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ABSTRACT. In this manuscript, we investigate the equivalence of the coupled
fixed point theorems in quasi-metric spaces and in G-metric spaces. We also
notice that coupled fixed point theorems in the setting of G-metric spaces can
be derived from their corresponding versions in quasi-metric spaces. Our results
generalize and unify several fixed point theorems in the context of G-metric spaces
in the literature.

1. INTRODUCTION

In recent times, generalized metrics (mainly known as G-metrics), firstly intro-
duced by Mustafa and Sims [33], have attracted much attention, especially in the
field of Fixed Point Theory. The authors [33] associated the geometry of a G-metric
space with the perimeter of triangle. The literature on this topic has exponentially
raised in the last two years, in which coupled, tripled and quadrupled fixed point
results have been given using different contractivity conditions. Recently, Samet et
al. [42], and Jleli and Samet [19], reported that most of the fixed point theorems in
the context of G-metric spaces can be derived from the existing ones. More precisely,
the authors noticed that most of the statements of fixed point theorems in G-metric
space can be written via two points. On the other hand, G-metric space supposed
to tell about the geometry of three points. Later, Agarwal and Karapmar [2], and
Asadi et al. [4], suggested new statements to which the techniques used in [19,42]
were not applicable.

One of the weakness of the notion of G-metric is that the product of G-metric
spaces need not be a G-metric space unless if each factor is symmetric. Very recently,
a more general notion than G-metric, namely G*-metric, was firstly considered by
Roldan and Karapmar [35] in order to treat this weakness of G-metric spaces. It is
well-known that a G-metric is a quasi metric. Although, when we impose that two
arguments must be equal, the literature on this subject using quasi-metrics has not
raised to the same rate.

In this manuscript, we present some fixed point theorems in the framework of
quasi-metric spaces, which can be partially ordered or not. Then, we take advantage
of the previous relationship between quasi-metrics and G*-metrics to deduce many
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coupled and tripled results on these settings. In particular, as the contractivity
condition we introduce is very general, we prove that well-known results using G-
metrics can be easily seen as simple consequences of our results, and they also hold
using G™*-metrics. Our technique can also be employed to deduce some other results
in the literature.

2. PRELIMINARIES

Let N be a positive integer. Henceforth, let X be a non-empty set and XV will
denote the product space X x X x . x X. Throughout this manuscript, n and &
will denote non-negative integers, and ¢t and s will be non-negative real numbers.
In the sequel, let F: X — X and T : X — X be two mappings. For brevity, T'(z)
will be denoted by T'x.

The main aim of the present paper is to guarantee existence and uniqueness of
the following class of points.

Definition 2.1. Given T : X — X, we will say that a point z € X is a fized point
of T'if Tx = .

Following Gnana-Bhaskar and Lakshmikantham (see [17]), given F : X? — X,
we will say that a point (z,y) € X? is a coupled fized point of F if F(x,y) = z and
F(y7 :E) =Y.

Following Berinde and Borcut (see [8,10]), given F': X3 — X, we will say that a
point (x,y,2) € X3 is a tripled fived point of F if F(z,y,2) =z, F(y,z,y) = y and
F(z,y,x) = z.

Following Karapmar and Luong (see [22,23]), given F : X* — X, we will say
that a point (z,y,z,t) € X* is a quadrupled fized point of F if F(x,y,z,t) = ,
F(y,z,t,x) =y, F(z,t,z,y) = z and F(t,z,y,2) =t.

A notion of multidimensional fized point was given in Roldan et al. [36,38]. In
order to guarantee existence and uniqueness of the previous kind of points, we will
use the following properties and notations.

Given N € {2,3,4} and F : XV — X, let denote by T : XV — X% the
mappings

(2.1)

N =2, Tg(x,y) = (F(z,y), Fy,x)),

N = 37 Tg('x? y’ Z) = (F(x7 y7 z)? F(y’ x? y)’ F(Z7 y7 x))?

N = 47 T}L‘%‘(x7 y’ Z? t) = (F(x7 y? Z7 t)? F(y7 Z’ t? x)’ F(z7 t? ZB? y)? F(t’ x? y? Z))'
Definition 2.2. A quasi-metric on X is a function ¢ : X x X — [0, 00) satisfying
the following properties:

(q1) q(z,y) =0 if and only if x = y;
(22) a(z,y) < q(z,2) + q(z,y) for any points z,y,z € X.
In such a case, the pair (X, ¢q) is called a quasi-metric space.
Definition 2.3. Let (X, ) be a quasi-metric space, {x,} be a sequence in X, and

x € X. We will say that:

o {z,,} converges to x (and we will denote it by {x,, } 4, x) if limy, o0 ¢(Tp, ) =
limy, 00 Q(l', xn) = 0;
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e {z,} is a Cauchy sequence if for all £ > 0, there exists ny € N such that
q(xp, Tp) < € for all n,m > ny.
The quasi-metric space is said to be complete if every Cauchy sequence is con-
vergent.

