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ABSTRACT. The split common fixed points problem associated with the pseudo-
contractive mappings is studied. We present an iterative using Ishikawa iterative
techniques. Strong convergence analysis is shown.

1. BACKGROUND AND MOTIVATION

1.1. Fixed point problem. Many practical problems can be formulated as a fixed
point problem

(1.1) x=Tx

where T is a nonlinear operator (defined in a metric or normed space). The set of
solutions Fiz(T) of this equation are called the set of fixed points of 7. If T' is a self-
contraction defined on a complete metric space C', Banach’s contraction principle
establishes that T has a unique fixed point and, for any = € C, the sequence of
iterates, {T"z}, called in general Picard iterates, converges strongly to the fixed
point of T'. However, if the mapping T is a nonexpansive self-mapping on C, then
it is not true, in general, that T has a fixed point. One must assume additional
conditions on 7" and/or the underlying space to ensure the existence of fixed points
of T and, even when a fixed point of T exists, the sequence of iterates, {T"z},
does not converge, in general. Bruck [2] is a nice survey up to the year 1983 about
the asymptotic behavior of nonexpansive mappings in Hilbert and Banach spaces.
It is the connection to the geometry of Banach spaces and the theory of maximal
monotone and m-accretive operators (hence nonlinear evolution equations) that
makes nonexpansive mappings one of the major and most active research areas of
nonlinear analysis since mid-1960’s. Of particular importance in recent years is the
study of iterative methods for finding a solution of (1.1) when 7" is a nonexpansive
self-mapping of a closed convex subset C' of a Hilbert or Banach space.

There are basically three types of iterative algorithms which have been investi-
gated: Mann’s algorithm, Halpern’s algorithm and Ishikawa’s algorithm.
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Mann’s algorithm ([14]). For the initial guess xy € C, the well known Mann
iteration is defined by

(1.2) Tnt1 = apZn + (1 — o) Txp,n € N and o, € [0,1].

Halpern’s algorithm ([8]). For the initial guess x9 € C' and anchor u € C arbi-
trary (but fized), the Halpern iteration is defined by

(1.3) Tp+1 = apu~+ (1 — ap)Tzp,n € N and «y, € [0,1].

Ishikawa’s algorithm ([11]). For the initial guess xo € C, the well known Mann
iteration is defined by

(1.4) Tny1 = (1 —ap)zn + anT((1 — Bn)xn + BnT2y),n €N,

where a,, € [0,1] and 8, € [0, 1].

In [18], Reich stated that if the underlying space is uniformly convex and has a
Frechet differentiable norm, and if > ~>7 | a, (1 — ay,) = 00, then the sequence {z,,}
defined by Mann’s algorithm (1.2) converges weakly to a fixed point of T' (assuming
that T has fixed points). However, the counterexample of Genel and Lindenstrauss
( [12]) shows that Mann’s algorithm can have weak convergence only (in infinite
dimensional spaces). At the same time, Mann’s algorithm can not in general be
applicable for the iterative construction of fixed points of the pseudocontractive
mappings (see [6]).

Halpern’s algorithm can have strong convergence provided the underlying space
is smooth enough. There are a large number references associated with the iterative
approach to the fixed points of nonexpansive mappings, see, for instance, [1,5,15,
19-21,24].

The importance of Ishikawa’s algorithm lies in the fact that it can be be applicable
for the iterative construction of fixed points of the pseudocontractive mappings. In
this respect, the following result due to Ishikawa [11] is important.

Theorem 1.1. Let C' be a convexr compact subset of a Hilbert space H and let
T : C — C be an L-Lipschitzian pseudocontractive mapping with Fix(T) # (.
Assume limy, o0 B, = 0 and > 77| By, = 00. Then the sequence {x,} generated
by (1.4) converges strongly to a fixed point of T'.

Ishikawa’s algorithm has strong convergence under the assumption that the un-
derlying space C'is a compact set. Very recently, Zegeye, Shahzad and Alghamdi [25]
further studied the convergence analysis of the Ishikawa iteration (1.4). They
proved ingeniously the strong convergence of the Ishikawa iteration without the
compactness assumption. However, we have to assume that the interior of Fiz(T)
is nonempty. This appears very restrictive since even in R with the usual norm,
Lipschitz pseudocontractive maps with finite number of fixed points do not enjoy
this condition that intFiz(T) # (). It is therefore an interesting problem to in-
vent iterative algorithms that can generate sequences which converge strongly to
the fixed point of pseudocontractions without any additional assumptions on the
underlying spaces and operators. This is one of our main motivations.
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1.2. Split fixed point problem. Let H; and Hs be two real Hilbert spaces. Let
A : Hi — H> be a bounded linear operator with its adjoint A*. Let S : Hy — Hy
and T : Hi — H; be two nonlinear mappings. Now we consider the following
problem:

(1.5) Find z* € Fiz(T) such that Az* € Fiz(S).

