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ABSTRACT. It follows from Banach’s fixed point theorem that every nonexpan-
sive self-mapping of a bounded, closed and convex set in a Banach space has
approximate fixed points. This is no longer true, in general, if the set is un-
bounded. Nevertheless, as we have shown in a recent paper of ours, there exists
an open and everywhere dense set in the space of all nonexpansive self-mappings
of any closed and convex (not necessarily bounded) set in a Banach space (en-
dowed with the natural metric of uniform convergence on bounded subsets) such
that all its elements have approximate fixed points. In the present paper we
prove a corresponding result for nonexpansive set-valued mappings.

1. INTRODUCTION AND PRELIMINARIES

During the last fifty years or so, there has been a lot of interest in the fixed
point theory of nonexpansive (that is, 1-Lipschitz) mappings. See, for example,
[2, 3, 5, 6, 7] and the references mentioned therein. The origin of this interest lies
in the classical Banach theorem [1] regarding the existence of a unique fixed point
for a strict contraction. Since that seminal result, many developments have taken
place in this area. We mention, for instance, existence results for fixed points of
nonexpansive mappings which are not strictly contractive [5, 6]. Such results were
obtained for general nonexpansive mappings in special Banach space, while for self-
mappings of general complete metric spaces existence results were established for,
the so-called, contractive mappings [11]. For general nonexpansive mappings in
general Banach spaces the existence of a unique fixed point was established in the
generic sense, using the Baire category approach [2, 3, 15, 16, 17]. More precisely, in
these papers the space A of all nonexpansive self-mappings of a closed and convex set
K in a Banach space was endowed with the natural metric of uniform convergence
on bounded subsets, and it was shown that there exists a subset A’ C A, which is a
countable intersection of open and everywhere dense subsets of A, such that every
mapping in A" has a unique fixed point. Note that in [2, 3] the set K was assumed
to be bounded, while in [15] this assumption was removed.

In [21] we considered the question of existence of approximate fixed points of
general nonexpansive mappings in unbounded sets. We showed that in the above-
mentioned space A consisting of all nonexpansive self-mappings of a closed and
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convex (not necessarily bounded) set K in a Banach space, equipped with the
natural metric of uniform convergence on bounded subsets, there exists an open
and everywhere dense subset B C A such that any mapping in B has approximate
fixed points. Since a translation mapping in an arbitrary Banach space has no
approximate fixed points, it is clear that this result cannot be strengthened in
principle.

As a matter of fact, it turns out that the result of [21] is also true for nonexpansive
self-mappings of closed and convex sets in complete hyperbolic spaces, a class of
metric spaces which we recall below.

In the present paper we are concerned with nonexpansive set-valued mappings.
In several recent papers [4, 18, 19, 20] certain set-valued dynamical systems induced
by such mappings have been investigated and some new iterative methods for ap-
proximating the corresponding fixed points have been obtained. Here we establish
analogs of the results of [21] in the context of nonexpansive set-valued mappings.

Let (X, p) be a metric space and let R! denote the real line. We say that a
mapping ¢ : R! — X is a metric embedding of R! into X if p(c(s),c(t)) = |s —¢t| for
all real s and t. The image of R! under a metric embedding is called a metric line
and the image of a real interval [a,b] = {t € R! : @ <t < b} under such a mapping
is called a metrtic segment.

Assume that (X, p) contains a family M of metric lines such that for each pair
of distinct points x and y in X, there is a unique metric line in M which passes
through x and y. This metric line determines a unique metric segment joining z
and y. We denote this segment by [z,y]. For each 0 <t < 1, there is a unique point
z in [z, y] such that

p(x,z) =tp(x,y) and p(z,y) = (1 —1t)p(z,y).
This point is denoted by (1 —t)x @ ty. We say that X, or more precisely (X, p, M),
is a hyperbolic space if

p(lx@ 1y 156 ® 12) < lp(y z)
2 2772 27/ — 27
for all z,y and z in X. An equivalent requirement is that
p(52® Sy swe 22) < 2 (ple,w) + ply.2))
2 2772 27/ 72 ’ ’
for all z,y,z and win X. A set K C X is called p-convex if [z,y] C K for all z and
yin K.