As g is not necessarily symmetric, some authors distinguished between left /right
Cauchy /convergent sequences and completeness.

Definition 2.4 (Jleli and Samet [19]). Let (X, q) be a quasi-metric space, {z,} be
a sequence in X, and x € X. We will say that:
o {x,} right-converges to x if lim,, o q(xn, ) = 0;
o {x,} left-converges to x if lim,,_,o q(x,x,) = 0;
e {x,} is a right-Cauchy sequence if for all € > 0 there exists ng € N such
that q(zp, xm) < € for all m > n > ng;
e {z,} is a left-Cauchy sequence if for all € > 0 there exists nyg € N such that
q(xpm, ) < € for all m > n > ng;
e (X, q) is right-complete if every right-Cauchy sequence is right-convergent;
e (X, q) is left-complete if every left-Cauchy sequence is left-convergent;

Remark 2.5. (1) The limit of a sequence in a quasi-metric space, if there exists,
is unique. However, this is false if we consider right-limits or left-limits.

(2) If a sequence {x,} has a right-limit = and a left-limit y, then z = y, {z,}
converges and it has an only limit (from the right and from the left). How-
ever, it is possible that a sequence has two different right-limits when it has
no left-limit.

Example 2.6. Let X be a subset of R containing [0, 1] and define, for all z,y € X,

_ =Y, if x 2 Y,
q(zy) = { 1, otherwise.
Then (X, q) is a quasi-metric space. Notice that {¢(1/n,0)} — 0 but {¢(0,1/n)} —
1. Therefore, {1/n} right-converges to 0 but it does not converge from the left. We
also point out that this quasi-metric verifies the following property: if a sequence
{z,,} has a right-limit x, then it is unique.

Definition 2.7. Let (X,q) be a quasi-metric space and let " : X — X be a
mapping. We will say that T is right-continuous if {q(Tx,,Tu)} — 0 for all sequence
{zn} € X and all v € X such that {g(z,,u)} — 0.

Next, we introduce some preliminaries about G*-metric spaces.
Definition 2.8 (Mustafa and Sims [33]). A generalized metric (or a G-metric) on
X is a mapping G : X3 — [0, 00) verifying, for all z,y, 2z € X:

(G1) G(z,z,z) = 0.
(G (:L‘xy)>01f:v7éy
(Gs) G(z,2,y) < G(2,y,2
(Ga) G(z,y,2) =
(Gs) G(

z) if y # 2.
4) G(x,y,2) =G(z,2,y) = G(y,z,x) = --- (symmetry in all three variables).
5) G(z,y,2) < G(z,a,a) + G(a,y, z) (rectangle inequality).

Taking into account that the product space of G-metric spaces need not be a
G-metric space, Roldan et al. introduced the following notion.
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Definition 2.9 (Rolddn and Karapmar [35]). A G*-metric on X is a mapping
G : X3 — [0, 00) verifying (G1), (G2), (G4) and (G5).

The open ball B(xz,r) of center x € X and radius v > 0 in a G*-metric space
(X,G) is
B(z,r)={ye X : G(z,z,y) <r}.

A subset A C X is G-open if for all z € A there exists > 0 such that B(z,r) C A.
Following classic techniques, it is possible to prove that there exists an unique
topology 7¢ on X such that 8, = {B(x,r) : > 0} is a neighborhood system at
each x € X (see [35]). Furthermore, 7¢ is a Hausdorff topology. In this topology,
we characterize the notions of convergent sequence and Cauchy sequence in the
following way. Let (X,G) be a G*-metric space, let {z,,} € X be a sequence and
let x € X.
e {z,,} G-converges to x, and we will write {z, } im:, if lill[g Gy, Tyt )
m,m’—o0
= 0, that is, for all € > 0 there exists mg € N verifying that G(z;,, T, x) <
e for all m,m’ € N such that m,m’ > my.
e {z,,} is G-Cauchy if lim Gz, Ty, X)) = 0, that is, for all e > 0

m,m’ ,m' —oo
there exists mg € N verifying that G(Z,, Ty, Ty ) < € for all m,m’, m” € N
such that m,m/,m” > my.