This problem referred as the split fixed points problem was first introduced by
Censor and Segal [4]. The split fixed points problem is a generalization of the split
feasibility problem and of the convex feasibility problem.

For solving (1.5), Censor and Segal [4] invented an algorithm which generates a
sequence {x,} according to the iterative procedure:

(1.6) Tpy1 = T(xy —yA (I — S)Azy),n € N.
Moudafi [16] relaxed (1.6) to the following form

{yn =z, — YA (I — S)Ax,,

1.7
( ) Tn+1 = (1 - an)@/n + anT(yn)an e N,

where S and T are demicontractive operators.

Note that (1.6) and (1.7) have weak convergence. Some related work, see, for
example, [3,7,9,10,17,22,26]. Our another purpose of this paper is to construct
iterative algorithm for solving the split fixed point problem (1.5). Our motivation
is based on Ishikawa’s algorithm (1.4) and Moudafi’s algorithm (1.7). We devote to
study a class of pseudocontractive mappings which is more general than the class
of demicontractive operators. Our results extend and improve the corresponding
results in the literature.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product (-, -) and norm ||-||, respectively.
Let C be a nonempty closed convex subset of H.
Recall that a mapping T : C' — C'is called pseudocontractive if
(Te = Ty,z —y) < [lz -y
for all x,y € C. It is well-known that T is pseudocontractive if and only if
(2.1) 1Tz = Ty|* < |l —ylI* + (I = T)a — (I = D)yl

for all z,y € C. A mapping T : C' — C'is called L-Lipschitzian if there exists L > 0
such that
|7 — Ty|| < Ljiz — y]|
for all x,y € C. If L =1, we call T is nonexpansive.
For all z,y € H, the following conclusions hold:

(2.2) [tz + (1= t)yl|* = tll=[* + (1 = ) [lyll* — (1 = )]]= — y|*,
where t € [0, 1].

(2.3) Iz + yll* = [l2[* + 2(2, ) + [lylI*,

and

(2.4) =+ yl? < ll2l* + 2(y, 2 + y).
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Lemma 2.1 ([27]). Let H be a real Hilbert space, C' a closed convex subset of H.
Let T : C'— C be a continuous pseudocontractive mapping. Then

(i) Fiz(T) is a closed convex subset of C,

(ii) (I —T) is demiclosed at zero.

The following lemmas can be found in [28]. For the completeness, we give the
proofs.

Lemma 2.2. Let H be a Hilbert space. Let T : H — H be an L-Lipschitzian
mapping with L > 1. Then,

Fiz(T) = Fiz(T((1 — B)I + BT))

for all g € (0, %)

Proof. As a matter of fact, Fiz(T) C Fiz(T((1 — 8)I + ST)) is obvious. Next, we
show that Fiz(T((1 — p)I + 5T)) C Fix(T).
Take any z* € Fiz(T((1 — B)I + BT)). We have T'((1 — B)I + BT)z* = x*. Set
S =(1-B)I+ BT. We have T'Sx* = z*. Write Sx* = y*. Then, Ty* = z*. Now
we show z* = y*. In fact,
" =yl = Ty" — Sz
=|Ty" — (1 - B)z" — BTz"||
= BIITy" — Ta*|
< BL|ly* — =*|.
Since, 8 < +, we deduce y* = z* € Fiz(S) = Fiz(T). Thus, 2* € Fiz(T). Hence,
Fix(T((1-p5)I+BT)) C Fix(T). Therefore, Fix(T((1—5)I+6T)) = Fiz(T). O

Lemma 2.3. Let H be a Hilbert space. Let T : H — H be an L-Lipschitz pseudo-
contractive mapping with Fix(T) # 0. Then, for all x € H and all * € Fix(T),
we have

11 —a)z+aT((1 = Bz + fTx) — 27| < |lz— 27,

1
where 0 < a < B < ISR

Proof. Since x* € Fix(T), we have from (2.1) that

IT((1 = B)I + BT)z — 2”|* < [|(1 = B)(z — 2) + B(Tz — 2™)|*

(2.5) 2
+ |1 = B)z + BTz — T((1 — Bz + BT2)],

and

(2.6) 1Tz — 2*||? < ||z — 2*|* + | Tz — z|?,

for all z € H.
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By (2.5), (2.2) and (2.6), we obtain

IT((1 = B)I + BTz — 2™ |

< (1= B) (@ —2*) + B(Tz — )|
+ (1= B)a + BTz — T((1 - B)I + BT)x|?

