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Theorem 1.1 ([9, Takahashi]). Let X be a Banach space with a uniformly Gâteaux
differentiable norm. Then the duality mapping J : X → X∗ is norm-to-weak∗

uniformly continuous on bounded subsets of X.

Secondly, we revisit Combettes’s article [3], which introduces the following inter-
esting result due to [8]; see Proposition 2.4 (ix) in [3].

Proposition 1.2 ( [3, 8]). Let X be a Hilbert space and let A be a closed and
uniformly convex subset of H. If d(xn, A) → 0 and xn ⇀ x ∈ ∂A, then xn → x,
where ∂A is the boundary of A.

The following questions are naturally raised. How about the converse of Theorem
1.1? Secondly, as an analogue of compactness of A ⊂ X, does the weak compactness
of A ensure existence of two points x, y ∈ A so that ∥x−y∥ is equal to the diameter
of A? How do then we extend Proposition 1.2 over general Banach spaces?

In this paper, we firstly prove that the converse of Theorem 1.1 also remains
true. Next, we establish that all reflexive strictly convex Banach spaces with the
Kadec-Klee property are a possible solution of our second question.

2. Preliminaries

Let X be a Banach space and consider the limit:

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

.

Recall we say that the norm of X is

• Gâteaux differentiable (or X is smooth) if the limit (2.1) exists for each
x, y ∈ SX ;

• uniformly Gâteaux differentiable if the limit (2.1) is attained uniformly in
x ∈ SX for each fixed y ∈ SX ;

• Fréchet differentiable if the limit (2.1) is attained uniformly in y ∈ SX for
each fixed x ∈ SX ;

• uniformly Fréchet differentiable (or X is uniformly smooth) if the limit (2.1)
is attained uniformly in x, y ∈ SX .

Proposition 2.1 ([2, 9, 10]). Let X be a real Banach space. Then its normalized
duality map J satisfies the following properties:

(i) J is homogeneous, i.e., J(λx) = λJ(x) for λ ∈ R and x ∈ X.
(ii) J is additive if and only if X is a Hilbert space.
(iii) J is single-valued if and only if X is smooth.
(iv) J is surjective if and only if X is reflexive.
(v) J is injective or strictly monotone if and only if X is strictly convex.
(vi) J is single-valued and norm-to-norm continuous if and only if X is Fréchet

differentiable.
(vii) if X is smooth (i.e., the norm of X is Gâteaux differentiable), then J is

single-valued and norm-to-weak∗ continuous.
(viii) if the norm of X is uniformly Gâteaux differentiable, then J is single-valued

and norm-to-weak∗ uniformly continuous on bounded sets of X.
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(vix) J is single-valued and norm-to-norm uniformly continuous on bounded sets
of X if and only if X is uniformly smooth.

Remark 2.2. Note that the norm of X is uniformly Gâteaux differentiable if and
only if

lim
λ→0

sup
∥x∥=1

∣∣∣∥x+ λy∥ − ∥x∥
λ

− ⟨y, jx⟩
∣∣∣ = 0

for each y ∈ SX , where jx ∈ SX∗ with ⟨x, jx⟩ = 1 for x ∈ SX . Let y ∈ SX be fixed;
for each ϵ > 0, there exists δ := δ(ϵ, y) > 0 such that

(2.2) 0 < |λ| < δ ⇒
∣∣∥x+ λy∥ − ∥x∥ − λ⟨y, jx⟩

∣∣ < ϵ|λ|, x ∈ SX .

Recall we say that X is strictly convex if for each f ∈ X∗ there exists at most
one point in BX at which f attains its maximum, where BX is the unit ball of X;
see [1].

Here we summarize some equivalent properties of strict convexity of X; see [1,6,7]
for detailed proof.

Proposition 2.3 ([1, 6, 7]). X is strictly convex if and only if one of the following
equivalent properties holds.

(i) If ∥x+ y∥ = ∥x∥+ ∥y∥ and x ̸= 0, y = tx for some t ≥ 0;
(ii) If ∥x∥ = ∥y∥ = 1 and x ̸= y, then ∥λx + (1 − λ)y∥ < 1 for all λ ∈ (0, 1),

namely, the unit sphere (or any sphere) contains no line segment;
(iii) If ∥x∥ = ∥y∥ = 1 and x ̸= y, then ∥(x+ y)/2∥ < 1;
(iv) The function x → ∥x∥2, x ∈ X, is strictly convex.

