


1700 W. A. KIRK AND N. SHAHZAD

lim supn→∞ kn < κ (X) . Regarding the Aksoy-Khamsi result, we show that if T is
continuous, lim supn→∞ kn < 2 can be replace with the much weaker assumption
lim supn→∞ kn < ∞.

2. The Lifšic extension

Theorem 2.1 (Lif̌sic). Suppose (X, ρ) is a complete metric space, and suppose
T : X → X has bounded orbits and satisfies for all n ∈ N sufficiently large,

(2.1) ρ (Tnx, Tny) ≤ knρ (x, y)

for all x, y ∈ X, with lim supn→∞ kn < κ (X) . Then T has a fixed point.

Proof. (Except for the final paragraph, this is identical to the proof given in [7, p.
172].) If κ (X) = 1 then, for sufficiently large n, Tn is a contraction mapping and
there is nothing to prove. So, suppose κ (X) > 1. For each x ∈ X, set

r (x) = inf {r > 0 : B (x; r) contains an orbit of T} .

Now let lim supn→∞ kn < k < κ (X) , and let µ, α ∈ (0, 1) be the numbers associated
with k in the definition of k-regular balls. Then given any x ∈ X there is an integer
m ∈ N such that

ρ (x, Tmx) ≥ (1− µ) r (x)

and there is also a point y ∈ X such that

ρ (x, Tny) ≤ (1 + µ) r (x) , n = 1, 2, . . . .

Since the balls are k-regular there exists z ∈ X and α < 1 such that

D := B (x; (1 + µ) r (x)) ∩B (Tmx; k (1 + µ) r (x)) ⊆ B (z;αr (x)) .

Next observe that for m sufficiently large,

ρ (Tmx, Tny) ≤ kρ
(
x, Tn−my

)
≤ k (1 + µ) r (x) .

for all n > m. This shows that {Tny}n>m is contained inD, and hence inB (z;αr (x)) .
This in turn implies that

r (z) ≤ αr (x) .

Also, for any u ∈ D,

ρ (z, x) ≤ ρ (z, u) + ρ (u, x)

≤ αr (x) + (1 + µ) r (x)

= Ar (x)

where A = α+ 1 + µ.
By setting x = x0 and z = z (x0) , it is possible to define a sequence {xn} with

xn+1 = z (xn) , where z (xn) is defined via the above procedure. Thus r (xn) ≤
αnr (x0) and ρ (xn, xn+1) ≤ Ar (xn) ≤ αnr (x0) . This proves that {xn} is a Cauchy
sequence which has limit, say x∗. Now choose N ∈ N so that both TN and TN+1

are lipschitzian. Since B (x∗; ε) contains an orbit of T for any ε > 0 there exists
a sequence {yn} also converging to x∗ for which limn→∞ ρ

(
TNyn, T

N+1yn
)
= 0. It

follows that TNx∗ = TN+1x∗; hence TNx∗ is a fixed point of T. □
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For most metric spaces M, κ (M) = 1 and for such spaces Lif̌sic’s theorem is
equivalent to the Banach Contraction Principle. However as we observe below
there are spaces for which κ (M) > 1.

Now let X be a Banach space. We define the uniform Lif̌sic constant, κ0 (X) , of
X as follows

κ0 (X) = sup

{
c ≥ 1 :

∃α < 1 such that ∀x, ∥x∥ ≤ 1, ∃λ ∈ [0, 1]
such that B (0; 1) ∩B (x; c) ⊂ B (λx;α)

}
.

Lif̌sic proved that κ0 (H) ≥
√
2 if H is a Hilbert space, and this estimate is sharp.

The Lif̌sic constant is also known to be larger than one in certain geodesic spaces,
specifically the class of geodesic spaces called the CAT(κ) spaces for κ ≤ 0. A
geodesic space (X, d) is said to be a CAT (κ) space (the term is due to M. Gromov–
see, e.g., [2], p. 159) if it is geodesically connected and has constant curvature
bounded above by κ. More precisely, every geodesic triangle in X is at least as
‘thin’ as its comparison triangle in M2

κ , where for κ < 0 M2
κ is the real hyperbolic

space H2 with the distance function scaled by a factor of 1/
√
−κ, and if κ = 0, M2

κ

is the Euclidean plane. For precise definitions and a thorough discussion of these
spaces and of the fundamental role they play in various branches of mathematics,
see Bridson and Haefliger [2] or Burago, et al. [3]. We note in particular that the
complex Hilbert ball with a hyperbolic metric (see [8]; also inequality (4.3) of [12]
and subsequent comments) is a CAT(0) space.

There are interesting spaces which are CAT(κ) for all κ ≤ 0.

Definition 2.2. An R-tree (or metric tree) is a metric space M such that

(i) there is a unique geodesic (metric) segment denoted by [x, y] joining each
pair of points x and y in M ; and

(ii) [y, x] ∩ [x, z] = {x} ⇒ [y, x] ∪ [x, z] = [y, z] .

In [5] it was proved that the Lif̌sic constant κ (X) for any CAT(κ) space X with
κ ≤ 0 satisfies κ (X) ≥

√
2, and κ (X) = 2 if X is an R-tree.