= (1= B)(x — T((1 — B)z + BTx)) + B(Tz — T((1 — B)z + fTx))|?
+I(1 = B)(z — a*) + B(Tx — 27)|

= (1=B)llz = T((1 = )+ pT) || + BTz — T((1 — Bz + fTx)|?
—B(1=B)llz = Tx|* + (1 — B)llz — 2*|* + B T — 2*|?
— B(1 = B)||x — Tx|?

< (1= B)llz = 2*|* + B(l|lz — 2*|]* + ||« — T|?)
—28(1 = B)|z — Tz|* + (1 — B) |z — T((1 — Bz + BTx)|
+ BTz — T((1 - B)x + BT=)|>.

Since T is L-Lipschitzian and x — ((1 — 8)z + 8Tx) = S(x — T'x), we have
[Tz —T((1— Bz + pTz)|| < BL||lx — Tz|.
Therefore,

IT((1 = B)a + pTx) — =*|?

< (1=B)z—=**+ B(|z — 2*||* + |z — T=||*)
—28(1 = B)llz — Tz|* + (1 - B)|lz = T((1 — B)I + BT)z|?
+B3L2Hx—TxH2

= [lz — 2** + (1 = B)l|lz = T((1 = B)I + BT)z|>
—B(1—28 - BL%)|z — Tx|>.

Since 8 < ﬁ, we deduce
1-28—8%L% > 0.
From (2.7), we can deduce

IT((1 = B)x + pTx) — «*|?

for all x € H and z* € Fix(T).
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By (2.2) and (2.8), we have
I(1 = @)z + aT((1 = B)a + fTx) — z*|
= [(1 = a)(z —a*) + T ((1 = B)a + BTx) — z*)||?
= (1 - allz — 2| + | T((1 — B)z + BTz) — z*||?
—a(l = a)|[|T((1 - B)x + fTx) — ||
< afllz —2*|* + (1 = B)lla = T((1 - B)z + 5T')|]%)
+(1=a)z—a2"* — a(l = )IT((1 = B)a + pTz) — ||
= |l — 2" + ala = B)|T((1 — )z + fTz) — ||
This together with o < 8 implies that
11 =)z +aT((1 = Bz + pTz) — 2| < [z — 27|
O

Lemma 2.4. Let H be a Hilbert space. Let T : H — H be an L-Lipschitzian
mapping with L > 1. If I —T is demiclosed at 0, then I —T((1 — B)I + BT) is also
demiclosed at 0 when B € (0, 1).

Proof. Let the sequence {z,,} C H satisfying x,, = & and z,—T((1— )1+ 5T )z, —
0. Next, we will show that z € Fiz(T((1 — 8)I + BT)).

From Lemma 2.2, we only need to prove that € Fiz(T). As a matter of fact,
since T' is L-Lipschizian, we have

|20 — Twpl| < ||on — T((1 = B) + BT)xy|| + [ T((1 = B) + BT )xn — Ty ||
<|lzn —T((1 = B)I + BT)xy|| + BL||xy — Tzy |-
It follows that

|20 — Tz || < |zn = T((1 = B) + BT)zn .

1
1—-p8L
Hence,
nhﬁrglo |xr, — Tzy| = 0.

Applying the demiclosedness of T' (Lemma 2.1), we immediately deduce & € Fixz(T).
O

Lemma 2.5. ( [23]) Assume that {a,} is a sequence of nonnegative real numbers
such that
an+1 < (1 —yp)an + 0p,n €N,

where {yn} is a sequence in (0,1) and {d,} is a sequence such that
(1) Z?ﬂ Tn = 093
(2) limsup,, % <0 or Y > |0n] < o0.

Then lim,,_,oo an = 0.

Lemma 2.6. ( [13]) Let {wy,} be a sequence of real numbers. Assume {wy} does
not decrease at infinity, that is, there exists at least a subsequence {wy,} of {wy}
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such that wy, < wp,4+1 for all k> 0. For every n > Ny, define an integer sequence
{r(n)} as

T(n) =max{i <n:wp, < Wp,;4+1}-

Then T(n) — oo as n — oo and for all n > Ny

max{wT(n),wn} < w‘r(n)+1.