Recall that a mapping x 7→ jx ofX\{0} toX∗\{0} is called a supportmapping [5]
whenever

(i) ∥x∥ = 1 implies ∥jx∥ = 1 = ⟨x, jx⟩;
(ii) λ ≥ 0 implies jλx = λjx.

Proposition 2.4 ([5, 6]). Let x 7→ jx be a support mapping. Then

(2.3)
⟨y, jx⟩
∥x∥

≤ ∥x+ λy∥ − ∥x∥
λ

≤
⟨y, jx+λy⟩
∥x+ λy∥

, λ > 0, x, y ∈ SX .

The above inequalities are reversed for λ < 0.

Remark 2.5. For each x ∈ X, choose a jx ∈ J(x) (obviously, j0 = 0). Then the
mapping x 7→ jx is called a selection of the (normalized) duality mapping J . Note
that if x 7→ jx of X \ {0} to X∗ \ {0} is a support mapping, it is a selection of
J . In fact, for each x ∈ X, it suffices to consider the case ∥x∥ ̸= 1, x ̸= 0; take
u := x/∥x∥ ∈ SX , it follows from (i) and (ii) above that

∥ju∥ = 1 = ⟨u, ju⟩ ⇔ ∥jx∥ = ∥x∥ and ⟨x, jx⟩ = ∥x∥2 ⇔ jx ∈ J(x).

Conversely, it is obvious that every selection of J except 0 ∈ X is a support mapping
of X \ {0} to X∗ \ {0}.

Finally, we introduce the following equivalents:

Proposition 2.6 ([5, 6, 9]). The following statements are equivalent:
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(i) there exists a support mapping x 7→ jx which is norm-to-norm uniformly
continuous from SX to SX∗;

(ii) the norm of X is uniformly Fréchet differentiable;
(iii) every support mapping x 7→ jx is norm-to-norm uniformly continuous from

SX to SX∗.

3. Main results

First, we prove that the converse of Theorem 1.1 (or (viii) of Proposition 2.1)
also holds. For this proof, the following subsequent two lemmas are crucial. At
first, we give an analogue of Proposition 2.6 for uniformly Gâteaux differentiability
of the norm.

Lemma 3.1. The following statements are equivalent:

(i) the norm of X is uniformly Gâteaux differentiable;
(ii) every support mapping x 7→ jx is norm-to-weak∗ uniformly continuous from

SX to SX∗.
(iii) there exists a support mapping x 7→ jx which is norm-to-weak∗ uniformly

continuous from SX to SX∗;

Proof. (i)⇒(ii). We prove it by contradiction. Assume that there exists a support
mapping x 7→ jx which is not be norm-to-weak∗ uniformly continuous from SX to
SX∗ . Then there exists ϵ > 0 and sequences {xn} and {yn} in SX such that

(3.1) ∥xn − yn∥ <
1

n
but |⟨y, jxn − jyn⟩| ≥ 2ϵ for some y ∈ SX .

Since ∥xn − yn∥ → 0, we have

0 ≤ 1− ⟨xn, jyn⟩ = ⟨yn, jyn⟩ − ⟨xn, jyn⟩
= ⟨yn − xn, jyn⟩ ≤ |⟨yn − xn, jyn⟩| ≤ ∥yn − xn∥ → 0

and so ⟨xn, jyn⟩ → 1. Similarly, we can see ⟨yn, jxn⟩ → 1. On the other hand, since
the norm of X is uniformly Gâteaux differentiable, by (2.2) of Remark 2.2, for the
above ϵ > 0 and y ∈ SX , there exists δ := δ(ϵ, y) > 0 such that

0 < |λ| < δ ⇒
∣∣∥x+ λy∥ − ∥x∥ − λ⟨y, jx⟩

∣∣ < ϵ|λ|
4

, x ∈ SX .

For fixed λ ∈ (0, δ), a simple calculation yields

∥x+ λy∥ − 1 ≤ λϵ

4
+ λ⟨y, jx⟩, ∥x− λy∥ − 1 ≤ λϵ

4
− λ⟨y, jx⟩(3.2)

for all x ∈ SX . Since ⟨xn, jyn⟩ → 1, there exists K ∈ N such that 1− λϵ
2 ≤ ⟨xn, jyn⟩

for all n ≥ K. Then, it follows that

1− λϵ

2
≤ ⟨xn, jyn⟩ = ⟨xn, jyn + jxn⟩ − 1

= ⟨xn + λy, jyn⟩+ ⟨xn − λy, jxn⟩ − 1− λ⟨y, jyn − jxn⟩
≤ ∥xn + λy∥+ ∥xn − λy∥ − 1− λ⟨y, jyn − jxn⟩

≤ 1 +
λϵ

2
− λ⟨y, jyn − jxn⟩ by (3.2) with x := xn



DIFFERENTIABILITY OF THE NORM 1741

and we have

⟨y, jyn − jxn⟩ ≤ ϵ.