In view of this observation and Theorem 2.1 we have the following:

Theorem 2.3. Let (X, ρ) be a complete CAT(0) , and let T : X → X have bounded
orbits and satisfies for all n ∈ N sufficiently large,

ρ (Tnx, Tny) ≤ knρ (x, y)

for all x, y ∈ X, where lim supn→∞ kn <
√
2. Then T has a fixed point.

In view of the fact that κ (X) = 2 if X is an R-tree, Theorem 2.1 also yields the
following result of Aksoy and Khamsi.

Theorem 2.4 ([1]). Let (X, ρ) be a complete R-tree, and suppose T : X → X has
bounded orbits and satisfies for all n ∈ N sufficiently large,

ρ (Tnx, Tny) ≤ knρ (x, y) ,

for all x, y ∈ X, where lim supn→∞ kn < 2. Then T has a fixed point.
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Question 1. It is natural to ask whether 2 the optimal constant for Theorem 2.4.

In the next section we show that the answer to Question 1 in some spaces is
‘no’. We also show that if T is continuous the assumption lim supn→∞ kn < 2 may
be remarkably relaxed. In this case it is enough to assume limn→∞ kn < ∞. This is
the main result of the paper.

3. An R-tree extension

Throughout this section we use O (x) to denote the orbit of a mapping T : X → X
at a point x ∈ X; thus O (x) =

{
x, Tx, T 2x, . . .

}
.

Our extension of Theorem 2.4 is an application of the following fundamental fact.
For a proof see [9].

Theorem 3.1. Every continuous mapping T of a complete geodesically bounded
R-tree X into itself has a fixed point.

We should remark that Theorem 3.1 is actually a special case of a theorem of G.
S. Young [13]. For further discussion see [10].

Theorem 3.2. Let (X, ρ) be a complete R-tree. Suppose T : X → X is continuous
and has bounded orbits, and suppose for all n ∈ N sufficiently large,

(3.1) ρ (Tnx, Tny) ≤ knρ (x, y)

for all x, y ∈ X, with lim supn→∞ kn < ∞. Then some bounded convex subset of X
is T -invariant; hence T has a fixed point.

This will be an immediate consequence of Theorem 3.1 and the following result.

Theorem 3.3. Let (X, ρ) be an R-tree. Suppose T : X → X is continuous and has
bounded orbits, and suppose for all n ∈ N sufficiently large,

(3.2) ρ (Tnx, Tny) ≤ knρ (x, y)

for all x, y ∈ X, with lim supn→∞ kn < ∞. Then some bounded subtree of X is
T -invariant.

Proof. Fix x ∈ X and choose m ∈ N and k > 0 with lim supn→∞ kn < k so that
ρ (Tnu, Tnv) ≤ kρ (u, v) for all u, v ∈ [x, Tx] and n ≥ m. Let Y =

∪∞
i=1 T

i ([x, Tx]) .
Since each T i ([x, Tx]) is an arcwise connected subset ofX, Y is an arcwise connected
subset of X; hence Y itself is an R-tree which is clearly T -invariant. We show that
Y is bounded.

Let ξ (z) = sup {ρ (z, Tnz) : n ≥ m} for each z ∈ [x, Tx] . By assumption ξ (z) <
∞ for each z ∈ [x, Tx] . If z, w ∈ [x, Tx] then

ρ (w, Tnw) ≤ ρ (w, z) + ρ (z, Tnz) + ρ (Tnz, Tnw)

≤ ρ (w, z) + ξ (z) + kρ (z, w)

for each n ≥ m. Thus ξ (w) ≤ ξ (z) + (1 + k) ρ (z, w) . Reversing the roles of z and
w, we conclude

|ξ (z)− ξ (w)| ≤ (1 + k) ρ (z, w)

for all z, w ∈ [x, Tx] . Thus ξ is continuous, and since [x, Tx] is compact,

ξ := sup {ξ (z) : z ∈ [x, Tx]} < ∞.
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Now for 1 ≤ i < m, let mi = sup
{
ρ
(
z, T iz

)
: z ∈ [x, Tx]

}
and let

β = max {mi : i = 1, · · ·,m− 1} .
Since T is continuous, β < ∞. Also, by construction, given y ∈ Y there is at least
one point z ∈ [x, Tx] such that y ∈ O (z) . It follows that ρ (z, y) ≤ β+ ξ. Therefore
Y is bounded. Specifically, Y ⊂ B (x; d) where d = ρ (x, Tx) + β + ξ. □

Since a nonexpansive mapping satisfies (3.1) for kn ≡ 1 we have the following
corollary.

Corollary 3.4 (Theorem 4.5 (i) of [6]). A nonexpansive mapping of a complete
R-tree into itself with bounded orbits always has a fixed point.

Remark 3.5. Under the assumptions of Theorem 3.2 it is enough to assume that
one orbit of T is bounded. Indeed, the following is true.

Proposition 3.6. Let (X, ρ) be a metric space and suppose T : X → X has a
bounded orbit. Suppose that for all n sufficiently large,

ρ (Tnx, Tny) ≤ knρ (x, y)

for all x, y ∈ X. Suppose also that lim supn→∞ kn < ∞. Then all orbits of T are
bounded.

