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D = {x ∈ H : ∥x∥ ≤ 2} and C = {x ∈ H : ∥x∥ ≤ 3}. Define a mapping S : C → C
as follows:

Sx =

{
0, x ∈ D,

PEx, x /∈ D.

Then S is a nonspreading mapping which is not continuous. Motivated by gen-
eralized hybrid mappings, Kawasaki and Takahashi [9] defined a more broad class
of nonlinear mappings than the class of generalized hybrid mappings. A map-
ping T from C into H is said to be widely more generalized hybrid if there exist
α, β, γ, δ, ε, ζ, η ∈ R such that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2(1.2)

+ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for all x, y ∈ C. Such a mapping T is called (α, β, γ, δ, ε, ζ, η)-widely more general-
ized hybrid. An (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping is gener-
alized hybrid in the sense of Kocourek, Takahashi and Yao [10] if α+β = −γ−δ = 1
and ε = ζ = η = 0. A generalized hybrid mapping with a fixed point is quasi-
nonexpansive. However, a widely more generalized hybrid mapping is not quasi-
nonexpansive generally even if it has a fixed point. For a mapping T : C → H, we
denote by F (T ) the set of fixed points of T . In 1992, Wittmann [24] proved the
following strong convergence theorem of Halpern’s type [6] in a Hilbert space; see
also [18] and [22].

Theorem 1.1. Let C be a nonempty, closed and convex subset of H and let T :
C → C be a nonexpansive mapping with F (T ) ̸= ∅. For any x1 = x ∈ C, define a
sequence {xn} in C by

xn+1 = αnx+ (1− αn)Txn, ∀n ∈ N,

where {αn} ⊂ [0, 1], limn→∞ αn = 0,
∑∞

n=1 αn = ∞, and
∑∞

n=1 |αn − αn+1| < ∞.
Then {xn} converges strongly to PF (T )x, where PF (T ) is the metric projection of H
onto F (T ).

Kurokawa and Takahashi [13] also proved the following strong convergence theo-
rem for nonspreading mappings in a Hilbert space; see also Hojo and Takahashi [7]
for generalized hybrid mappings.

Theorem 1.2. Let C be a nonempty, closed and convex subset of a Hilbert space
H. Let T be a nonspreading mapping of C into itself. Let u ∈ C and define two
sequences {xn} and {zn} in C as follows: x1 = x ∈ C and

xn+1 = αnu+ (1− αn)zn,

zn =
1

n

n−1∑
k=0

T kxn

for all n ∈ N, where {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. If F (T )
is nonempty, then {xn} and {zn} converge strongly to PF (T )u, where PF (T ) is the
metric projection of H onto F (T ).
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Recently, Takahashi and Takeuchi [21] introduced the concept of attractive points
of a mapping in a Hilbert space. Let C be a nonempty subset of H. For a mapping
T of C into H, we denote by A(T ) the set of all attractive points of T , i.e.,

A(T ) = {z ∈ H : ∥Tx− z∥ ≤ ∥x− z∥, ∀x ∈ C}.
They proved a mean convergence theorem of Baillon’s type [3] without convexity
for generalized hybrid mappings. Guu and Takahashi [5] proved a weak convergence
theorem of Mann’s type [15] and a strong convergence theorem of Kurokawa and
Takahashi’s type [13] for widely more generalized hybrid mappings in a Hilbert space
which generalizes Hojo and Takahashi’s result [7] for generalized hybrid mappings.
Akashi and Takahash [1] also proved a strong convergence theorem of Halpern’s
type for nonexpansive mappings on star-shaped sets in a Hilbert space. However,
they used essentially the properties of nonexpansiveness in the proof.

In this paper, motivated by [1,7,13,24], we obtain a strong convergence theorem
of Halpern’s type for finding attractive points of widely more generalized hybrid
mappings in a Hilbert space. Using this result, we obtain new strong convergence
theorems in a Hilbert space. In particular, we obtain an extension of Suzuki’s
theorem [16] and also solve a problem posed by Kurokawa and Takahashi [13].

