0 ≤ y
′
, there

exists x
′ ∈ Tx such that 0 ≤ x

′
.

Remark 2.11. (1)
(a) Every strongly monotone decreasing mapping is weakly monotone decreas-

ing and strongly pseudomonotone decreasing, and hence weakly pseudomono-
tone decreasing.

(b) Every strongly pseudomonotone decreasing set-valued mapping is weakly
pseudomonotone decreasing.

(c) If T (k) ⊆ K for each k ∈ K, then T is strongly pseudomonotone decreasing
and hence weakly pseudomonotone decreasing. Indeed, for any x ∈ K, we
have {0} ≤ Tx.

Define a set T−1(K) = {x ∈ K : T (x) ⊆ K}.

Example 2.12. Let H = R and K = R+. The set-valued mapping T : K ⇝ H
defined by

Tx = [0, ln(x+ 1)]

is not weakly monotone decreasing because for all x ≤ y we have ln(x+1) ≤ ln(y+1).
Since Tx ⊆ K for all x in K, T is strongly pseudomonotone decreasing.

Example 2.13. Let H = R and K = R+. A mapping T : K ⇝ H defined by

Tx = {0,−x, x}

is weakly pseudomonotone decreasing but is not strongly pseudomonotone decreas-
ing.
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3. Main results

We propose the following iterative scheme to generate a sequence of points in K.

Algorithm 3.1. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone and
T : K ⇝ H a set-valued mapping.
(3.1)

For x0 ∈ K, pick z0 ∈ Tx0, and x1 = PK(x0 − z0);
Pick z1 ∈ Tx1 such that z0 ≥ z1, and x2 = PK(x1 − z1);

...
In general, pick zn ∈ Txn such that zn−1 ≥ zn, define xn+1 = PK(xn − zn),

where n ∈ N.

In this section we study some conditions under which the sequences {xn} and {zn}
are convergent. If the sequences {xn} and {zn} converge to x∗ and z∗, respectively,
and T : K ⇝ H is upper hemicontinuous then taking limit as n approaches infinity
in Algorithm 3.1, we obtain that x∗ is a fixed point of a mapping PK ◦ (I − T ). In
view of Lemma 2.2, x∗ is a solution of GSNCP−(K,T ).

Throughout this paper, we assume that T is upper hemicontinuous. Now we give
two lemmas essential to prove our main results.

Lemma 3.2. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone and
T : K ⇝ H a set-valued mapping. If sequences {xn} and {zn} converges to x∗ and
z∗, respectively, then x∗ is a solution of GSNCP−(K,T ).

Proof. Since PK is nonexpansive, hence continuous, therefore by taking limit as n
tends to infinity in Algorithm 3.1, we obtain z∗ ∈ Tx∗ and

x∗ = PK(x∗ − z∗) ∈ (PK ◦ (I − T ))x∗.

Hence, by Lemma 2.2, x∗ is a solution of GSNCP−(K,T ). □

Lemma 3.3. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex regular cone
and T : K ⇝ H a set-valued mapping. If the sequences {xn} and {zn} are monotone
decreasing, then x∗ is a solution of GSNCP−(K,T ).

Proof. Since K is regular, and {xn} and {zn} are monotone decreasing sequence,
{xn} and {zn} converge to some x∗ and z∗, respectively. Hence, by Lemma 3.2, x∗

is a solution of GSNCP−(K,T ). □

Now we give the main result of this section.

Theorem 3.4. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H an isotone projection cone
and T : K ⇝ H be a set-valued mapping. Consider Algorithm 3.1 starting from
x0 ∈ K∩T−1(K). Then, a sequence {xn} is convergent and its limit x∗ is a solution
of GSNCP−(K,T ) provided that T is strongly pseudomonotone decreasing.

Proof. Since K is isotone projection cone, so is regular. The sequence {zn} defined
by recursion formula (3.1) is monotone decreasing, so it is enough to show that that
sequence {xn} is monotone decreasing. We will prove that zn ∈ K for all n ∈ N.
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Indeed, if zn ∈ K for all n ∈ N, then xn−(xn−zn) ∈ K implies that xn−zn ≤ xn.
Using the fact that K is isotone projection cone, we obtain

xn+1 = PK(xn − zn) ≤ PK(xn) = xn.

