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convex (not necessarily bounded) set K in a Banach space, equipped with the
natural metric of uniform convergence on bounded subsets, there exists an open
and everywhere dense subset B ⊂ A such that any mapping in B has approximate
fixed points. Since a translation mapping in an arbitrary Banach space has no
approximate fixed points, it is clear that this result cannot be strengthened in
principle.

As a matter of fact, it turns out that the result of [21] is also true for nonexpansive
self-mappings of closed and convex sets in complete hyperbolic spaces, a class of
metric spaces which we recall below.

In the present paper we are concerned with nonexpansive set-valued mappings.
In several recent papers [4, 18, 19, 20] certain set-valued dynamical systems induced
by such mappings have been investigated and some new iterative methods for ap-
proximating the corresponding fixed points have been obtained. Here we establish
analogs of the results of [21] in the context of nonexpansive set-valued mappings.

Let (X, ρ) be a metric space and let R1 denote the real line. We say that a
mapping c : R1 → X is a metric embedding of R1 into X if ρ(c(s), c(t)) = |s− t| for
all real s and t. The image of R1 under a metric embedding is called a metric line
and the image of a real interval [a, b] = {t ∈ R1 : a ≤ t ≤ b} under such a mapping
is called a metrtic segment.

Assume that (X, ρ) contains a family M of metric lines such that for each pair
of distinct points x and y in X, there is a unique metric line in M which passes
through x and y. This metric line determines a unique metric segment joining x
and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1, there is a unique point
z in [x, y] such that

ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y).

This point is denoted by (1− t)x⊕ ty. We say that X, or more precisely (X, ρ,M),
is a hyperbolic space if
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for all x, y and z in X. An equivalent requirement is that
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for all x, y, z and w in X. A set K ⊂ X is called ρ-convex if [x, y] ⊂ K for all x and
y in K.

It is clear that all normed linear spaces are hyperbolic. A discussion of more
examples of hyperbolic spaces and, in particular, of the Hilbert ball can be found, for
example, in [6, 13, 14]. For information regarding those unbounded sets which have
the approximate fixed point property for nonexpansive mappings in both Banach
and hyperbolic spaces see, for example, [6, 8, 9, 12, 22]. Let (X, ρ,M) be a complete
hyperbolic space and let K be a nonempty, closed and ρ-convex subset of X.

For each x ∈ K and each r > 0, set

B(x, r) = {y ∈ K : ρ(x, y) ≤ r}.
Denote by A the set of all operators A : K → K such that

ρ(Ax,Ay) ≤ ρ(x, y) for all x, y ∈ K.
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Fix some θ ∈ K.
We equip the set A with the uniformity determined by the base

U(n) = {(A,B) ∈ A×A : ρ(Ax,Bx) ≤ n−1 for all x ∈ B(θ, n)},
where n is a natural number. It is clear that the uniform space A is metrizable and
complete.

Let A ∈ A and ϵ ≥ 0 be given. A point x ∈ K is called an ϵ-approximate fixed
point of A if ρ(x,Ax) ≤ ϵ.

We say that a mapping A has the bounded approximate fixed point property (or
the BAFP property, for short) if there is a nonempty bounded set K0 ⊂ K such
that for each ϵ > 0, A has an ϵ-approximate fixed point in K0, that is, a point
xϵ ∈ K0 which satisfies ρ(xϵ, Axϵ) ≤ ϵ.

The following result was established in [21].

Proposition 1.1. Assume that A ∈ A and that K0 ⊂ K is a nonempty, closed,
ρ-convex and bounded subset of K such that

A(K0) ⊂ K0.

Then A has the BAFP property.

Proposition 1.1 immediately implies the following result.

Proposition 1.2. Assume that K is bounded. Then any A ∈ A has the BAFP
property.

Proposition 1.2 does not, of course, hold if the set K is unbounded. For example,
if K is a Banach space and A is a translation mapping, then A does not possess the
BAFP property.

Finally, we quote the main result of [21].

Theorem 1.3. There exists an open and everywhere dense set F ⊂ A such that
each A ∈ F has the BAFP property.

2. Main results

Let (X, ρ,M) be a complete hyperbolic space and let K be a nonempty, closed
and ρ-convex subset of X.