3. MAIN RESULTS

Let Hi and Hs be two real Hilbert spaces. Let A : Hi — Hs be a bounded
linear operator with its adjoint A*. Let f : Hy — H; be a p-contraction. Let
B : Hy — Hj be a strong positive linear bounded operator with coefficient & > 2p.
Let S : Hy — Hs be a nonexpansive mapping and let 7" : H; — H; be an L-
Lipschitzian pseudocontractive mapping with L > 1.

We use I' to denote the set of solutions of (1.5), that is,

I'={z"|z" € Fiz(T), Az" € Fix(5)}.

In the sequel, we assume I' # ().
Now, we present our algorithm for finding z* € I

Algorithm 3.1. For z¢p € H; arbitrarily, let {z,,} be a sequence defined by:

3.1) Up = anf(xn) + (I — anB)(zy — 0A*(I — S)Axy,),
‘ T+l = (1 - ﬂn)un + ﬂnT((l - 'Yn)un + ’YnTun)v n e N7

where {ay, }nen, {Bn}nen and {7, }nen are three real number sequences in (0,1) and
J is a constant in (0, W)

Theorem 3.2. Assume the following conditions are satisfied:
(C1) : limy, 00 vy = 0y
(C2) : Y27 @y = 005
) 1
Then the sequence {x,} generated by algorithm (3.1) converges strongly to x* =

Pr(f+1— B)z*.

Proof. Let x* = Pp(f + I — B)x*. Then we have x* € Fix(T) and Ax* € Fix(S5).
Since S is nonexpansive, we get

|SAz, — Az*||* = ||SAz, — SAz*|?
(3.2) )
< ||Az,, — Az™||*.

From (2.8), we deduce

IT((1 = Yn)un + Tun) — ¥ < |luy — 2*|?
+ (1 =) Jun — T((1 = Y )un + wTun) ||
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and
lTna1 — x*HQ = I(1 = Bn)un + BT (1 — yn)un + ¥ Tup) — x*Hz
= (1= Bn)llun — =*||* + Bull T((1 = Y )tn + Tun) — z*||>

(3.3) — Bn(1 = Bu)llun — T((1 — v )un + 'YnTun)Hz
< lun — $*u2 — By = Bu)IT((1 = yn)un + YT un) — CC*Hz
< [fup — 2%

Note that

[un — 2™ || = llan(f(2n) = Bx™) + (I — anB)(wn — 2" + 0A(S Ay — Awy))||
< ap||f(xn) — Bx™|| + || I — anBl|||xn — 2" + dA* (S Az, — Axy,)||
(3-4) < anllf(zn) = f@)| + anl f(2") — Ba™||
+ (1 — anl)||zn, — 2 + SA*(SAxy, — Axy)||
< anpllzn — 2" + anl| f(2") — Ba™|
+ (1 — anl)||zn, — ™ + SA* (S Axy, — Axy)||.
By (2.3), we have

(35) |20 — 2% + SA*(SAzy, — Azy)||? = ||y — 2*||? + 6%||A* (S Ay, — Axy)|?
+ 20{x,, —x*, A*(S Az, — Ax,)).

Since A is a linear operator with its adjoint A*, we have

(xy — 2", A*(SAx,, — Axy))

= (A(xy, — 2¥), SAz), — Axy)

= (Az, — Az™ + SAx,, — Az, — (SAx,, — Axy), SAx, — Azy,)

= (SAx, — Ax*,SAx, — Ax,) — ||SAz, — Az,|?>.

(3.6)

Again using (2.3), we obtain

(SAx,, — Az*,SAx,, — Azy,)
(8.7) = %(HSA% — Az*||® + ||SAz, — Az, — || Az, — Az¥|?).
From (3.2), (3.6) and (3.7), we get

(xy —x*, A*(SAzy, — Axy))

= SIS Az, — ™| + |S Az, — Azu® | Azy — A2*[?)

— |S Az, — Awy|?
B < L Awy = A0+ A, — Az P — Az, - A1)
— |SAzy, — Awy|?