Hence, the sequence {xn} is monotone decreasing.
Now we will prove the following proposition

(3.2) zn ∈ K holds for all n ∈ N.
Since x0 ∈ K ∩ T−1(K), Tx0 ⊆ K. As z0 ∈ Tx0, so (3.2) holds true for n = 0.
Let zn ∈ K and we will show that zn+1 ∈ K. Since zn ∈ Txn, therefore, by
the construction of {zn}, we obtain zn+1 ∈ Txn+1 such that zn ≥ zn+1. Also,
xn+1 ≤ xn. Since T is strongly pseudomonotone decreasing, therefore, zn+1 ≥ 0,
that is, zn+1 ∈ K. Hence, the result follows. □
Example 3.5. Let H = R and K = R+. Define T : K ⇝ H by

Tx = [0, |ln(x+ 1)− 1|].
Since Tx ⊆ K for all x inK, T is strongly pseudomonotone decreasing. By recursion
formula (3.1), we obtain the sequence {xn} and {zn} as follows:

xn ∈ K, zn = |ln(xn + 1)− 1| , define xn+1 = max{0, xn − |ln(xn + 1)− 1|}.
It can be easily checked that x∗ ∈ {0, e− 1} is a solution of GSNCP−(K,T ), where
e− 1 = 1.718281828459045235360.... Following is the stopping criteria we used:

|xn+1 − xn| ≤ 10−8.

-: If we start the algorithm from x0 = 1, then it stops at the third step with
the solution x∗ = 0.

-: If we start the algorithm from x0 = 1.5, then it stops at the sixth step with
the solution x∗ = 0.

-: If we start the algorithm from x0 = 2, then it stops at the thirty sixth step
with the solution x∗ = 1.718281849044202.

-: If we start the algorithm from x0 = 2.536968, then it stops at the thirty
ninth step with the solution x∗ = 1.718281845949004.

-: If we start the algorithm from x0 = 3, then it stops at the fortieth step with
the solution x∗ = 1.718281847980126.

-: If we start the algorithm from x0 = 69, then it stops at the seventieth step
with the solution x∗ = 1.718281845602664.

We observe that if we start from any number less than e − 1, the algorithm
converges to 0. If we start from any number greater than or equal to e − 1, the
algorithm converges to e− 1.

Remark 3.6. Analyzing Theorem 3.4, it is noted that x∗ = 0 is a solution of
GSNCP−(K,T ) for a mapping T satisfying the conditions of Theorem 3.4. Note
that 0 ≤ x0 and 0 ≤ z′ for all z′ ∈ Tx0. Since T is strongly pseudomonotone
decreasing, 0 ≤ y′ for all y′ ∈ T (0). This implies that y′ ∈ K. Since K is isotone
projection cone, so K ⊆ K∗. This further gives that y′ ∈ K∗. Hence, there exists
x∗ = 0 ∈ K such that ⟨y′, x∗⟩ = 0 and y

′ ∈ Tx∗ ∩K∗, that is, x∗ = 0 is a solution
of GSNCP−(K,T ).
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The next theorem gives sufficient conditions for the Algorithm 3.1 to be conver-
gent to a nonzero solution.

Theorem 3.7. Let H be a Hilbert space, K ⊆ H an isotone projection cone and
T : K ⇝ H a strongly pseudomonotone decreasing such that T−1(K) ∩ K ̸= ∅.
Let J : K → H be the inclusion mapping defined by J(x) = x. If there are x◁ ∈
T−1(K) ∩K and u ∈ x◁ +K such that

(PK ◦ (J − T ))w ⊆ x◁ +K,

for all w ∈ (x◁+K)∩ (u−K)∩T−1(K). Then, x◁ is a solution of GSNCP−(K,T )
for any x0 ∈ (x◁ +K) ∩ (u −K) ∩ T−1(K). The recursion formula (3.1) starting
from x0 is convergent and its limit x∗ is a solution of GSNCP−(K,T ) such that
x◁ ≤ x∗ ≤ u. In particular, if x◁ ̸= 0, then recursion formula (3.1) is convergent to
a nonzero solution.