2. Preliminaries and lemmas

Let H be a real Hilbert space. When {xn} is a sequence in H, we denote the
strong convergence of {xn} to x ∈ H by xn → x and the weak convergence by
xn ⇀ x. We know that for x, y ∈ H and λ ∈ R,
(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.
Furthermore, we know that for all x, y, z, w ∈ H,

(2.3) 2 ⟨x− y, z − w⟩ = ∥x− w∥2 + ∥y − z∥2 − ∥x− z∥2 − ∥y − w∥2.
Let D be a closed and convex subset of H. For every x ∈ H, there exists a unique
nearest point in D denoted by PDx, that is, ∥x− PDx∥ ≤ ∥x− y∥ for every y ∈ D.
This mapping PD is called the metric projection of H onto D. It is known that PD

is firmly nonexpansive, that is, the following hold:

0 ≤ ⟨x− PDx, PDx− y⟩ and ∥x− PDx∥2 + ∥PDx− y∥2 ≤ ∥x− y∥2

for any x ∈ H and y ∈ D; see [17–19]. Takahashi and Takeuchi [21] proved the
following useful lemma.

Lemma 2.1 ([21]). Let C be a nonempty subset of H and let T be a mapping from
C into H. Then, A(T ) is a closed and convex subset of H.

We note that a mapping T : C → H in Lemma 2.1 may be not necessarily
nonexpansive. The following theorem was proved by Guu and Takahashi [5].

Theorem 2.2 ([5]). Let H be a Hilbert space, let C be a nonempty subset of H and
let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into
itself which satisfies the following conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0, ε+ η ≥ 0 and ζ + η ≥ 0;
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(2) α+ β + γ + δ ≥ 0, α+ β > 0, ζ + η ≥ 0 and ε+ η ≥ 0.

Then A(T ) ̸= ∅ if and only if there exists z ∈ C such that {Tnz : n ∈ N} is bounded.

To prove our main result, we need two lemmas.

Lemma 2.3 ([14]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},
where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ . . . and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

Lemma 2.4 ([2]; see also [23]). Let {sn} be a sequence of nonnegative real numbers,
let {αn} be a sequence of [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of

nonnegative real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real
numbers with lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n ∈ N. Then limn→∞ sn = 0.

3. Strong convergence theorem of Halpern’s type

In this section, using the technique of [22], we prove a strong convergence theorem
of Halpern’s type [6] for finding attractive points of widely more generalized hybrid
mappings in a Hilbert space. Before proving the result, we need the following lemma
which was proved by Guu and Takahashi [5].

Lemma 3.1 ([5]). Let H be a Hilbert space and let C be a nonempty subset of H.
Let T : C → H be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping.
Suppose that it satisfies the following conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0.

If xn ⇀ z and xn − Txn → 0, then z ∈ A(T ).

Theorem 3.2. Let H be a Hilbert space and let C be a convex subset of H. Let T
be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping from C into itself
with A(T ) ̸= ∅ and let PA(T ) be the metric projection of H onto A(T ). Suppose that
it satisfies the following conditions (1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0.

Let {zn} be a sequence in C such that zn → z ∈ H and let {xn} be a sequence in C
defined by x1 ∈ C and

xn+1 = αnzn + (1− αn)(βnxn + (1− βn)Txn), ∀n ∈ N,
where {αn} and {βn} are two sequences in (0, 1) such that

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞, and lim inf
n→∞

βn(1− βn) > 0.
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Then the sequence {xn} converges strongly to x̄ ∈ A(T ), where x̄ = PA(T )z.

Proof. We first remark from Lemma 2.1 that A(T ) is closed and convex. Thus PA(T )

is well defined. Let x1 ∈ C and u ∈ A(T ). We have that ∥Txn − u∥ ≤ ∥xn − u∥
from u ∈ A(T ). Define yn = βnxn + (1− βn)Txn. Then we have from (2.2) that

∥yn−u∥2 = ∥βnxn + (1− βn)Txn − u∥2

= βn∥xn − u∥2 + (1− βn)∥Txn − u∥2 − βn(1− βn)∥xn − Txn∥2

≤ βn∥xn − u∥2 + (1− βn)∥xn − u∥2 − βn(1− βn)∥xn − Txn∥2(3.1)

= ∥xn − u∥2 − βn(1− βn)∥xn − Txn∥2

≤ ∥xn − u∥2.

Let K = sup{∥zn − u∥ : n ∈ N} and put M = max{∥x1 − u∥,K}. It is obvious that
∥x1 − u∥ ≤ M . Suppose that ∥xk − u∥ ≤ M for some k ∈ N. Then we have from
(3.1) that

∥xk+1 − u∥ = ∥αkzk + (1− αk)yk − u∥
≤ αk∥zk − u∥+ (1− αk)∥yk − u∥
≤ αk∥zk − u∥+ (1− αk)∥xk − u∥
≤ αkM + (1− αk)M

= M.