Remark 2.10. If (X, G) is a G*-metric space, then G(z,y,y) < 2G(y, z,x) for all
z,y € X. It follows from (G4) and (G5) because

G(z,y,y) =Gy, z,y) <Gy, z,z) + G(z,z,y) = 2G(y, z, z).

Lemma 2.11 (Rolddn and Karapmar [35]). Let (X, G) be a G*-metric space, let
{xm} C X be a sequence and let x € X. Then the following conditions are equiva-
lent.

(a) {xm} G-converges to x.
(b) lim G(z,z,x.,)=0.
m— 00

(¢) lim G(zp,zm,z)=0.

m— 00

Proposition 2.12 (Roldédn and Karapimar [35]). The limit of a G-convergent se-
quence in a G*-metric space is unique.

Lemma 2.13 (Rolddn and Karapmar [35]). If (X,G) is a G*-metric space and
{zm} C X is a sequence, then the following conditions are equivalent.

(a) {zm} is G-Cauchy.

(b)  lim  G(m, Ty, Trr) = 0.

m,m’—o0
(¢) lim G(xm,Tms1,Tm) =0.
m,m/—o0
Consider the following families of control functions.
& ={¢:[0,00) = [0,00) : ¢ is continuous, nondecreasing, ¢(t) =0t =0 },
U ={1:[0,00) = [0,00) : ¥ is lower semi-continuous, ¥(t) =0t =0 },
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Functions on ® are called altering distance functions (see Khan et al. [25]). To
conclude this section of preliminaries, we recall the following fixed point theorems
in the context of quasi-metric spaces which can be found in [13] - [45].

Definition 2.14. A preorder (or a quasiorder) < on X is a binary relation on X
that is reflezive (i.e., x < x for all z € X) and transitive (if x,y,z € X verify x 5 y
and y < z, then z < z). In such case, we say that (X, <) is a preordered space (or
a preordered set). If a preorder < is also antisymmetric (r < y and y < x implies
x =), then < is called a partial order, and (X, ) is a partially ordered space.

3. SOME RELATIONSHIPS BETWEEN QUASI-METRICS AND G*-METRICS ON X2

Before introducing the main results of the paper about sufficient conditions to
ensure the existence and uniqueness of fixed points on different frameworks, we
analyze the close relationships between G*-metrics and quasi-metrics, and how to
extend both notions to the product space X2. We start showing that every G*-
metric lets us to consider two quasi-metrics.

Lemma 3.1. Let (X,G) be a G*-metric space and let define qa,qy : X* — [0, 00)
by

g (z,y) = Gz, z,y) and qg(z,y) = G(z,y,y) for alz,y e X.
Then the following properties hold.

(1) g and qi; are quasi-metrics on X. Moreover

(3.1) gc(z,y) < 2qu(z,y) < 4ge(z,y) for allz,y € X.

(2) In (X, qc) and in (X, q), a sequence is right-convergent (respectively, left-
convergent) if, and only if, it is convergent. In such a case, its right-limit,
its left-limit and its limit coincide.

(3) In (X,qg) and in (X,qp), a sequence is right-Cauchy (respectively, left-
Cauchy) if, and only if, it is Cauchy.

(4) In (X, qc) andin (X, qg,), every right-convergent (respectively, left-convergent)
sequence has a unique right-limit (respectively, left-limit).

(5) If{zn} C X and z € X, then {z,} G = {z,} L5 2 —= {z,} N
x.

(6) If {zn} C X, then {z,} is G-Cauchy <= {z,} is qa-Cauchy <= {z,} is

q¢:-Cauchy.

(7) (X, G) is complete <= (X, qq) is complete <= (X, q(;) is complete.
Proof. (1) Axiom (q1) follows from (G1) and (G2) and condition (g2) holds because
of properties (G4) and (G5) since, for all z,y,z € X,

QG(xa y) = G(:E’ Zz, y) = G(ya Z, l‘) < G(ya Zs Z) + G(Za x, ZL‘)
= G(:E? Zz, Z) + G(Z7 2y y) = QG($7 Z) + QG(’Za y)7
6 (x,y) = G(z,y,y) < Gz, 2,2) + G(2,5,9) = 4o(x, 2) + 4o(2,y)-
Inequalities (3.1) follow from Remark 2.10.