Proof. As x◁ ∈ T−1(K)∩K, there exists y◁ ∈ Tx◁ such that y◁ ≥ 0. So, we obtain

(3.3) x◁ − y◁ ≤ x◁.

Since x◁ ∈ T−1(K) ∩K and u ∈ x◁ +K, we have

(3.4) x◁ ∈ (x◁ +K) ∩ (u−K) ∩ T−1(K).

By hypothesis, we have

(3.5) PK ◦ (J − T )w ⊆ x◁ +K,

for all w ∈ (x◁ +K)∩ (u−K)∩ T−1(K). Relations (3.3), (3.4) and (3.5) imply the
following:

x◁ ≤ PK(x◁ − y◁) ≤ PK(x◁) = x◁.

This implies

x◁ = PK(x◁ − y◁) ∈ PK ◦ (I − T )x◁,

that is, x◁ is a solution of GSNCP−(K,T ). From the proof of Theorem 3.4, we
know that

xn ∈ K ∩ T−1(K),(3.6)

zn ∈ K,(3.7)

for all n ∈ N. Now we prove that

(3.8) x◁ ≤ xn ≤ u, for all n ∈ N.

Since x0 ∈ (x◁ +K) ∩ (u−K) ∩ T−1(K), (3.8) holds true for n = 0. Suppose that
it holds true for n. Then, (3.6) and (3.8) imply that

(3.9) xn ∈ (x◁ +K) ∩ (u−K) ∩ T−1(K).

Thus, from (3.9) and by given assumption, we get

xn+1 = PK(xn − zn) = PK(Jxn − zn) ∈ PK(J − T )xn ⊆ x◁ +K.

On the other hand, from (3.6) and (3.8), we obtain xn−zn ≤ xn ≤ u. Consequently,
we get xn+1 = PK(xn − zn) ≤ PK(u) = u. Hence, (3.8) holds for all n ∈ N. On
taking limit as n tends to ∞, we get x◁ ≤ x∗ ≤ u. □
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Definition 3.8. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone,
T : K ⇝ H a set-valued mapping and L > 0. The mapping T is called generalized
order weakly L−Lipschitz of type-1 if

y ≤ x implies x′ − y′ ≤ L(x− y), for all x′ ∈ Tx and y′ ∈ Ty.

If L = 1, then T is called generalized order weakly nonexpansive of type-1.

Proposition 3.9. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone,
T : K ⇝ H a set-valued mapping and L > 0. A mapping T is generalized order
weakly L−Lipschitz of type-1 if and only if the mapping S : K ⇝ K defined by
Sx = (LI − T )x is strongly monotone increasing.

Proof. Let y ≤ x. Suppose that S is strongly monotone increasing. So, Ly−T (y) ≤
Lx− T (x) implies Ly − y′ ≤ Lx− x′. Hence,

x′ − y′ ≤ L(x− y).

This implies that T is generalized order weakly L−Lipschitz of type-1.
Conversely, suppose that T is generalized order weakly L−Lipschitz of type-1,

then y ≤ x implies

x′ − y′ ≤ L(x− y), for all x′ ∈ Tx and y′ ∈ Ty.

Thus, Ly − y′ ≤ Lx− x′, consequently, Sy ≤ Sx. □
Definition 3.10. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone, T :
K ⇝ H a set-valued mapping and L > 0. Then, T is called generalized projection
order weakly L−Lipschitz of type-1 if and only if the mapping SP : K ⇝ K defined
by SPx = PK(Lx− Tx) is strongly monotone increasing.

If L = 1, then T is called generalized projection order weakly nonexpansive of
type-1.

Remark 3.11. In Definition 3.10 if K is isotone projection cone then every gener-
alized order weakly L−Lipschitz mapping of type-1 is generalized projection order
weakly L−Lipschitz of type-1, and every generalized order weakly nonexpansive
mapping of type-1 is generalized projection order weakly nonexpansive of type-1.