It is clear that all normed linear spaces are hyperbolic. A discussion of more
examples of hyperbolic spaces and, in particular, of the Hilbert ball can be found, for
example, in [6, 13, 14]. For information regarding those unbounded sets which have
the approximate fixed point property for nonexpansive mappings in both Banach
and hyperbolic spaces see, for example, [6, 8, 9, 12, 22]. Let (X, p, M) be a complete

hyperbolic space and let K be a nonempty, closed and p-convex subset of X.
For each x € K and each r > 0, set

B(z,r) ={y € K: p(z,y) <r}.
Denote by A the set of all operators A : K — K such that
p(Ax, Ay) < p(zx,y) for all x,y € K.
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Fix some 0 € K.
We equip the set A with the uniformity determined by the base

Un)={(A,B) € Ax A: p(Az,Bz) <n~ ! for all z € B(0,n)},

where n is a natural number. It is clear that the uniform space A is metrizable and
complete.

Let A € A and € > 0 be given. A point x € K is called an e-approzimate fized
point of A if p(z, Az) < e.

We say that a mapping A has the bounded approzimate fixed point property (or
the BAFP property, for short) if there is a nonempty bounded set Ky C K such
that for each ¢ > 0, A has an e-approximate fixed point in K, that is, a point
x. € Ko which satisfies p(z., Az¢) < e.

The following result was established in [21].

Proposition 1.1. Assume that A € A and that Ky C K is a nonempty, closed,
p-convex and bounded subset of K such that

A(Ky) C Kp.
Then A has the BAFP property.
Proposition 1.1 immediately implies the following result.
Proposition 1.2. Assume that K is bounded. Then any A € A has the BAFP
property.

Proposition 1.2 does not, of course, hold if the set K is unbounded. For example,
if K is a Banach space and A is a translation mapping, then A does not possess the
BAFP property.

Finally, we quote the main result of [21].

Theorem 1.3. There exists an open and everywhere dense set F C A such that
each A € F has the BAFP property.

2. MAIN RESULTS

Let (X, p, M) be a complete hyperbolic space and let K be a nonempty, closed
and p-convex subset of X.
For each x € K and each r > 0, set

B(z,r)={y € K: p(z,y) <r}.
For each x € X and each nonempty set D C X, set
p(z, D) = inf{p(z,y) : y € D}.

Denote by S(K) the family of all nonempty, closed and bounded subsets of K.
For each C, D € S(K), set

H(C, D) := max{sup{p(x,D) : = € C}, sup{p(x,C): = € D}}.

The space (S(K), H) is a metric space and its metric H is called the Hausdorff
metric. It is known that the metric space (S(K), H) is complete.
Denote by M the set of all mappings A : K — S(K) such that

(2.1) H(A(x),A(y)) < p(z,y) for all x,y € K.
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Fix 0 € K. We equip the set M with the uniformity determined by the following
base:

(2.2)  U(n)={(A,B) e M x M : H(A(z),B(x)) <n ! for all z € B(A,n)},

where n is a natural number. Clearly, the uniform space M is metrizable and
complete.

Let A € M and € > 0 be given. A point x € K is called an e-approzimate fized
point of A if p(z, A(z)) < e.

We say that the mapping A has the bounded approximate fixed point property (or
the BAFP property, for short) if there is a nonempty bounded set Ky C K such
that for each € > 0, A has an e-approximate fixed point in Ky, that is, a point
ze € Ko which satisfies p(x, A(ze)) < e.

For each D C X, we denote by cl(D) the closure of D.

For each nonempty set D C X and each A € M, set

A(D) :=U{A(z) : z € D}.

In this paper we establish the following results.

Theorem 2.1. Assume that A € M and that Ky C K is a nonempty, closed,
p-convex and bounded subset of K such that

(2.3) A(K()) C K.
Then for each € > 0, there is a point . € Ko such that p(x., A(x.)) < €.

Thus every mapping satisfying the assumptions of Theorem 2.1 has the BAFP
property.

Theorem 2.2. There exists an open and everywhere dense set F C M such that
each A € F has the BAFP property.

This theorem follows from Theorem 2.1 and the following result.