By mathematical induction, we have that ∥xn − u∥ ≤ M for all n ∈ N. Thus {xn}
is bounded. Hence {Txn} is bounded. Take x̄ = PA(T )z. We have from (3.1) that

∥xn+1−x̄∥2 ≤ αn∥zn − x̄∥2 + (1− αn)∥yn − x̄∥2

≤ αn∥zn − x̄∥2 + (1− αn)(∥xn − x̄∥2 − βn(1− βn)∥xn − Txn∥2)(3.2)

≤ αn∥zn − x̄∥2 + ∥xn − x̄∥2 − βn(1− βn)∥xn − Txn∥2.

We have from (3.2) that

(3.3) βn(1− βn)∥xn − Txn∥2 ≤ αn∥zn − x̄∥2 + ∥xn − x̄∥2 − ∥xn+1 − x̄∥2.

We also have that

∥xn+1 − xn∥ = ∥αnzn + (1− αn)(βnxn + (1− βn)Txn − xn∥(3.4)

≤ αn∥zn − xn∥+ (1− αn)(1− βn)∥xn − Txn∥.

Case A: Put Γn = ∥xn − x̄∥2 for all n ∈ N. Suppose that there exists a positive
integer N such that Γn+1 ≤ Γn for all n ≥ N . In this case, limn→∞ Γn exists and
then limn→∞(Γn+1 − Γn) = 0. From limn→∞ αn = 0, lim infn→∞ βn(1 − βn) > 0
and (3.3), we have that

(3.5) lim
n→∞

∥xn − Txn∥ = 0.

We have from limn→∞ αn = 0, (3.4) and (3.5) that

(3.6) lim
n→∞

∥xn+1 − xn∥ = 0.
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Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that

(3.7) lim sup
n→∞

⟨z − x̄, xn − x̄⟩ = lim
i→∞

⟨z − x̄, xni − x̄⟩.

Without loss of generality, we may assume that xni ⇀ v. By (3.5) and Lemma 3.1,
we have that v ∈ A(T ). We have from (3.7) that

(3.8) lim sup
n→∞

⟨z − x̄, xn − x̄⟩ = ⟨z − x̄, v − x̄⟩ ≤ 0.

On the other hand, since xn+1 − x̄ = αn(zn − x̄) + (1− αn)(yn − x̄), we have from
(2.1) and (3.1) that

∥xn+1 − x̄∥2 ≤ (1− αn)∥yn − x̄∥2 + 2αn⟨zn − x̄, xn+1 − x̄⟩
≤ (1− αn)∥xn − x̄∥2 + 2αn⟨zn − x̄, xn+1 − x̄⟩
= (1− αn)∥xn − x̄∥2 + 2αn⟨zn − x̄, xn+1 − xn⟩(3.9)

+ 2αn⟨zn − x̄, xn − x̄⟩
= (1− αn)∥xn − x̄∥2 + 2αn⟨zn − x̄, xn+1 − xn⟩

+ 2αn⟨zn − z, xn − x̄⟩+ 2αn⟨z − x̄, xn − x̄⟩.
By

∑∞
n=1 αn = ∞, (3.6), zn → z, (3.8), (3.9) and Lemma 2.4, we have that

limn→∞ xn = x̄.

Case B: Suppose that there exists a subsequence {Γni} ⊂ {Γn} such that Γni <
Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.
Then it follows from Lemma 2.3 that Γτ(n) ≤ Γτ(n)+1. We have from (3.3) that

βτ(n)(1− βτ(n))∥xτ(n) − Txτ(n)∥2

≤ ατ(n)∥zτ(n) − x̄∥2 + ∥xτ(n) − x̄∥2 − ∥xτ(n)+1 − x̄∥2(3.10)

≤ ατ(n)∥zτ(n) − x̄∥2.
By limn→∞ αn = 0, lim infn→∞ βn(1− βn) > 0 and (3.10), we have that

(3.11) lim
n→∞

∥xτ(n) − Txτ(n)∥ = 0.