Theorem 3.12. Let H be a Hilbert space, K ⊆ H an isotone projection cone, and
T : K ⇝ H a strongly pseudomonotone decreasing and generalized projection order
weakly L−Lipschitz mapping of type-1 such that T−1(K) ∩ K ̸= ∅. Let x◁ is a
solution of GSNCP−(K,T ) and λ = 1

L . Then, for any x0 ∈ (x◁ + K) ∩ T−1(K),
the following recursion

(3.10)



x0 ∈ K, λz0 ∈ λTx0, x1 = PK(x0 − λz0);
pick λz1 ∈ λTx1 such that z0 ≥ z1, define x2 = PK(x1 − λz1);
...
in general, pick λzn ∈ λTxn such that zn−1 ≥ zn,
and define xn+1 = PK(xn − λzn),

starting from x0 is convergent and its limit x∗ is a solution of GSNCP−(K,T ) such
that x◁ ≤ x∗. In particular, if x◁ ̸= 0, then recursion formula (3.10) is convergent
to a nonzero solution.
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Proof. Since PK is a projection onto K and K is closed convex cone, so for any
α > 0, we have

PK(αx) = αPK(x), for all x ∈ H.

Also, GSNCP−(K,T ) is equivalent to GSNCP−(K,λT ). Denote S = λT = 1
LT,

then the recursion formula (3.10) becomes

(3.11)


Let x0 ∈ K, z0 ∈ Sx0, define x1 = PK(x0 − z0);
Pick z1 ∈ Sx1 such that z0 ≥ z1, define x2 = PK(x1 − z1);

...
Pick zn ∈ Sxn such that zn−1 ≥ zn, define xn+1 = PK(xn − zn).

Let J : K → H be the inclusion mapping defined by J(x) = x and u ∈ x◁ + K
be arbitrary. Using Theorem 3.7 with mapping S, we obtain that any solution of
GSNCP−(K,S) is a solution of GSNCP−(K,T ). The only condition which must
hold for the mapping S is the relation

(3.12) (PK ◦ (J − S))w ⊆ x◁ +K,

for all w ∈ (x◁ +K) ∩ (u−K) ∩ S−1(K). For any x ∈ K, we have

(3.13) PK(x− Sx) = PK

(
x− 1

L
Tx

)
= PK

(
1

L
(Lx− Tx)

)
=

1

L
PK(Lx− Tx).

Since T is generalized projection order weakly L−Lipschitz, so by (3.13) and the
scale invariance of the ordering induced byK, it follows that the mapping S is gener-
alized projection order weakly L−Lipschitz. Also, x◁ is a solution of GSNCP−(K,S).
Hence, for each x ∈ (x◁ +K) ∩ (u −K) ∩ S−1(K), we have x◁ ∈ PK(x◁ − Sx◁) ⊆
PK(x− Sx), that is,

(PK ◦ (J − S))(x) ⊆ x◁ +K.

Consequently, (3.12) holds. □
The following result is the corollary of Theorem 3.7.

Corollary 3.13. Let H be a Hilbert space, K ⊆ H an isotone projection cone and
T : K ⇝ H a strongly pseudomonotone decreasing mapping such that T−1(K)∩K ̸=
∅. Let J : K → H be the inclusion mapping defined by J(x) = x. If there are
x◁ ∈ T−1(K) ∩K and u ∈ x◁ +K such that

(PK ◦ (J − T ))w ⊆ x◁ +K,

for all w ∈ (x◁+K)∩ (u−K)∩T−1(K). Then, x◁ is a solution of GSNCP−(K,T )
for any x0 ∈ (x◁ +K) ∩ (u −K) ∩ T−1(K). The recursion formula (3.1) starting
from x0 is convergent and its limit x∗ is a solution of GSNCP−(K,T ) such that
x◁ ≤ x∗ ≤ u. In particular, if x◁ ̸= 0, then recursion formula (3.1) is convergent to
a nonzero solution.

Note that in Algorithm 3.1, we extracted a monotone decreasing sequence {zn}
and proved the convergence result for strongly pseudomonotone decreasing set-
valued mapping T .