(2) It follows from Lemma 2.11.
(3) It follows from Lemma 2.13.
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(4) Tt follows from item 2 and Remark 2.5.
Other items are straightforward exercises. O

Remark 3.2. Notice that g and g;; can be different quasi-metrics. For instance,
g is a quasi-metric even if G does not verify axiom (G4), but g¢ needs that property.

To take advantage of the previous result, we need to extend quasi-metrics and
G*-metrics to the product space X2. The following one is an easy way to consider
quasi-metrics on X? via quasi-metrics on X.

Lemma 3.3. Let ¢ : X? — [0,00) and Qs,Qm : X* — [0,00) be three mappings
verifying

Qi(w1,22), (y1,92)) = (w1, 1) + q(w2,92)  and

Qh.((z1,22), (y1,92)) = max(q(z1,y1), q(w2,92))  for all z1,22,y1,y2 € X.
Then the following conditions are equivalent.

(a) q is a quasi-metric on X.

(b) Q% is a quasi-metric on X2.

(c) Q% is a quasi-metric on X2.

In such a case, the following properties hold.

2
(1) Et;ery sequence {(xn, yn)} C X2 verifies: {(xn, yn)} EN (x,y) <= {(Zn,yn)}
9, (z,y) = [ {za} Lz and {y,} L y ].
(2) {(wn,yn)} < X? s Qg-CaUCh?/ = {(zn,yn)} is Q?n’cauc;ly —
[{zn} and {yn} are q-Cauchy ].
(3) Items 1 and 2 are valid from the right and from the left.
(4) (X,q) is right-complete <= (X2, Q?) is right-complete <= (X?,Q2,) is
right-complete.
(5) (X,q) is left-complete <= (X2, Q?) is left-complete <= (X2, Q?)) is left-
complete.
(6) (X,q) is complete <= (X2%,Q?) is complete <= (X?2,Q2,) is complete.
(7) The following conditions are equivalent.
(7.1) Each right-convergent sequence in (X,q) has an unique right-limit.
(7.2) Each right-convergent sequence in (X2, Q%) has an unique right-limit.
(7.3) Each right-convergent sequence in (X2, Q%) has an unique right-limit.

We can do the same construction using G*-metrics. Notice that the following
result does not hold for G-metric spaces.

Lemma 3.4. Let G : X3 — [0,00) and G%,G?, : (X?)3 — [0,00) be three mappings
verifying
Gz(($17y1), (72,92), (z3,93)) = G(w1, 2, 23) + G(y1,Y2,Y3) and
Gr((z1,91), (22, 92), (23, y3)) = max {G(x1, 22, 23), G(y1, y2,y3)}
for all T1,T2,T3,Y1,Y2,Y3 € X.

Then the following conditions are equivalent.
(a) G is a G*-metric on X.
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(b) G? is a G*-metric on X2.
(c) G?, is a G*-metric on X2.

In such a case, the following properties hold.
G2
(1) Every sequence {(wn,yn)} C X? wverifies: {(wn,yn)} —> (2,y) <=

2

(@)} < (2,y) = [ {2} -5z and {g} -5 y].

2) {(zn,yn)} € X% is G2-Cauchy <=  {(zn,yn)} is G2,-Cauchy <=
{2y} and {yn} are G-Cauchy |.

(3) (X, @) is G-complete <= (X2 ,G?) is G-complete < (X?,G2)) is G-
complete.

Following definitions in Lemmas 3.1 and 3.4, it is easy to prove the following
statements.

!
Lemma 3.5. If G : X3 — [0,00) is a function, then Q¥ = qG2, Qe = qug’
q/
w = qcz, and Qni = qg, -
4. FIXED POINT THEOREMS IN THE FRAMEWORK OF QUASI-METRIC SPACES

In this section, we show some fixed point theorems in the framework of quasi-
metric spaces, provided with a partial order or not. Firstly, we introduce the kind
of control functions we will use.

Definition 4.1. We will denote by F the family of all pairs (¢, ), where ¢, :
[0,00) — [0, 00) are functions, verifying the following three conditions.
(F1) ¢ is non-decreasing.
(F2) If there exists to € [0, 00) such that ¥(tg) = 0, then ty = 0 and ¢~1(0) = {0}.
(F3) If {ar}, {bx} C [0,00) are sequences such that {ax} — L, {bx} — L and
verifying L < by, and ¢(by) < (¢ — ¢)(ay) for all k, then L = 0.