_ —%HSAmn — Aan.
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So,
|2n — 2 + SA*(SAz, — Axy)||? < ||zn — 2*|* + 6%|| Al S Axy, — Az, ||
1 2
+ 25( — 5S4z, — Az )
= [lon — 2*|* + (0% A|I* = 8)[|S Ay, — Az

< Jlan — "

(3.9)

It follows that

(3.10) |xn —x* + 0A* (SAz), — Axy)|| < ||zn — 27|

Substituting (3.10) into (3.4) to deduce

[un — 2%|| < anpllzn — 27| + an| f(z7) = Ba™|| + (1 — an)[len — 27|
= an|[f(27) = Ba™[| + [1 = (€ = pan]|zn — 2.

From (3.3) and (3.11), we get

(3.11)

[t — 2| < [lun — 27|
< apllf(2") = Bz™[| + [1 = (§ — p)aw]|lzn — 27|
o IIf(@*) — Ba™|]

< max{”xn -

The boundedness of the sequence {x,} yields.

Next, we consider two possible cases.

Case 1. Assume there exists some integer m > 0 such that {||z,, — z*||} is
decreasing for all n > m. In this case, we know that lim, o ||z, — *| exists.
Returning to (3.4), we have

Znr1 = 2*(* < [fun — 2|
< [anpllzn — 2% + o || f(2") — B™||
+ (1 = and) ||z, — 2% 4+ 6A*(SAz, — Az,)|]?
= az(pllen — 2| + || f(z*) — Bz*|))?
+ 2an(1 — and)(pllzn — 27| + [ f(z%) — Bz™|)
X ||zp — " + 0A*(SAxy, — Axy)||
+ (1 — pé)?||wy, — 2% + 6A* (S Az, — Azy) |
< an(pllen — 2| + [|f(2%) = Bz™[))B|lzn — 27| + || f (") — Bz™[])
+ (1 — apd)||zy — x* + 6A*(SAz, — Az,)|?
< May + (1 = apé)||lzn — ||
+ (1= an&)(8|Al* = )| SAwn — Awnlf?
< Moy, + ||z, — z¥|?,

(3.12)

where M > 0 is a constant such that
sup{(pllzn — ™| + | f(z*) — Bz™||)(3||lzn, — 2™ || + [| f(2*) — Bz™[|)} < M.
n
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Hence,
(1= né)(6 = S| AIP) IS Azn — Azy|* < (1= anl)||wn — 2*[° = [|ans1 — 2|
+Ma,.
Since limy, o || zn — x*|| exists and «,, — 0, we obtain
(3.13) |SAzy — Azyl| = 0.
Note that
lun — znl| = ||0A*(S — I)Azy, + ap(Bxy, — 0BA*(I — S)Axy, — f(xn))||
< 0||Al|||SAxy, — Axy|| + an||Bxy — IBA*(I — S) Az, — f(2n)]]-
It follows from (3.13) that
(3.14) 7}1_{20 [#n — unl| = 0.

From (3.3) and (3.12), we deduce
|1 — CU*HQ < lun — 1’*H2 = Bn(m = Bu)llun = T((1 = yn)un + 'YnTUn)HQ
< lzn - 37*H2 + anM — Bn(vn — Bp)lun — T((1 — yn)un + ’YnTUn)”Q-
It follows that
B (Y = Ba)llun — T((L = vn)un + 30 Tun)|* < |l — 2 = lensr — 2*[* + an M.
Therefore,
(3.15) JimJup = T((1 = An)un + yaTun)|| = 0.
Observe that
[un = Tun|| < [lup = T((1 = yn)un + WmTun) || + 1T((1 = )un + 1nTun) — Tun |
< lun = T((1 = v)un + 1nTun) || + Lynllun — Tuql|-

lim
n—oo

Thus,

1
|tn, — Tup || < 1- Ly |wn — T((1 = Yn)un + ¥ Tun)|.

n

This together with (3.15) implies that
(3.16) lim ||uy, — Tuy,| = 0.

n—o0
Now, we show that
limsup(f(z*) — Bz*,u,, — z*) <0.

n— oo
Choose a subsequence {uy,} of {uy} such that

(3.17) limsup(f(z*) — Ba*,up —2%) = lim (f(2") — Ba”, un, — o7)

1—00
Since the sequence {uy, } is bounded, we can choose a subsequence {Unzj} of {up, }
such that Up; — z. For the sake of convenience, we assume (without loss of
generality) that u,, — z. Consequently, we derive from the above conclusions that
(3.18) Tp, — z and Ax,, — Az.
Applying Lemmas 2.1 and 2.4, we deduce
Az € Fiz(S) (by (3.13) and (3.18)) and z € Fiz(T) (by (3.16) and (3.18)).
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That is to say, z € I.