Now we propose the following algorithm and prove the convergence result for
the weakly pseudomonotone decreasing set-valued mapping. In this case, we will
assume that I − T is weakly monotone decreasing.
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Algorithm 3.14. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone,
and T : K ⇝ H a set-valued mapping. Let

(3.14)

{
x0 ∈ K, z0 ∈ Tx0, x1 = PK(x0 − z0),
in general, xn+1 = PK(xn − zn), where zn ∈ Txn,

where n ∈ N.

Now we prove the existence of a solution of GSNCP−(K,T ) for weakly pseu-
domonotone set-valued mapping T .

Theorem 3.15. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H an isotone projection
cone and T : K ⇝ H a set-valued mapping. Consider the recursion formula (3.14)
starting from x0 ∈ K ∩ T−1(K). Then, the sequence {xn} is convergent and its
limit x∗ is a solution of GSNCP−(K,T ) provided that T is weakly pseudomonotone
decreasing and one of the following conditions holds:

(D1) The sequence {zn} in recursion formula (3.14) is decreasing.
(D2) (I − T ) is weakly monotone decreasing.

Proof. Since K is an isotone projection cone, it is regular. It is enough to show that
the sequences {xn} and {zn} defined by the recursion formula (3.14) are monotone
decreasing. First we prove that zn ∈ K for all n ∈ N.

Indeed, if zn ∈ K for all n ∈ N, then xn−(xn−zn) ∈ K implies that xn−zn ≤ xn.
Since K is isotone projection cone, we have

xn+1 = PK(xn − zn) ≤ PK(xn) = xn.

Hence, the sequence {xn} is monotone decreasing.
Now we will prove that that the proposition

(3.15) zn ∈ K holds for all n ∈ N.

Since x0 ∈ K ∩ T−1(K) gives Tx0 ⊆ K, which further implies z0 ∈ Tx0 ⊆ K.
Hence, (3.15) holds true for n = 0.

Let zn ∈ K and we will show that zn+1 ∈ K. Since xn+1 ≤ xn and T is weakly
pseudomonotone decreasing, we have zn+1 ∈ K. Hence, for all n ∈ N, zn ∈ K.

Let (D1) holds, then the sequence {zn} is monotone decreasing and the result
follows.

Let (D2) holds. Again, since xn+1 ≤ xn and S = (I − T ) is weakly monotone
decreasing, therefore for all wn ∈ Sxn, there exists wn+1 ∈ Sxn+1 such that

(3.16) wn ≤ wn+1.

Since wn ∈ Sxn and wn+1 ∈ Sxn+1, there exist zn ∈ Txn and zn ∈ Txn such that
wn = xn − zn and wn+1 = xn+1 − zn+1. Now, (3.16) implies

xn − zn ≤ xn+1 − zn+1,

which further implies that xn − xn+1 ≤ zn − zn+1. Now, xn − xn+1 ≥ 0 gives
zn − zn+1 ≥ 0. Consequently, zn ≥ zn+1 and the result follows. □
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Example 3.16. Let H = R2 and K = R2
+. For x, y ∈ K such that x = (x1, x2), y =

(y1, y2), we define x ≤ y if and only if x1 ≤ y1 and x2 ≤ y2. A set-valued mapping
T : R2

+ ⇝ R2 is given by

Tx = T (x1, x2) =
{
(0, 0), ((9− x1x2)e

x1+x2 , (6− x2)(1 + (x1 + x2)e
x1))

}
.

Since (0, 0) ∈ Tx for all x ∈ K, T is weakly pseudomonotone decreasing. By
recursion formula (3.14), we can write

x0 =
(
x01, x

0
2

)
∈ K

z0 =
(
z01 , z

0
2

)
=

((
9− x01x

0
2

)
ex

0
1+x0

2 ,
(
6− x02

) (
1 + (x01 + x02)e

x0
1

))
x11 = max

{
0, x01 −

(
9− x01

)
ex

0
1+x0

2

}
x12 = max

{
0, x02 −

(
6− x02

) (
1 +

(
x01 + x02

)
ex

0
1

)}
.