For each x ∈ K and each r > 0, set

B(x, r) = {y ∈ K : ρ(x, y) ≤ r}.
For each x ∈ X and each nonempty set D ⊂ X, set

ρ(x,D) = inf{ρ(x, y) : y ∈ D}.
Denote by S(K) the family of all nonempty, closed and bounded subsets of K.

For each C,D ∈ S(K), set

H(C,D) := max{sup{ρ(x,D) : x ∈ C}, sup{ρ(x,C) : x ∈ D}}.
The space (S(K),H) is a metric space and its metric H is called the Hausdorff
metric. It is known that the metric space (S(K),H) is complete.

Denote by M the set of all mappings A : K → S(K) such that

(2.1) H(A(x), A(y)) ≤ ρ(x, y) for all x, y ∈ K.
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Fix θ ∈ K. We equip the set M with the uniformity determined by the following
base:

(2.2) U(n) = {(A,B) ∈ M×M : H(A(x), B(x)) ≤ n−1 for all x ∈ B(θ, n)},
where n is a natural number. Clearly, the uniform space M is metrizable and
complete.

Let A ∈ M and ϵ ≥ 0 be given. A point x ∈ K is called an ϵ-approximate fixed
point of A if ρ(x,A(x)) ≤ ϵ.

We say that the mapping A has the bounded approximate fixed point property (or
the BAFP property, for short) if there is a nonempty bounded set K0 ⊂ K such
that for each ϵ > 0, A has an ϵ-approximate fixed point in K0, that is, a point
xϵ ∈ K0 which satisfies ρ(xϵ, A(xϵ)) ≤ ϵ.

For each D ⊂ X, we denote by cl(D) the closure of D.
For each nonempty set D ⊂ X and each A ∈ M, set

A(D) := ∪{A(x) : x ∈ D}.
In this paper we establish the following results.

Theorem 2.1. Assume that A ∈ M and that K0 ⊂ K is a nonempty, closed,
ρ-convex and bounded subset of K such that

(2.3) A(K0) ⊂ K0.

Then for each ϵ > 0, there is a point xϵ ∈ K0 such that ρ(xϵ, A(xϵ)) ≤ ϵ.

Thus every mapping satisfying the assumptions of Theorem 2.1 has the BAFP
property.

Theorem 2.2. There exists an open and everywhere dense set F ⊂ M such that
each A ∈ F has the BAFP property.

This theorem follows from Theorem 2.1 and the following result.

Theorem 2.3. There exists an open and everywhere dense set F ⊂ M such that
for each A ∈ F , there exists a nonempty, closed, ρ-convex and bounded set KA ⊂ K
such that

A(KA) ⊂ KA.

The rest of our paper is organized as follows. The next section contains several
auxiliary results. Theorem 2.1 is proved in Section 4 and Theorem 2.3 is proved in
Section 5.

3. Auxiliary results

Lemma 3.1. Let A ∈ M and let C ⊂ K be a nonempty bounded set. Then
∪{A(z) : z ∈ C} is also a bounded set.

Proof. There is M > 0 such that

(3.1) C ⊂ B(θ,M).

Let

(3.2) x ∈ ∪{A(z) : z ∈ C}.
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Then there is a point

(3.3) z ∈ C

such that

(3.4) x ∈ A(z).

By (2.1), (3.1), (3.3) and (3.4),

ρ(x,A(θ)) ≤ H(A(z), A(θ)) ≤ ρ(z, θ) ≤ M.

Since the above relation holds for any x satisfying (3.2), we conclude that

∪{A(z) : z ∈ C} ⊂ ∪{B(z,M + 1) : z ∈ A(θ)}.

Lemma 3.1 is proved. □

Lemma 3.2. Let A ∈ M, γ ∈ (0, 1), η ∈ K and for each x ∈ K, set

(3.5) Ã(x) := cl({(1− γ)z ⊕ γη : z ∈ A(x)}).

Then Ã ∈ M and for all x, y ∈ K,

(3.6) H(Ã(x), Ã(y)) ≤ (1− γ)ρ(x, y).

Proof. Clearly, Ã(x) ∈ S(K) for all x ∈ K. Let x, y ∈ K. We claim that (3.6)

holds. To verify this, it is sufficient to show that for any ξ ∈ Ã(x),

(3.7) ρ(ξ, Ã(y)) ≤ (1− γ)ρ(x, y).

In view of (3.5), it suffices to show that (3.7) holds for any

(3.8) ξ ∈ {(1− γ)z ⊕ γη : z ∈ A(x)}.