We have from (3.9) that

∥xτ(n)+1 − x̄∥2 ≤ (1− ατ(n))∥xτ(n) − x̄∥2 + 2ατ(n)⟨zτ(n) − x̄, xτ(n)+1 − x̄⟩.
From this inequality, we have that

∥xτ(n)+1 − x̄∥2 − ∥xτ(n)−x̄∥2 + ατ(n))∥xτ(n) − x̄∥2(3.12)

≤ 2ατ(n)⟨zτ(n) − x̄, xτ(n)+1 − x̄⟩.
From Γτ(n) ≤ Γτ(n)+1, (3.12) and ατ(n) > 0, we have that

∥xτ(n)−x̄∥2 ≤ 2⟨zτ(n) − x̄, xτ(n)+1 − x̄⟩
= 2⟨zτ(n) − x̄, xτ(n)+1 − xτ(n)⟩+ 2⟨zτ(n) − x̄, xτ(n) − x̄⟩(3.13)

= 2⟨zτ(n) − x̄, xτ(n)+1 − xτ(n)⟩+ 2⟨zτ(n) − z, xτ(n) − x̄⟩
+ 2⟨z − x̄, xτ(n) − x̄⟩.
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On the other hand, by limn→∞ αn = 0, (3.4) and (3.11), we have that

(3.14) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0.

Since {xτ(n)} is bounded, there exists a subsequence {xτ(ni)} such that

(3.15) lim sup
n→∞

⟨z − x̄, xτ(n) − x̄⟩ = lim
i→∞

⟨z − x̄, xτ(ni) − x̄⟩.

Following the same argument as the proof of Case A for {xτ(ni)}, we have that

(3.16) lim sup
n→∞

⟨z − x̄, xτ(n) − x̄⟩ ≤ 0.

Using (3.13), (3.14), zτ(n) → z and (3.16), we have that

(3.17) lim
n→∞

∥xτ(n) − x̄∥ = 0.

By (3.14) we have that

(3.18) lim
n→∞

∥xτ(n)+1 − x̄∥ = 0.

Using Lemma 2.3 for (3.18) again, we have that

lim
n→∞

∥xn − x̄∥ = 0.

This completes the proof. □

4. Applications

In this section, using Theorem 3.2, we establish new strong convergence theorems
of Halpern’s type in a Hilbert space. We first prove a strong convergence theorem for
finding fixed points of widely more generalized hybrid mappings which generalizes
Suzuki’s theorem [16].

Theorem 4.1. Let H be a Hilbert space and let C be a nonempty, closed and convex
subset of H. Let T be an (α, β, γ, δ, ε, ζ, η)-widely more generalized hybrid mapping
from C into itself with F (T ) ̸= ∅. Suppose that it satisfies the following conditions
(1) or (2):

(1) α+ β + γ + δ ≥ 0, α+ γ > 0 and ε+ η ≥ 0;
(2) α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0.

Let {zn} be a sequence in C such that zn → z and let {xn} be a sequence in C
defined by x1 ∈ C and

xn+1 = αnzn + (1− αn)(βnxn + (1− βn)Txn), ∀n ∈ N,

where {αn} and {βn} are two sequences in (0, 1) such that

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, and lim inf
n→∞

βn(1− βn) > 0.

Then the sequence {xn} converges strongly to x̄ ∈ F (T ), where x̄ = PF (T )z.
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Proof. Since T is (α, β, γ, δ, ε, ζ, η)-widely more generalised hybrid, we have that

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2

+ε∥x− Tx∥2 + ζ∥y − Ty∥2 + η∥(x− Tx)− (y − Ty)∥2 ≤ 0

for all x, y ∈ C. Replacing x by a fixed point u of T , we have that for any y ∈ C,

α∥u− Ty∥2 + β∥u− Ty∥2 + γ∥u− y∥2 + δ∥u− y∥2

+ζ∥y − Ty∥2 + η∥y − Ty∥2 ≤ 0

and hence

(α+ β)∥u− Ty∥2 + (γ + δ)∥u− y∥2 + (ζ + η)∥y − Ty∥2 ≤ 0.

Suppose that it satisfies the following condition (2):

α+ β + γ + δ ≥ 0, α+ β > 0 and ζ + η ≥ 0.

From ζ+η ≥ 0, we have that (α+β)∥u−Ty∥2+(γ+ δ)∥u−y∥2 ≤ 0. Furthermore,
since α+ β + γ + δ ≥ 0 and α+ β > 0, we have that for any y ∈ C,

∥u− Ty∥2 ≤ −(γ + δ)

α+ β
∥u− y∥2 ≤ ∥u− y∥2.