Continuing in this way, we obtain

xn = (xn1 , x
n
2 ) ∈ K

zn = (zn1 , z
n
2 ) =

(
(9− xn1x

n
2 ) e

xn
1+xn

2 , (6− xn2 )
(
1 + (xn1 + xn2 )e

xn
1
))

xn+1
1 = max

{
0, xn1 − (9− xn1x

n
2 ) e

xn
1+xn

2
}

xn+1
2 = max

{
0, xn2 − (6− xn2 )

(
1 + (xn1 + xn2 ) e

xn
1
)}

.

It can be easily checked that x∗ ∈ {(0, 0), (0, 6), (1.5, 6)} is a solution of
GSNCP−(K,T ). For initial guess, we take x0 = (x01, x

0
2) ∈ K ∩ T−1(K), that is,

Tx0 ∈ K and x0 ∈ K. This further implies(
9− x01x

0
2

)
ex

0
1+x0

2 ≥ 0,(
6− x02

) (
1 + (x01 + x02)e

x0
1

)
≥ 0.

This means x01 ≤ 1.5 and x02 ≤ 6. The stopping criteria we used is∣∣xn+1
i − xn+1

i

∣∣ ≤ 10−4 for all i = 1, 2.

-: If we start the Algorithm 3.14 from x0 = (1.4, 5.999), then it stops at the
sixth step with the solution x∗ = (0, 0).

-: If we start the Algorithm 3.14 from x0 = (1.499999, 6), then it stops at the
third step with the solution x∗ = (0, 6).

-: If we start the Algorithm 3.14 from x0 = (1.5, 6), then it stops at the second
step with the solution x∗ = (1.5, 6).

Note that if we start from different starting points we get the convergence of
Algorithm 3.14 to a different solution of GSNCP−(K,T ).

Remark 3.17. Analyzing Theorem 3.15, it is noted that x∗ = 0 is a solution of
GSNCP−(K,T ) for a mapping T given in Theorem 3.15. Note that 0 ≤ x0 and
0 ≤ z′ for all z′ ∈ Tx0. Since T is weakly pseudomonotone decreasing, there exists
y′ ∈ T0 such that 0 ≤ y′. This implies that y′ ∈ K. Since K is isotone projection
cone, K ⊆ K∗. This further gives that y′ ∈ K∗. Hence, there exists x∗ = 0 ∈ K such
that ⟨y′, x∗⟩ = 0 and y′ ∈ Tx∗∩K∗, that is, x∗ = 0 is a solution of GSNCP−(K,T ).

The next theorem gives a sufficient condition for the recursion formula (3.14) to
be convergent to a nonzero solution.



GENERALIZED NONLINEAR COMPLEMENTARITY PROBLEMS 1693

Theorem 3.18. Let H be a Hilbert space, K ⊆ H an isotone projection cone and
T : K ⇝ H a set-valued mapping such that T−1(K) ∩ K ̸= ∅. Let J : K → H
be the inclusion mapping defined by J(x) = x. If there are x◁ ∈ T−1(K) ∩K and
u ∈ x◁ +K such that

(3.17) (PK ◦ (J − T ))w ⊆ x◁ +K,

for all w ∈ (x◁+K)∩ (u−K)∩T−1(K). Then, x◁ is a solution of GSNCP−(K,T )
for any x0 ∈ (x◁+K)∩(u−K)∩T−1(K) provided that T is weakly pseudomonotone
decreasing and one of the following conditions holds:

(D1) The sequence {zn} in recursion formula (3.14) is decreasing.
(D2) (I − T ) is weakly monotone decreasing.

The recursion formula (3.14) starting from x0 is convergent and its limit x∗ is a
solution of GSNCP−(K,T ) such that x◁ ≤ x∗ ≤ u. In particular, if x◁ ̸= 0, then
recursion formula (3.14) is convergent to a nonzero solution.

Proof. Since x◁ ∈ T−1(K) ∩K, there exists y◁ ∈ Tx◁ such that

(3.18) x◁ − y◁ ≤ x◁.