Using ⟨yn, jxn⟩ → 1 and interchanging the roles of xn and yn above (then use (3.2)
with x := yn), we can similarly derive

⟨y, jxn − jyn⟩ ≤ ϵ.

Thus we have shown that |⟨y, jxn − jyn⟩| ≤ ϵ, which contradicts (3.1). (ii)⇒(iii) is
obvious.

(iii)⇐(i). As in the proof (“(a)⇒ (b)”) of Proposition 2.6, for any x, y ∈ SX , set

x
λ
:= x+λy

∥x+λy∥ ∈ SX and jx
λ
=

jx+λy

∥x+λy∥ ∈ SX∗ . Suppose that there exists a support

mapping x 7→ jx which is norm-to-weak∗ uniformly continuous from SX to SX∗ ,
i.e., for given ϵ > 0, there exists η := η(ϵ) > 0 such that

(3.3) u, v ∈ SX , ∥u− v∥ < η ⇒ |⟨z, ju − jv⟩| < ϵ, z ∈ X.

Since xλ → x as λ → 0, for the η > 0, there exists δ := δ(η) > 0 such that

0 < |λ| < δ ⇒ ∥xλ − x∥ < η

and from (3.3) it follows that |⟨z, jxλ
− jx⟩| < ϵ for all z ∈ X. On the other hand,

from Proposition 2.4 we observe that∣∣∣∥x+ λy∥ − ∥x∥
λ

− ⟨y, jx⟩
∣∣∣ ≤ ∣∣∣⟨y, jx+λy⟩

∥x+ λy∥
− ⟨y, jx⟩

∣∣∣
=

∣∣∣⟨y, jx+λy

∥x+ λy∥
⟩
− ⟨y, jx⟩

∣∣∣ = |⟨y, jx
λ
− jx⟩| < ϵ

for all λ ̸= 0 and x, y ∈ SX , which directly implies that

x, y ∈ SX , 0 < |λ| < δ ⇒
∣∣∥x+ λy∥ − ∥x∥ − λ⟨y, jx⟩

∣∣ < ϵ|λ|.

Since (2.2) of Remark 2.2 is fulfilled, the norm of X is uniformly Gâteaux differen-
tiable. □

Lemma 3.2. If a support mapping x 7→ jx is norm-to-weak∗ uniformly continuous
from SX to SX∗, then the support mapping x 7→ jx is norm-to-weak∗ uniformly
continuous on bounded sets of X.

Proof. Suppose not, (3.1) is placed with

xn, yn ∈ D, ∥xn − yn∥ <
1

n
but |⟨y, jxn − jyn⟩| ≥ 2ϵ for some y ∈ SX ,

where M := supx∈D ∥x∥ > 0. If xn → 0, then yn → 0 too. Then it yields a
contradiction as

0 < 2ϵ ≤ |⟨y, jxn − jyn⟩| ≤ ∥y∥ ∥jxn − jyn∥ ≤ ∥y∥(∥xn∥+ ∥yn∥) → 0.

So, let xn ̸→ 0. By passing to a subsequence if necessary, we may assume that
∥xn∥ ≥ α and also ∥yn∥ ≥ α because of ∥xn∥ − ∥yn∥ ≤ ∥xn − yn∥ < 1/n. Setting
un := xn/∥xn∥, vn := yn/∥yn∥ ∈ SX ; then

∥un − vn∥ =
∥∥∥∥yn∥xn − ∥xn∥yn

∥xn∥ ∥yn∥

∥∥∥
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≤ 1

α
[|∥yn∥ − ∥xn∥| ∥xn∥+ ∥xn∥ ∥xn − yn∥]

≤ 1

α
M(|∥yn∥ − ∥xn∥|+ ∥xn − yn∥) → 0.