Notice that axiom (F3) does not imply the well-known condition ¢(t) =0 <t =
0 < ¢(t) = 0. Furthermore, we do not impose any continuity condition neither on
¢ nor on 1. The following Lemma shows some examples of pairs in F.

Lemma 4.2. (1) If p € ® and Y € U, then (p,0) € F.
(2) If ¢ and 9 are altering distance functions, then (¢,v) € F.

Notice that it is not necessary the condition ¥ < ¢.

Proof. (1) Suppose that ¢ € ® and ¢ € ¥. Conditions (F;) and (F2) are obvious.
Next, assume that {ax}, {bx} C [0, 00) are sequences such that {ax} — L, {bx} — L
and verifying L < by and ¢(bg) < (¢ — ¢)(ag) for all k. Therefore, ¢(by) < (¢ —
V) (ag) = ¢(ag) — Y(ag) < ¢(ar). Hence 0 < 9(ar) < ¢P(ar) — ¢(by) for all k.
Letting & — oo and taking into account that ¢ is continuous, we deduce that
limg 00 ¥(ax) = 0. As {ar} — L and 9 is lower semi-continuous, we deduce that
Y(L) < liminf, () < limg_,o0 ¥(ar) = 0. Hence L = 0.

(2) It immediately follows from item 1. O

Example 4.3. (1) If a,b > 0 and we define ¢(t) = at and ¢ (t) = bt for all

t >0, then (¢,1) € F. The case a > b is usually included in other papers,
but the case a < b is new.
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(2) If ¢(t) = ¢(t) = t+ 1 for all ¢ > 0, then (¢,v) € F. Notice that, in
this case, (F3) holds because it is impossible to find such kind of sequences
since 1 < 1+ b, = ¢(bg) < (¢ — ¥)(ag) = 0. In this case, the condition
¢(t) =0 < t =0 does not hold.

Some useful properties of pairs in F are given in the following result.

Lemma 4.4. Let (¢,v) € F.

(1) Ift,s € [0,00) and ¢(t) < (¢ —)(s), then eithert < s ort =s=0. In any
case, t < s.

(2) Ift € [0,00) and ¢(t) < (¢ — )(t) then t = 0.

(3) If {ar},{bx} C [0,00) are such that ¢(ar) < (¢ — ¥)(bx) for all k and
{bp} — 0, then {ar} — 0.

(4) If {ar} C [0,00) and ¢(ag+1) < (¢ — ) (ak) for all k, then {ar} — 0.

Proof. (1) Assume that s < ¢ and we are going to show that t = s = 0. Indeed, in
such a case, as ¢ is non-decreasing, we have that ¢(s) < ¢(t) < @d(s) — ¥ (s) < ¢(s).
Therefore 9(s) = 0. By condition (F3), s = 0 and ¢~ 1(0) = {0}. Then ¢(t) <
¢(0) —¢(0) = 0, which means that ¢ = 0 = s. As a consequence, both cases lead to
t<s.

(2) It immediately follows from item 1.

(3) It immediately follows from item 1 taking into account that a; < by for all k.

(4) Item 1 guarantees that {a} is a non-increasing sequence (ag1+1 < ay for all k).
Let L =limy_,o ax > 0. Hence L < apy1 < ag for all k. If there exists some kg € N
such that L = ag,, then ag 11 = L. In this case, ¢(L) = ¢p(ary,+1) < (¢ — ) (ak,) =
¢(L) — (L) < ¢(L), which means that ¢)(L) = 0. Thus, L = 0. On the contrary,
assume that L < ai for all k. Letting by = agy1 for all k, we conclude that L =0
by condition (F3). O

Recall that a function a : [0,00) — [0,1) is a Geraghty function if the condition
{a(tn)} — 1 implies that {t,} — 0

Lemma 4.5. If o is a Geraghty function and we define ¢(t) = t and Y(t) =
(1 —«(t))t for allt > 0, then (p,9) € F.