Since x◁ ∈ T−1(K) ∩K and u ∈ x◁ +K, we have

(3.19) x◁ ∈ (x◁ +K) ∩ (u−K) ∩ T−1(K).

By condition (3.17) and relations (3.18), (3.19) and (??), we have

x◁ ≤ PK(x◁ − y◁) ≤ PK(x◁) = x◁.

This implies that

x◁ = PK(x◁ − y◁) ∈ (PK ◦ (I − T ))x◁,

that is, x◁ is a solution of GSNCP−(K,T ). From the proof of Theorem 3.15, we
know that

xn ∈ K ∩ T−1(K),(3.20)

zn ∈ K,(3.21)

for all n ∈ N. Now we prove that

(3.22) x◁ ≤ xn ≤ u, for all n ∈ N.

Note that

x0 ∈ (x◁ +K) ∩ (u−K) ∩ T−1(K).

This implies that (3.22) holds true for n = 0. Now suppose that it holds true for n.
Then, (3.20) and (3.22) imply that

(3.23) xn ∈ (x◁ +K) ∩ (u−K) ∩ T−1(K).

Thus,

xn+1 = PK(xn − zn) = PK(Jxn − zn) ∈ PK(J − T )xn ⊆ x◁ +K.

On the other hand, from (3.20) and (3.22), we obtain xn − zn ≤ xn ≤ u. Conse-
quently, xn+1 = PK(xn − zn) ≤ PK(u) = u. Hence, (3.22) holds for all n ∈ N. On
taking limit as n tends to ∞, we get x◁ ≤ x∗ ≤ u. □
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Definition 3.19. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone,
T : K ⇝ H a set-valued mapping and L > 0. A mapping T is called generalized
order weakly L−Lipschitz of type-2 if y ≤ x and for every y′ ∈ Ty, there exists
x′ ∈ Tx such that

x′ − y′ ≤ L(x− y).

If L = 1, then T is called generalized order weakly nonexpansive of type-2.

Proposition 3.20. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone,
and L > 0. A mapping T : K ⇝ H is generalized order weakly L−Lipschitz of type-2
if and only if mapping S : K ⇝ K defined by Sx = Lx − Tx is weakly monotone
increasing.

Proof. Suppose that y ≤ x and S is weakly monotone increasing. Then, for every
Ly − y′ ∈ Ly − Ty = Sy, there exists Lx− x′ ∈ Lx− Tx = Sx such that Ly − y′ ≤
Lx− x′. This implies that Ly− y′ ≤ Lx− x′. Hence, for every y′ ∈ Ty, there exists
x′ ∈ Tx such that

x′ − y′ ≤ L(x− y).

Thus, T is generalized order weakly L−Lipschitz of type-2.
Conversely, let T be a generalized order weakly L−Lipschitz of type-2. Then,

y ≤ x implies that for every y′ ∈ Ty, there exists x′ ∈ Tx such that

x′ − y′ ≤ L(x− y).

Therefore, Ly − y′ ≤ Lx− x′. Consequently, S is weakly monotone decreasing. □
Definition 3.21. Let (H, ⟨., .⟩) be a Hilbert space, K ⊆ H a closed convex cone,
and L > 0. A set-valued mapping T : K ⇝ H is called generalized projection order
weakly L−Lipschitz of type-2 if and only if the mapping SP : K ⇝ K defined as
SPx = PK(Lx− Tx) is weakly monotone increasing.

If L = 1 then T is called generalized projection order weakly nonexpansive of
type-2.

Remark 3.22. In above definition if K is isotone projection cone then every gener-
alized order weakly L−Lipschitz mapping of type-2 is generalized projection order
weakly L−Lipschitz of type-2 and every generalized order weakly nonexpansive
mapping of type-2 is generalized projection order weakly nonexpansive of type-2.