Theorem 2.3. There exists an open and everywhere dense set F C M such that
for each A € F, there exists a nonempty, closed, p-convex and bounded set Ko C K
such that

A(KA) C Ky

The rest of our paper is organized as follows. The next section contains several
auxiliary results. Theorem 2.1 is proved in Section 4 and Theorem 2.3 is proved in
Section 5.

3. AUXILIARY RESULTS

Lemma 3.1. Let A € M and let C C K be a nonempty bounded set. Then
U{A(z) : z € C} is also a bounded set.

Proof. There is M > 0 such that

(3.1) C C B(O,M).
Let

(3.2) x e U{A(z): z€ C}.
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Then there is a point

(3.3) zeC
such that
(3.4) x € A(z).

By (2.1), (3.1), (3.3) and (3.4),
plw, A(0)) < H(A(2), A(9)) < p(2,0) < M.
Since the above relation holds for any z satisfying (3.2), we conclude that
U{A(z): z€e C} CU{B(2,M +1): z€ A(9)}.
Lemma 3.1 is proved. O

Lemma 3.2. Let Ae M, v€(0,1), n € K and for each x € K, set

(3.5) A(z) = cd{(1 =)z @y : z € A(z)}).
Then A € M and for all z,y € K,
(3.6) H(A(x), A(y)) < (1 = 7)p(x,y).

Proof. Clearly, A(z) € S(K) for all z € K. Let 2,y € K. We claim that (3.6)
holds. To verify this, it is sufficient to show that for any £ € A(x),

(3.7) (&, Aly)) < (1 =7)p(x,y).

In view of (3.5), it suffices to show that (3.7) holds for any
(3.8) Ee{l—y)zdyn: z€ A(x)}.
Let € € K satisfy (3.8). Then there is

(3.9) z € A(x)

such that

(3.10) E=(1—-7y)zom.

By (2.1), (3.5), (3.9) and (3.10),

p(&. Ay) = p((1 =)z @, Ay))
< inf{p((1=7)z®m, (1 =7)udyn): ue A(z)}
< inf{(1 =y)p(z,u) : uwe A(x)} = (1 —v)p(z, A(z))
< (1-7)H(A(z), A(y) < (1 —7)p(z,y),
as asserted. O

Lemma 3.3. Assume that A € M, v € (0,1) and that for all x,y € K,

(3.11) H(A(z), A(y)) < vp(z,y).
Then there exists a number M7 > 1 such that

A(B(0, My)) C B(6,M; —1).
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Proof. For each nonempty, closed and bounded set C' C K, set
(3.12) A(C) := cl(A(C)).

By Lemma 3.1, the set E(C) is bounded for all C' € S(K) and A S(K) — S(K).
We now show that for each C1,Cy € S(K),

~ ~

(3.13) H(A(Cy), A(Cr)) < vH(Ch, Ca).

To this end, let
C1,02 € S(K) and z € A(Ch).

In order to prove (3.13), it is sufficient to show that

(3.14) p(z, A(Cy)) < vH(Cy, Cs).

In view of (3.12), we may assume without loss of generality that
z € A(Ch).

Thus there is a point

(3.15) EeCy

such that

(3.16) z € AE).

Let € be an arbitrary positive number. There is a point

(3.17) v e Cy

such that

(3.18) pl€,0) < pl6,Co) + € < H(Cy, C) + .

(The last inequality follows from (3.15).) By (3.11) and (3.18),

(3.19) H(A(£), A(v)) < vp(&,v) < vH(C1, Co) + e

By (3.16) and (3.19), there is a point

(3.20) u € Av)

such that

(3.21) p(z,u) < yH(Cq,Ca) + 27e.

It follows from (3.20) and (3.21) that
p(z, A(v)) < YH(C1, Ca) + 27e.
When combined with (3.12) and (3.17), this inequality implies that
p(z,A(Cs)) < p(z, A(v)) < yH(C1, Ca) + 2ve.

Since € is an arbitrary positive number, we conclude that (3.14) indeed holds. Thus
(3.13) is true for all Cq,Cy € S(K). By (3.13) and the Banach fixed point theorem
[1], there is

C. e S(K)
such that

(3.22) A(C,) =C,.
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Choose My > 0 such that

(3.23) C. C B(6, My)

and

(3.24) My > (2My + 1)(1 — ).
Assume that

(3.25) x € B(6, M).

Fix

(3.26) y € Cs.