Proof. Notice that a Geraghty function must verify a(s)s < s for all s > 0 (if s = 0,
both members are equal, and if s > 0, then a(s)s < s since a(s) < 1). Clearly,
¢ is non-decreasing and ¢(t) = 0 < t = 0 < ¥(t) = 0. Let {ax}, {bx} C [0, 00)
be sequences such that {ar} — L, {bx} — L and verifying L < by and ¢(by) <
(¢p—1)(ay) for all k. This means that L < by = ¢(by) < (¢p—)(ar) = a(ag) ar < ag
for all k. Letting k — oo, we deduce that limg_,o, (a(ag)ar) = L. If L > 0, there is
ko € N such that ai # 0 for all k£ > kg. In such a case, we have that

b—k < a(ag) <1 for all k > k.

ag

Hence limy_, o a(ag) = 1. Since « is a Geraghty function, then L = limy_,o, ap = 0,
but this is a contradiction with L > 0. Therefore, L = 0 and (¢, ) € F. O

In Lemmas 5.25, 5.29 and 6.2, we will show new examples of pairs in F.
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4.1. Fixed point theorems in quasi-metric spaces.

Definition 4.6. Let (X,q) be a quasi-metric space and let T : X — X be a
mapping. We will say that T is an F-contractive mapping is there exists (¢, ) € F
such that

(4.1) ¢(q(Tx, Ty)) < d(q(z,y)) —YP(q(z,y))  forallz,y € X.

A first property of this kind of contractive mappings is the following one.

Lemma 4.7. Every F-contractive mapping on a quasi-metric space into itself is a
continuous mapping.

Proof. Assume that T': X — X verifies (4.1) and let {y,} € X be a sequence such
that {y,} - u € X. Therefore, for all n,

(q(Tyn, Tu)) < (¢ — ¥)(q(yn,u)) and  G(q(Tu, Tyn)) < (¢ — ) (q(u, yn)).
By item 3 of Lemma 4.4, {¢(T'yn,Tu)} — 0 and {q(Tu,Ty,)} — 0, so {Tyn} 4 Ty
and T is continuous at u. O

The following is one of the main results in this manuscript.

Theorem 4.8. Every F-contractive mapping on a complete quasi-metric space into
itself has a unique fized point, and it is continuous on its unique fixed point.

In fact, if {z,} is any sequence such that x,, 11 = Tz, for all n € N, then {z,}
g-converges to the unique fixed point of T'.

Proof. Part I: Existence. Let {z}n>0 be a sequence such that z,41 = Tz, for all
n > 0. If there exists some ng € N such that ¢(zny, Zno+1) = 0 or ¢(Zpg+1,Tny) = 0,
then x,, = Tpy+1 = T2y, SO Tp, is a fixed point of 7. In such a case, z,, = xp, for
all n > ng and {x,} converges to a fixed point of 7. On the contrary, assume that

(4.2) q(Tp, Tny1) >0 and  q(xpy1,2,) >0 for all n.
Step 1. We claim that li_)m q(xp,xpy1) = 0. If we apply the contractivity
n oo

condition (4.1) to © = zp41 and y = Tp4o, we obtain that ¢(q(zpi1, Tnie)) =
(q(Txn, Trnt1)) < (¢ — ¥)(q(xn, Tnt1)) for all n > 0. By item 4 of Lemma 4.4,
we have that {q(zpn,n+1)} — 0. Similarly, using * = x,,12 and y = z,4+1, we could
deduce that {q(zn+1,2,)} — 0. Therefore, we have proved that

(4.3) i q(wn, wng1) = lm q(zn41, 20) = 0.

Step 2. We claim that {x,} is right-Cauchy in (X,q), that is, for all e > 0,
there is ng € N such that q(xn,xy) < € for all m > n > ng. We reasoning
by contradiction. If {x,} is not right-Cauchy, there exist £9 > 0 and two partial
subsequences {Zp ) }ken and {@,, ) }ren verifying that

(4.4) k <n(k) <m(k), q(Tn(k)y, Tm(r)) > €0 for all k.
Taking m(k) as the smallest integer, greater than n(k), verifying this property, we

can suppose that
Q(ﬂvn(k)aﬂfm(k)ﬂ) <gg forall k.

Therefore €9 < q(Tn@)s Tma)) < UTnk)y Tmk)-1) T A Tm@E) -1, Tmk)) < €0t
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q(Ty (k)15 Tm(k)), and taking limit as k — oo, it follows from (4.3) that
li = &g.
. q(@n k), Tmr)) = €0

Notice that, for all k,

U Tnk)—1> Tmk)-1) < UTnk)y—1> Tnk)) + UATnk)s Tmik)—1) < UTnk)—15 Tnk)) + €0,
and