Let ξ ∈ K satisfy (3.8). Then there is

(3.9) z ∈ A(x)

such that

(3.10) ξ = (1− γ)z ⊕ γη.

By (2.1), (3.5), (3.9) and (3.10),

ρ(ξ, Ãy) = ρ((1− γ)z ⊕ γη, Ã(y))

≤ inf{ρ((1− γ)z ⊕ γη, (1− γ)u⊕ γη) : u ∈ A(x)}
≤ inf{(1− γ)ρ(z, u) : u ∈ A(x)} = (1− γ)ρ(z,A(x))

≤ (1− γ)H(A(x), A(y)) ≤ (1− γ)ρ(x, y),

as asserted. □

Lemma 3.3. Assume that A ∈ M, γ ∈ (0, 1) and that for all x, y ∈ K,

(3.11) H(A(x), A(y)) ≤ γρ(x, y).

Then there exists a number M1 > 1 such that

A(B(θ,M1)) ⊂ B(θ,M1 − 1).
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Proof. For each nonempty, closed and bounded set C ⊂ K, set

(3.12) Â(C) := cl(A(C)).

By Lemma 3.1, the set Â(C) is bounded for all C ∈ S(K) and Â : S(K) → S(K).
We now show that for each C1, C2 ∈ S(K),

(3.13) H(Â(C1), Â(C2)) ≤ γH(C1, C2).

To this end, let

C1, C2 ∈ S(K) and z ∈ Â(C1).

In order to prove (3.13), it is sufficient to show that

(3.14) ρ(z, Â(C2)) ≤ γH(C1, C2).

In view of (3.12), we may assume without loss of generality that

z ∈ A(C1).

Thus there is a point

(3.15) ξ ∈ C1

such that

(3.16) z ∈ A(ξ).

Let ϵ be an arbitrary positive number. There is a point

(3.17) v ∈ C2

such that

(3.18) ρ(ξ, v) ≤ ρ(ξ, C2) + ϵ ≤ H(C1, C2) + ϵ.

(The last inequality follows from (3.15).) By (3.11) and (3.18),

(3.19) H(A(ξ), A(v)) ≤ γρ(ξ, v) ≤ γH(C1, C2) + γϵ.

By (3.16) and (3.19), there is a point

(3.20) u ∈ A(v)

such that

(3.21) ρ(z, u) ≤ γH(C1, C2) + 2γϵ.

It follows from (3.20) and (3.21) that

ρ(z,A(v)) ≤ γH(C1, C2) + 2γϵ.

When combined with (3.12) and (3.17), this inequality implies that

ρ(z, Â(C2)) ≤ ρ(z,A(v)) ≤ γH(C1, C2) + 2γϵ.

Since ϵ is an arbitrary positive number, we conclude that (3.14) indeed holds. Thus
(3.13) is true for all C1, C2 ∈ S(K). By (3.13) and the Banach fixed point theorem
[1], there is

C∗ ∈ S(K)

such that

(3.22) Â(C∗) = C∗.
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Choose M0 > 0 such that

(3.23) C∗ ⊂ B(θ,M0)

and

(3.24) M1 > (2M0 + 1)(1− γ)−1.

Assume that

(3.25) x ∈ B(θ,M1).

Fix

(3.26) y ∈ C∗.

By (3.11), (3.23), (3.25) and (3.26),

(3.27)
H(A(x), A(y)) ≤ γρ(x, y) ≤ γ(ρ(x, θ) + ρ(θ, y))

≤ γ(M1 +M0) ≤ γM1 +M0.

In view of (3.27), for each ξ ∈ A(x),

ρ(ξ, A(y)) ≤ γM1 +M0

and by (3.22) and (3.26),

(3.28) ρ(ξ, C∗) ≤ γM1 +M0.

It follows from (3.23), (3.24) and (3.28) that for each ξ ∈ A(x),

ρ(ξ, θ) ≤ ρ(ξ, C∗) + sup{ρ(h, θ) : θ ∈ C∗} ≤ γM1 + 2M0 < M1 − 1.

This implies that A(x) ⊂ B(θ,M1 − 1) for all x ∈ B(θ,M1). Lemma 3.3 is proved.
□

4. Proof of Theorem 2.1

Let ϵ > 0 be given. Set

(4.1) d0 = sup{ρ(y, z) : y, z ∈ K0}.