Proof. Assume there exist x ∈ X and r > 0 such that O (x) ⊂ B (x; r) . Choose
k > 0 so that lim supn→∞ kn < k. Then if y ∈ X it is possible to choose m ∈ N so
that for all n ≥ m,

ρ (Tnx, Tny) ≤ kρ (x, y) .

Then for n ≥ m,

ρ (x, Tny) ≤ ρ (x, Tnx) + ρ (Tnx, Tny) ≤ r + kρ (x, y) .

This proves that (Tny)n≥m ⊂ B (x; d) where d = r + kρ (x, y) . Let

d′ = max
{
ρ
(
x, T iy

)
: i = 1, · · ·,m− 1

}
.

Then O (y) ⊂ B (x; d∗) where d∗ = max {d, d′} . Since y is arbitrary, all orbits of T
are bounded. □

We now show that the answer to Question 1 is negative. The simplest complete
R-tree is a closed real line interval. For this case we recall a classical theorem due
to Ralph DeMarr.

Theorem 3.7 (DeMarr [4]). Let I be a closed real line interval, and let f and g
be commuting continuous mappings of I into itself which have respective Lipschitz
constants α and β satisfying the condition β (α− 1) < (α+ 1). Then f and g have
at least one common fixed point.

If we take α = β in DeMarr’s condition we find that the condition β (α− 1) <
(α+ 1) reduces to α < 1 +

√
2. This leads to the following result which shows that

in Theorem 2.4 the constant 2 is not always optimal. Notice that here we are not
assuming T is continuous.
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Theorem 3.8. Let I be a closed real line interval and suppose T : I → I satisfies
all n ∈ N sufficiently large,

|Tnx− Tny| ≤ kn |x− y|

for each x, y ∈ I. If lim supn→∞ kn < 1 +
√
2, then T has a fixed point.

Proof. Choose N so large that both TN and TN+1 have Lipschitz constant less than
1 +

√
2. Since TN and TN+1 are continuous and commute, by DeMarr’s Theorem

there exists x0 ∈ I such that TNx0 = TN+1x0 = x0. This clearly implies Tx0 =
x0. □
Theorem 3.9. Let (X, ρ) be a complete geodesically bounded R-tree, and suppose
T : X → X satisfies for all n ∈ N sufficiently large,

ρ (Tnx, Tny) ≤ knρ (x, y)

for each x, y ∈ X, where lim supn→∞ kn < 2. Then T has a fixed point.

Proof. For n sufficiently large, Tn is lipschitzian and hence has a fixed point by
Theorem 3.1. Therefore T has a bounded orbit, so the conclusion follows from
Theorem 2.4 and Proposition 3.6 □

Question 2. Can the assumption that X is geodesically bounded in Theorem 3.1
be replaced with the assumption that T has bounded orbits?

Question 3. Can the assumption that lim supn→∞ kn < 2 in Theorem 3.9 be
replaced with the assumption that lim supn→∞ kn < ∞?

It is easy to see that if a continuous mapping f : R → R has a bounded orbit,
then it has a fixed point. Suppose {fnx} is bounded. If this sequence is monotone,
then clearly limn→∞ fnx is a fixed point of f. Otherwise there exists n ∈ N such
that fnx ≤ fn+1x and fn+2x ≤ fn+1x, in which case f has a fixed point in the
interval

[
fnx, fn+1x

]
, or such that fn+1x ≤ fnx and fn+1x ≤ fn+2x, in which case

f has a fixed point in
[
fn+1x, fnx

]
.

Question 4. If T is a continuous mapping of a complete R-tree X into itself, and
if T has a bounded orbits, then does T have a fixed point?

Remark 3.10. The answer to Question 4 is ‘no’ if just a single orbit is assumed
to be bounded even if that orbit is a periodic point. Let X = [0,∞) ∪ [x, y] where
x = (0,−1) and y = (0, 1) . Let u =

(
0,−1

2

)
and v =

(
0, 12

)
, and let 0 denote the

origin. Reflect x and y in the origin, stretch the intervals [x, u] and [y, v] so that
u and v touch the origin, and shift the intervals [u, 0] and [v, 0] onto the x-axis
pushing [0,∞) to the right. By moving u and v nearer to each other an example
can be constructed for which the mapping is lipschitzian with Lipschitz constant
arbitrarily near 1.

Theorem 2.4 applied to the case whenX is the real line R asserts that if T : R → R
has bounded orbits and satisfies

|Tnx− Tny| ≤ kn |x− y|
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for each x, y ∈ R, where lim supn→∞ kn < 2, then T has a fixed point. This raises
the obvious question of whether 2 can be replaced with the estimate 1 +

√
2 of

Theorem 3.8. (Of course this result is of interest only for discontinuous mappings
T, since it is easy to see that a continuous mapping of R into R with a bounded
orbit always has a fixed point.)

Remark 3.11. Continuity of T was crucial to the proof of Theorem 3.2. However
we do not know whether this assumption is essential.
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