€0 < 4(Tn)s Tmk)) < U Tnk)s Tnk)—1) + A @nm)—15 Tmk)—1) T UTmk)—1 Tmr))-

Joining both inequalities we deduce that, for all &,

€04 (Tn(k)s Tn(k)—1) = ZmE)—1> Tm(k)) < A Tnk)—1> Tm)—1) < Q(Trk)—15 Tn(k))Feo-
Letting k — oo, it follows from (4.3) that

li = £g.
M a( @)1, Ty 1) = €0

Next, let apply the contractivity condition (4.1) to x = x4y and y = ). We
get that, for all k£ > 0,

(@@ (k) Tm(r))) = XU Txr)y—1, TTm)-1)) < (@ = V)@ @) 1> Tim(k)—1))-

Using condition (F3) applied to {ax = q(Zp)—1> Tmr)—1)}> {0k = ¢ Tnk)s Tma)) }
and L = gy (notice that by > L for all k£ by (4.4)), we conclude that 9 = 0, which
contradicts €g > 0. This contradiction ensures us that {z,} is right-Cauchy in
(X, q), and Step 2 holds.

Similarly, it can be proved that {z,,} is left-Cauchy in (X, ¢), so we conclude that
{zy} is a Cauchy sequence in (X, q). As (X, q) is complete, there exists u € X such

that {x,} L5 u. We show that u is a fixed point of T. Applying the contractivity
condition (4.1) to z = x,, and y = u, we have that, for all n > 0,

¢(Q(xn+17 TU)) - (ZS(Q(Twm Tu)) < (¢ - ¢)(Q(90n7 u))

As {q(zp,u)} — 0, item 3 of Lemma 4.4 guarantees that {q(zp+1,Tu)} — 0. Sim-

ilarly, it can be proved that {q(Tu,zn1)} — 0. Thus, {z,11} —= Tu and the
unicity of the limit concludes that Tu = w.

Part 1I: Unicity. Let u,v € X be any fixed points of T'. Using the contractivity
condition (4.1),

P(q(u,v)) = ¢(q(Tu, Tv)) < (¢ — ¥)(q(u, v)).
Item 2 of Lemma 4.4 shows that ¢(u,v) = 0, so u = v. Therefore, T has a unique

fixed point. O

Corollary 4.9 (Jleli and Samet [19], Theorem 3.2). Let (X, q) be a complete quasi-
metric space and let T : X — X be a mapping satisfying

Q(TSU,Ty) SQ(xay) _¢(Q($ay)) fOT’ all xvyEXa
where 9 : [0,00) — [0,00) is continuous with ¥»~(0) = {0}. Then T has a unique
fixed point.

Proof. Tt follows from Theorem 4.8 considering ¢(t) = ¢ for all ¢ > 0, and taking
into account that (¢,) € F. O
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Corollary 4.10. Let (X,q) be a complete quasi-metric space and let T : X — X
be a mapping such that there exists k € [0,1) satisfying

q(Tx,Ty) < kq(z,y) for all z,y € X,
Then T has a unique fized point.
Proof. 1t is only necessary to take ¥ (t) = (1 — k)t for all t > 0 in Corollary 4.9. O

To conclude this subsection, we show how to apply the previous results to G*-
metrics spaces. For instance, the following result was proved by Aydi.

Theorem 4.11 (Aydi [3], Theorem 2.1). Let X be a complete G-metric space.
Suppose the map T : X — X satisfies for all x,y,z € X

(45) (b(G(Tx?Ty?TZ)) < ¢(G($,y72)) - w(G(x7y7z))7

where ¢ and i are altering distance functions. Then T has a unique fixed point (say
u) and T is G-continuous at u.

We improve this theorem in the following way.

Definition 4.12. Let (X,G) be a G*-metric space and let T : X — X be a
mapping. We will say that T is an F-contractive mapping on the G-metric space
(X, G) if there exists (¢, ) € F such that

(4.6)  @(G(Tz, Ty, Ty)) < (G(z,y,y)) = ¢¥(G(x,y,y))  forallz,yeX.
Notice that the contractivity condition (4.5) obviously implies (4.6).

Corollary 4.13. Every F-contractive mapping on a complete G*-metric space into
itself has a unique fixed point.

Proof. Tt is a consequence of Theorem 4.8 applied to the quasi-metric g¢; defined as
qc:(z,y) = G(z,y,y) for all z,y € X, and using item 7 of Lemma 3.1. O

Corollary 4.14. Theorem 4.11 also holds even if G is a G*-metric.
Proof. Tt follows from item 2 of Lemma 4.2, also using Lemma 4.7. g

4.2. Fixed point results in partially ordered quasi-metric spaces. In this
subsection we analyze the case in which the contractive condition involves a kind
of functions that can be particularized to relationships more general than partial
orders. We need the following notions.