On the other hand, from property (ii) of a support mapping we have jun = jxn
∥xn∥ , jvn =

jyn
∥yn∥ ∈ SX∗ and an easy computation immediately gives

|⟨y, jun − jvn⟩| =
∣∣∣⟨y, jxn

∥xn∥
− jyn

∥yn∥
⟩∣∣∣

=
∣∣∣ 1

∥xn∥
⟨y, jxn − jyn⟩ −

( 1

∥yn∥
− 1

∥xn∥

)
⟨y, jyn⟩

∣∣∣
≥

∣∣∣ 1

∥xn∥
⟨y, jxn − jyn⟩

∣∣∣− ∣∣∥xn∥ − ∥yn∥
∣∣

∥xn∥ ∥yn∥
· |⟨y, jyn⟩|

≥ 1

M
|⟨y, jxn − jyn⟩| −

∥xn − yn∥
α

∥y∥

≥ 1

M
|⟨y, jxn − jyn⟩| −

∥y∥
nα

≥ 2ϵ

M
− ϵ

M
=

ϵ

M
.

for all n > M∥y∥/(αϵ). We have shown that there exists ϵ > 0 and sequences {un}
and {vn} in SX such that

∥un − vn∥ → 0 but |⟨y, jun − jvn⟩| ≥
ϵ

M
for some y ∈ SX .

Therefore, x 7→ jx is not norm-to-weak∗ uniformly continuous from SX to SX∗ . □

Remark 3.3. Note that the converse of the above lemma is obvious.

Now, by virtue of the above two Lemmas, we also give an affirmative answer to
the first question.

Theorem 3.4. The norm of X is uniformly Gâteaux differentiable if and only if
every duality mapping J : X → X∗ is single-valued and norm-to-weak∗ uniformly
continuous on bounded subsets of X.

Proof. Since J is single-valued, it follows from Remark 2.5 that J is a support
mapping of X \ {0} to X∗ \ {0}. Use Lemma 3.1 and 3.2 to induce the required
conclusion. □

Next, we begin with the following interesting result for weak compactness (equiv-
alently, weakly sequential compactness) of a subset A in reflexive Banach spaces.

Lemma 3.5. Let X be a reflexive Banach space, let A ⊂ X be weakly compact, and
let δ = diamA = supx,y∈A ∥x − y∥. Then there are two diametral points x, y ∈ A
such ∥x− y∥ = δ.

Proof. Since A is weakly compact, it is bounded, i,e., δ < ∞. Find then two
sequences (xn), (yn) ⊂ A so that ∥xn − yn∥ → δ. Furthermore, there are two
subsequences (xnk

) and (ynk
) of them such that xnk

⇀ x ∈ A and ynk
⇀ y ∈ A. To

reach the conclusion, it suffices to show that ∥x − y∥ ≥ δ. Indeed, if δ = 0, since
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A is a singleton set, the conclusion is obvious. Assume δ > 0, choose ϵ > 0 with
0 < ϵ < δ; since ∥xnk

− ynk
∥ → δ, there exists K = Kϵ ∈ N such that

0 < δ − ϵ < ∥xnk
− ynk

∥ < δ + ϵ, ∀ k ≥ K.

For each (fixed) k ≥ K, using the Hahn-Banach theorem, there exists gk ∈ X∗ such
that ∥xnk

− ynk
∥ = gk(xnk

− ynk
) and ∥gk∥ = 1. Then, since xnk

− ynk
⇀ x− y, it

follows that
gi(x− y) = lim

k→∞
gi(xnk

− ynk
), ∀ i ≥ K.

Taking supi≥K on both sides, we easily compute

sup
i≥K

gi(x− y) = sup
i≥K

lim
k→∞

gi(xnk
− ynk

)

≥ lim
k→∞

gk(xnk
− ynk

) = lim
k→∞

∥xnk
− ynk

∥ = δ.

Clearly, x ̸= y because if x = y, it follows from the inequality above that 0 = δ,
which contradicts to δ > 0. Then it follows that

∥x− y∥ = sup
∥f∥=1

f(x− y) ≥ sup
i≥K

gi(x− y) ≥ δ,

completing the proof. □
Proposition 3.6. Let X be a reflexive Banach space and let A ⊂ X be closed and
f -uniformly convex with f(t) = 1

2 t, t ≥ 0. Then A is a closed ball with its radius
1
2diamA.