By (3.11), (3.23), (3.25) and (3.26),

H(A(x), A(y))

(3.27) i o, y) < v(p(z,0) + p(0,y))

y(My + My) < yMy + M.
In view of (3.27), for each £ € A(x),
(&, Aly)) < yMy+ My
and by (3.22) and (3.26),
(3.28) p(§, Cyx) < yMy + Mo.
It follows from (3.23), (3.24) and (3.28) that for each £ € A(x),
p(&,0) < p(& Cy) +sup{p(h,0): 0 € C.} <yM;y+2My < M; —1.
This implies that A(z) C B(6, M1 — 1) for all z € B(6, M;). Lemma 3.3 is proved.
O
4. PROOF OF THEOREM 2.1

Let € > 0 be given. Set

(4.1) do = sup{p(y,2) : ¥,z € Ko}.
Choose 7 € (0,1) such that

(4.2) Y(do+1) <.

Fix a point

(4.3) 7 € Ko.

For each x € K, set

(4.4) Alz) = ({1 =)z ® 7% : z € A(x)}).
By (2.3), (4.3) and (4.4), for all z € K, A(z) € S(K) and
(4.5) A(z) C Ko, z € K.

By Lemma 3.2, for all z,y € K,
(4.6) H(A(z), A(y)) < (1= 7)p(x,y).
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By (2.3), (4.1), (4.2), (4.3) and (4.4), we have for all z € K,
H(A(x),A(z)) = H(A@),dd({(1—7)z@®~i: z € Az)})
(4.7) < sup{p(z,(1 —7)z@®~vx): z € A(z)}
< ysup{p(z,%): z € A(x)} < dpy <e.

By (4.5), (4.6) and Nadler’s fixed point theorem [10] (see also [23, page 38]), there
exists a point x, such that

z. € Ky, and z. € fl(:ce).
When combined with (4.7), this implies that
p(we, A(z)) < plae, A(z)) + H(A(ze), Aze)) < e.
This completes the proof of Theorem 2.1.

5. PROOF OF THEOREM 2.3

Let A € M and let n be a natural number. It is not difficult to see that in order
to prove the theorem it is sufficient to show that there exist A € M and a natural
number k such that the following properties hold:

(4, A) € U(n);
there is a nonempty, bounded, closed and p-convex set M C K such that
B(M) C M for each B € M satistying (B, A) € U(k).
Choose a number « € (0, 1) such that

(5.1) A+ sup{p(&,0) : € € AB)}) < (2n)~"
For each point z € K, set

(5.2) Az) :=cd({(1 =7z @0 : 2z € A(x)}).

By Lemma 3.2, A € M and

(5.3) H(A(z), A(y)) < (1 —7)p(z,y) for all z,y € K.
By Lemma 3.3, there exists M; > 1 such that

(5.4) A(B(6,My)) C B(0,M; — 1).

In view of (5.1) and (5.2), for each x € B(6,n),

H(A(x),A(x)) = H(A(@),d({(1 =)z ®0: 2 € A(x)}))
sup{p(z, (1 —7)2 ©0) : 2 € A(x)}
ysup{p(z,0): z € A(z)}
ysup{p(z, A(8)) + suplp(6, 6) : € € AB)) : = € Ax)}
ysup{p(£,0) : € € A)} +suplp(z, AB)) : = € A(x)}
Ysup{p(€,0) : € € A(0)} +H(A(z), A(6))
vsup{p(€,0) : €€ A(0)} +p(z,0) < (2n) 7

VAN VAN VAR VANR VAN VAN

3
§
£

A/_\/_\,_\

and
(A, A) e U(n).
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Choose a natural number

(5.5) E>M; +1

and assume that

(5.6) x € B(6, M),

(5.7) BeM and (B,A) eU(k).
Let

(5.8) y € B(x).

By (5.5), (5.6), (5.7) and (5.8),

(5.9) py, A(z)) < H(B(x), A(x)) < k"

In view of (5.4) and (5.6),

A(x) C B(6,M; —1).
When combined with (5.9), this inclusion implies that y € B(#, M;) and therefore
B(xz) C B(#, M)

for all x satisfying (5.6) and all B satisfying (5.7). This completes the proof of
Theorem 2.3.
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