This implies that F (T ) ⊂ A(T ). Since F (T ) ̸= ∅, we have that A(T ) is nonempty.
From Theorem 3.2, it follows that {xn} converges strongly to x̄ ∈ A(T ). Since C is
closed and xn → x̄, we have x̄ ∈ C. From x̄ ∈ A(T ) ∩ C, we have that

∥T x̄− x̄∥ ≤ ∥x̄− x̄∥ = 0

and hence x̄ ∈ F (T ). Furthermore, we have from Theorem 3.2 that x̄ = PA(T )z.
Thus we have that

∥z − x̄∥ = min{∥z − u∥ : u ∈ A(T )} ≤ min{∥z − u∥ : u ∈ F (T )}
and hence x̄ = PF (T )z.

Similarly, we can obtain the desired result for the case of α + β + γ + δ ≥ 0,
α+ γ > 0 and ε+ η ≥ 0. This completes the proof. □

As direct consequences of Theorems 3.2 and 4.1, we have the following results.

Theorem 4.2. Let H be a Hilbert space and let C be a convex subset of H. Let T
be a nonexpansive mapping from C into itself, i.e.,

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

Assume A(T ) ̸= ∅ and let PA(T ) be the metric projection of H onto A(T ). Let {zn}
be a sequence in C such that zn → z and let {xn} be a sequence in C defined by
x1 ∈ C and

xn+1 = αnzn + (1− αn)(βnxn + (1− βn)Txn), ∀n ∈ N,
where {αn} and {βn} are two sequences in (0, 1) such that

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, and lim inf
n→∞

βn(1− βn) > 0.

Then {xn} converges strongly to x̄ = PA(T )z. Additionally, if C is closed and convex,
then {xn} converges strongly to x̄ = PF (T )z.
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Proof. Since a (1, 0, 0, -1, 0, 0, 0)-widely more generalized hybrid mapping T is
nonexpansive and it satisfies α+β+γ+ δ = 1−1 ≥ 0, α+γ = 1 > 0 and ε+η ≥ 0,
we have the desired result from Theorems 3.2 and 4.1. □

Theorem 4.3. Let H be a Hilbert space and let C be a convex subset of H. Let T
be a nonspreading mapping from C into itself, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Assume A(T ) ̸= ∅ and let PA(T ) be the metric projection of H onto A(T ). Let {zn}
be a sequence in C such that zn → z and let {xn} be a sequence in C defined by
x1 ∈ C and

xn+1 = αnzn + (1− αn)(βnxn + (1− βn)Txn), ∀n ∈ N,

where {αn} and {βn} are two sequences in (0, 1) such that

lim
n→∞

αn = 0,
∞∑
n=1

αn = ∞, and lim inf
n→∞

βn(1− βn) > 0.

Then {xn} converges strongly to x̄ = PA(T )z. Additionally, if C is closed and convex,
then {xn} converges strongly to x̄ = PF (T )z.

Proof. Since a (2, -1, -1, 0, 0, 0, 0)-widely more generalized hybrid mapping T is
nonspreading and it satisfies α+ β + γ + δ = 2− 1− 1 ≥ 0, α+ γ = 2− 1 > 0 and
ε+ η ≥ 0, we have the desired result from Theorems 3.2 and 4.1. □

Theorem 4.4. Let H be a Hilbert space and let C be a convex subset of H. Let T
be a hybrid mapping from C into itself, i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Assume A(T ) ̸= ∅ and let PA(T ) be the metric projection of H onto A(T ). Let {zn}
be a sequence in C such that zn → z and let {xn} be a sequence in C defined by
x1 ∈ C and

xn+1 = αnzn + (1− αn)(βnxn + (1− βn)Txn), ∀n ∈ N,

where {αn} and {βn} are two sequences in (0, 1) such that

lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞, and lim inf
n→∞

βn(1− βn) > 0.

Then {xn} converges strongly to x̄ = PA(T )z. Additionally, if C is closed and convex,
then {xn} converges strongly to x̄ = PF (T )z.

Proof. Since a (32 ,−
1
2 ,−

1
2 ,−

1
2 , 0, 0, 0)-widely more generalized hybrid mapping T is

hybrid and it satisfies α + β + γ + δ = 3
2 − 1

2 − 1
2 − 1

2 ≥ 0, α + γ = 3
2 − 1

2 > 0 and
ε+ η ≥ 0, we have the desired result from Theorems 3.2 and 4.1. □

If C is closed and convex and F (T ) is nonempty in Theorem 4.2, then the result
is Suzuki’s theorem in the setting of Hilbert space. Theorem 4.3 solves a problem
posed by Kurokawa and Takahashi [13].
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