Theorem 3.23. Let H be a Hilbert space, K ⊆ H an isotone projection cone and
T : K ⇝ H a generalized projection order weakly L−Lipschitz mapping of type-2
with T−1(K) ∩K ̸= ∅. If x◁ is a solution of GSNCP−(K,T ) and λ = 1

L , then for

any x0 ∈ (x◁ +K) ∩ T−1(K), the recursion

(3.24) x0 ∈ K, xn+1 = PK(xn − λzn), λzn ∈ λTxn,

starting from x0 is convergent and its limit x∗ is a solution of GSNCP−(K,T ) such
that x◁ ≤ x∗. In particular, if x◁ ̸= 0, then the recursion formula (3.24) is convergent
to a nonzero solution provided that T is weakly pseudomonotone decreasing and one
of the following conditions hold:

(D1) The sequence {zn} in recursion formula (3.14) is decreasing.
(D2) (I − T ) is weakly monotone decreasing.
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Proof. Since PK is the projection onto K and K is closed convex cone, for any
α > 0, we have

PK(αx) = αPK(x), for all x ∈ H.

Note that GSNCP−(K,T ) is equivalent to GSNCP−(K,λT ). If S = λT = 1
LT,

then the recursion formula (3.24) becomes

(3.25) x0 ∈ K, xn+1 = PK(xn − zn), zn ∈ Sxn.

Let J : K → H be the inclusion mapping and u ∈ x◁ + K be arbitrary. Using
Theorem 3.15 with mapping S, we obtain that any solution of GSNCP−(K,S) is a
solution of GSNCP−(K,T ). The only condition which must hold for the mapping
S is the relation

(3.26) PK ◦ (J − S)w ⊆ x◁ +K,

for all w ∈ (x◁ +K) ∩ (u−K) ∩ S−1(K). For any x ∈ K, we have

(3.27) PK(x− Sx) = PK

(
x− 1

L
Tx

)
= PK

(
1

L
(Lx− Tx)

)
=

1

L
PK(Lx− Tx).

Since T is generalized projection order weakly L−Lipschitz of type-2, so by (3.27)
and the scale invariance of the ordering induced by K, it follows that the mapping
S is generalized projection order weakly L−Lipschitz of type-2. As x◁ is a solution
of GSNCP−(K,S), so for each x ∈ (x◁ + K) ∩ (u − K) ∩ S−1(K), we have x◁ ∈
PK(x◁ − Sx◁) ⊆ PK(x− Sx), that is,

(PK ◦ (J − S))(x) ⊆ x◁ +K.

Hence, (3.26) holds. □
The following corollary is derived from Theorem 3.23.

Corollary 3.24. Let H be a Hilbert space, K ⊆ H an isotone projection cone and
T : K ⇝ H be a mapping such that T−1(K) ∩ K ̸= ∅. Let J : K → H be the
inclusion mapping. If there are x◁ ∈ T−1(K) ∩K and u ∈ x◁ +K such that

(PK ◦ (J − T ))w ⊆ x◁ +K,

for all w ∈ (x◁+K)∩ (u−K)∩T−1(K). Then, x◁ is a solution of GSNCP−(K,T )
for any x0 ∈ (x◁+K)∩(u−K)∩T−1(K) provided that T is weakly pseudomonotone
decreasing and one of the following conditions hold:

(D1) The sequence {zn} in recursion formula (3.14) is decreasing.
(D2) (I − T ) is weakly monotone decreasing.

The recursion formula (3.14) starting from x0 is convergent and its limit x∗ is a
solution of GSNCP−(K,T ) such that x◁ ≤ x∗ ≤ u. In particular, if x◁ ̸= 0, then
recursion formula (3.14) is convergent to a nonzero solution.

Remark 3.25. The proposed algorithms to obtain the solution of a generalized
nonlinear complementarity problem for a class of multivalued mappings defined
on an isotone projection cones, depend on the order induced by a cone as well
as on the computation of projections on them at each step of iteration. The
results obtained in this paper can be viewed as an extension of a scope of the study
initiated in [17] Nemeth and Nemth [16] remarked that computation of projections
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on to the cone is a difficult problem and they observed that the projection of a given
point onto an isotone projection cones in Rn can be reduced to a finite number of
projections onto subspaces of decreasing dimension. The proposed technique dealing
with implementable numerical methods of computation of projections is applicable
to the algorithms defined herein.
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