Proof. If A = X, it is clear that the conclusion remains true. Unless A = X, since A
is uniformly convex, it is bounded, i.e., δ = diamA < ∞. Since A is bounded closed
convex, it is weakly compact. From Lemma 3.5 there exist two diametral points
x, y ∈ A such ∥x− y∥ = δ. Since A is convex, x+y

2 ∈ A too. Finally, we claim that

A = B
(x+y

2 , 12δ
)
. It is clear that A ⊃ B

(x+y
2 , 12δ

)
by (1.3). The converse inclusion

is clear because the length of the segment [x, y] ⊂ A is the diameter of A. □
Now we shall establish that Proposition 1.2 still remains true on reflexive strictly

convex Banach spaces which satisfy the Kadec-Klee property.

Proposition 3.7. Let X be a reflexive strictly convex Banach space with the Kadec-
Klee property, and let A ⊂ X be closed and f -uniformly convex with f(t) = 1

2 t,
t ≥ 0. If d(xn, A) → 0 and xn ⇀ x ∈ ∂A, then xn → x.

Proof. Since A is closed convex, d(xn, A) = ∥xn − PAxn∥ → 0, where PA denotes
the metric projection of X onto A. First, assume that xn ̸∈ A ultimately, i.e.,
there exists n0 ∈ N such that xn ̸∈ A for all n ≥ n0. Then, PAxn ∈ ∂ A for
n ≥ n0. Since A is bounded, δ = diamA < ∞. From Proposition 3.6, it follows
that A = B

(x0+y0
2 , 12δ

)
, where x0, y0 ∈ A and ∥x0 − y0∥ = δ. Noticing that

B
(
0, 12δ

)
= B

(x0+y0
2 , 12δ

)
− 1

2(x0+y0), and x, PAxn ∈ ∂ A for all n ≥ n0, we observe

that
∥∥PAxn − 1

2(x0 + y0)
∥∥ = 1

2δ =
∥∥x− 1

2(x0 + y0)
∥∥ for all n ≥ n0. Considering the

sequence {xn− (x0+ y0)/2} instead of {xn}, we readily see that xn− (x0+ y0)/2 ⇀
x− (x0 + y0)/2 and

lim
n→∞

∥xn − (x0 + y0)/2∥ = lim
n→∞

∥PAxn − (x0 + y0)/2∥ = ∥x− (x0 + y0)/2∥,
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which concludes that xn − 1
2(x0 + y0) → x− 1

2(x0 + y0) by virtue of the Kadec-Klee
property of X; hence xn → x. Next, assume that xn ∈ A ultimately. Then, since
xn− (x0+y0)/2 ⇀ x− (x0+y0)/2 and ∥xn− (x0+y0)/2∥ ≤ 1

2δ = ∥x− (x0+y0)/2∥
ultimately, we easily obtain that

lim
n→∞

∥xn − (x0 + y0)/2∥ = ∥x− (x0 + y0)/2∥.

The similar argument asserts that xn → x. Finally, consider the remaining case,
that is, one subsequence of {xn} is in A and the other is not in A. In this case we
similarly concludes that xn → x by the help of previous two cases. This completes
the proof. □
Corollary 3.8. Let X be a uniformly convex Banach space and let A ⊂ X be closed
and uniformly convex. If d(xn, A) → 0 and xn ⇀ x ∈ ∂A, then xn → x.

4. A remark

Finally, we recall the following

Proposition 4.1 (See Problem 4.3.5 of [9]). If the norm of X∗ is Fréchet differen-
tiable, then X is reflexive, strictly convex and satisfies the Kadec-Klee property.

We found in the book [11] that the converse of Proposition 4.1 still remains true.
But, we would like to suggest an easy short proof for the sake of convenience. By
interchanging the roles of X and X∗ in Proposition 4.1, we directly observe the
following corollary in reflexive Banach spaces.

Corollary 4.2. Let X be a reflexive Banach space. If the norm of X is Fréchet
differentiable, then X∗ is strictly convex and satisfies the Kadec-Klee property.

Proposition 5.2 of [2] insists that the converse of Corollary 4.2 holds. Therefore
we summarize

Proposition 4.3. Let X be a reflexive Banach space. Then X∗ is strictly con-
vex and satisfies the Kadec-Klee property if and only if the norm of X is Fréchet
differentiable.

Since X is reflexive if and only if X∗ is reflexive, and the Fréchet differentiability
of the norm of X∗ implies the reflexivity of X∗, by interchanging the roles of X
and X∗ in Proposition 4.3 again, we conclude that the converse of Proposition 4.1
holds.

Proposition 4.4. X is reflexive, strictly convex and satisfies the Kadec-Klee prop-
erty if and only if the norm of X∗ is Fréchet differentiable.
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