Therefore,
limsup(f(z*) — Bx*,u, — 2*) = lim (f(z*) — Bz, up, — z*)
n—oo 1—00
(3.19) = lim (f(z*) — Bx™,z — x™)
1—00
<0.

Using (2.4), we have
lun — 2*(|* = (I = anB) (25 — 6A*(I = S)Azn — 27) + an(f(xa) — Bz")||?
< (1= and)l|lwn — 0A*(I — S)Azy, — *|?
+ 200, (f(zp) — Bx™, up, — x*)
< (1= and)llzn — JJ*H2 + 200, (f(
= (1 - ané)llzn — 27|° + 2an{f(
(3.20) + 20, (f(z") — Bx™, up — x¥)
= (1 — and)llzn — 2*[* + 2anpllzn — 2*||||un — 2*||
+ 20, (f(z") — Bx™,up — x¥)
< (1= and)llzn — 2" + anpllzn — 27|* + anpllun — 2|
+ 20, (f(x*) — Bz, up, — x*).

) — Bx*,u, — x¥)

) = f(@"), un — %)

Tn
Tn

Therefore,
|ni1 — 2% < up — 22
({ B Qp)Oén *(|2
(3.21) <|i- T,y e
2a * * *
() = Bt ).

Applying Lemma 2.5 and (3.19) to (3.21), we deduce z,, — z*.
Case 2. Assume there exists an integer ng such that

[2ng — 2" < [[@ng 1 — 7.
Set wy, = {||xn — 2*||}. Then, we have
Wno < Wng+1-
Define an integer sequence {7,} for all n > ng as follows:
7(n) = max{l € Njng <1 <n,w; <wy1}.
It is clear that 7(n) is a non-decreasing sequence satisfying

nh_)rgo T(n) = oo

and
Wr(n) < Wrin)+1>
for all n > nyg.
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By the similar argument as that of Case 1, we can obtain

n—oo
and
nlggo Hur(n) - Tuf(n) H =0.
This implies that
ww(uf(n)) crl.
Thus, we obtain
(3.22) limsup(f(z*) — Bx™, urn) — 2*) < 0.
n—oo

Since wr(n) < Wr(n)+1, we have from (3.21) that

-2 T(n
(€ —2p)arm) 2

2 2
w San < |1- T(n
r) S Wiy )

(3.23)
2a7(n) * * *
+ mﬁ(fﬂ ) = Ba", tr(n) — 7).
It follows that
2 N " *

Combining (3.22) and (3.24), we have

limsupw; () <0,

n—oo
and hence
(3.25) nh_)n;o Wr(n) = 0.

By(3.23), we obtain

. 2 . 2
lim sup Wiyl < lim sup Wi ()
n—o0 n—oo

This together with (3.25) imply that
nh_)rréo Wr(n)+1 = 0.
Applying Lemma 2.6 to get
0 < wy < max{wr(n), Wr(n)+1}-
Therefore, w, — 0. That is, x,, — =*. This completes the proof. O
Algorithm 3.3. For z¢p € H; arbitrarily, let {z,,} be a sequence defined by:
(3 26) Un = anf(xn) + (1 - O‘n)(l‘n - 6"4*([ - S)Axn)7
. Tn+1 = (1 - Bn)un + 6nT((1 - ’Yn)un + PYnTun% n < N,

where {ay }nen, {Bn}nen and {7, }nen are three real number sequences in (0, 1) and
J is a constant in (0, W)
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Corollary 3.4. Assume the following conditions are satisfied:
(C1) : limy, 00 vy = 0
(C2): >0y = 00;

(C3):0<a<ﬁn<c<vn<b<ﬁ.

Then the sequence {xy} generated by algorithm (3.26) converges strongly to x* =
Prf(z”).

Algorithm 3.5. For zy € H; arbitrarily, let {z,,} be a sequence defined by:

Up = (1 — ap)(xy — A" (I — 5)Axy,),

3.27
( ) Tn+1 = (1 - Bn)un + BnT((l - 'Vn)un + ’YnTun)a n e N,

where {ay, bnen, {Bn}nen and {7, }nen are three real number sequences in (0, 1) and
J is a constant in (0, W)

Corollary 3.6. Assume the following conditions are satisfied:
(C1) : limy, 00ty = 0y
(C2) : Y22 @y = 005
1
Then the sequence {z,} generated by algorithm (3.27) converges strongly to x* =

Pr(0) which is the minimum norm element in I
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