Choose γ ∈ (0, 1) such that

(4.2) γ(d0 + 1) < ϵ.

Fix a point

(4.3) x̃ ∈ K0.

For each x ∈ K, set

(4.4) Ã(x) := cl({(1− γ)z ⊕ γx̃ : z ∈ A(x)}).

By (2.3), (4.3) and (4.4), for all x ∈ K, Ã(x) ∈ S(K) and

(4.5) Ã(x) ⊂ K0, x ∈ K0.

By Lemma 3.2, for all x, y ∈ K,

(4.6) H(Ã(x), Ã(y)) ≤ (1− γ)ρ(x, y).
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By (2.3), (4.1), (4.2), (4.3) and (4.4), we have for all x ∈ K0,

H(A(x), Ã(x)) = H(A(x), cl({(1− γ)z ⊕ γx̃ : z ∈ A(x)})
≤ sup{ρ(z, (1− γ)z ⊕ γx̃) : z ∈ A(x)}(4.7)

≤ γ sup{ρ(z, x̃) : z ∈ A(x)} ≤ d0γ < ϵ.

By (4.5), (4.6) and Nadler’s fixed point theorem [10] (see also [23, page 38]), there
exists a point xϵ such that

xϵ ∈ K0, and xϵ ∈ Ã(xϵ).

When combined with (4.7), this implies that

ρ(xϵ, A(xϵ)) ≤ ρ(xϵ, Ã(xϵ)) +H(Ã(xϵ), A(xϵ)) < ϵ.

This completes the proof of Theorem 2.1.

5. Proof of Theorem 2.3

Let A ∈ M and let n be a natural number. It is not difficult to see that in order
to prove the theorem it is sufficient to show that there exist Ã ∈ M and a natural
number k such that the following properties hold:

(A, Ã) ∈ U(n);
there is a nonempty, bounded, closed and ρ-convex set M ⊂ K such that

B(M) ⊂ M for each B ∈ M satisfying (B, Ã) ∈ U(k).
Choose a number γ ∈ (0, 1) such that

(5.1) γ(n+ sup{ρ(ξ, θ) : ξ ∈ A(θ)}) < (2n)−1.

For each point x ∈ K, set

(5.2) Ã(x) := cl({(1− γ)z ⊕ γθ : z ∈ A(x)}).

By Lemma 3.2, Ã ∈ M and

(5.3) H(Ã(x), Ã(y)) ≤ (1− γ)ρ(x, y) for all x, y ∈ K.

By Lemma 3.3, there exists M1 > 1 such that

(5.4) Ã(B(θ,M1)) ⊂ B(θ,M1 − 1).

In view of (5.1) and (5.2), for each x ∈ B(θ, n),

H(A(x), Ã(x)) = H(A(x), cl({(1− γ)z ⊕ γθ : z ∈ A(x)}))
≤ sup{ρ(z, (1− γ)z ⊕ γθ) : z ∈ A(x)}
≤ γ sup{ρ(z, θ) : z ∈ A(x)}
≤ γ sup{ρ(z,A(θ)) + sup{ρ(ξ, θ) : ξ ∈ A(θ)} : z ∈ A(x)}
≤ γ sup{ρ(ξ, θ) : ξ ∈ A(θ)}+ γ sup{ρ(z,A(θ)) : z ∈ A(x)}
≤ γ sup{ρ(ξ, θ) : ξ ∈ A(θ)}+ γH(A(x), A(θ))

≤ γ sup{ρ(ξ, θ) : ξ ∈ A(θ)}+ γρ(x, θ) ≤ (2n)−1

and
(A, Ã) ∈ U(n).
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Choose a natural number

(5.5) k > M1 + 1

and assume that

(5.6) x ∈ B(θ,M1),

(5.7) B ∈ M and (B, Ã) ∈ U(k).
Let

(5.8) y ∈ B(x).

By (5.5), (5.6), (5.7) and (5.8),

(5.9) ρ(y, Ã(x)) ≤ H(B(x), Ã(x)) ≤ k−1.

In view of (5.4) and (5.6),

Ã(x) ⊂ B(θ,M1 − 1).

When combined with (5.9), this inclusion implies that y ∈ B(θ,M1) and therefore

B(x) ⊂ B(θ,M1)

for all x satisfying (5.6) and all B satisfying (5.7). This completes the proof of
Theorem 2.3.
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