Definition 4.15. We will say that a mapping o : X2 — [0, 00) is upper-transitive
if
alz,y) > 1, a(y,z) >1 = afz,z)>1
A mapping T : X — X is said to be a-admissible if
alz,y) >1 = oTz,Ty) > 1.

Definition 4.16. Given a mapping o : X2 — [0, 00), a quasi-metric space (X, q) is
said to be upper-regular with respect to « if

[{¢(zn,u)} -0 and a(znp,zp41)>1, Vn| =  alzp,u)>1, Vn.



1798 R. AGARWAL, E. KARAPINAR, AND A.-F. ROLDAN-LOPEZ-DE-HIERRO

Remark 4.17. If a(z,y) > 1 for all z,y € X, then any mapping T : X — X is
a-admissible and any quasi-metric space (X, q) is upper-regular with respect to a.
In particular, this property holds when a(z,y) =1 for all z,y € X.

Lemma 4.18. Let T : X — X be an a-admissible mapping and let {zp}n>0 C X
be a sequence such that xp41 = Tx, for allm > 0. If zy verifies a(xg, Txg) > 1,
then a(xy,p+1) > 1 for all n € N. Additionally, if o is upper-transitive, then
Ty, ) > 1 for all ny,m € N such that n < m.

Definition 4.19. Let (X, ¢) be a quasi-metric space and let T': X — X be a map-
ping. We will say that T is an («, F)-contractive mapping is there exist mappings
a:X?— Rand ¢, : [0,00) — [0,00) such that:

(C1) « is upper-transitive.

(Cy) T is a-admissible.

(03) (¢7¢) S

(Cy) forall z,y € X, a(z,y)d(q(Tz, Ty)) < ¢(q(x,y)) — P(q(z,y)).

Remark 4.20. If o(z,y) = 1 for all z,y € X, then the notions of («, F)-contractive
mapping and F-contractive mapping are exactly the same.

The following one is the main result of this subsection.

Theorem 4.21. Let (X,q) be a right-complete quasi-metric space in which each
right-convergent sequence has an unique right-limit and let T : X — X be an
(v, F)-contractive mapping. Suppose that there exists a point xg € X such that
a(xg, Txo) > 1. Also assume that, at least, one of the following conditions hold:

(A) T is right-continuous.
(B) (X, q) is upper-regular with respect to c.

Then T has, at least, a fixed point. Additionally, assume that for all u,v € FixT
there is z € X such that min(a(z,u),a(z,v)) > 1. Then T has a unique fized point.

Proof. Part I: Ezistence. Starting from xzq, let define x,41 = Tx, for all n > 0.
If there exists some ng € N such that ¢(zp,, Zny+1) = 0 or ¢(Tng+1, Tn,) = 0, then
Tng = Tng+1 = 1Ty, SO Ty, is a fixed point of T. On the contrary, assume that

(4.7) q(Tn, xnt1) >0 and q(zpi1,2,) >0 for all n.
By Lemma 4.18,
(4.8) a(Tp, ) > 1 for all n,m € N such that n < m.

Step 1. We claim that lim q(xy,,zn+1) = 0. Let apply the contractivity condition
n—oo
(Cy) to © = xp41 and y = 42, and using (4.8), we obtain that, for all n > 0,

¢(Q(xn+laxn+2)) < a(zn, xn+1)¢(Q(Txm Txn+1)) <(¢— ¢)(Q(xmfrn+1))-

By item 4 of Lemma 4.4, we conclude that:

(4'9) lim Q(fvna xn—&-l) =0.

n—00

Step 2. We claim that {x,} is right-Cauchy in (X,q), that is, for all e > 0,
there is ng € N such that q(zpn,xm) < € for all m > n > ng. We reasoning
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by contradiction. If {x,} is not right-Cauchy, there exist g > 0 and two partial
subsequences {Z,x) fren and {Z, k) tren verifying that
(4.10) kE <n(k) <m(k), q(Tr(k)s Tm(ky) > €0 for all k.

Taking m(k) as the smallest integer, greater than n(k), verifying this property, we
can suppose that
Q(l‘n(k)’xm(k)—l) <egg forall k.

Therefore e0 < q(Tnk), Tmrk) < UTn@)s Tmk)—1) + UTm@E) -1, Tmk)) < €0t
q(Ty (k) =15 Tm(k)), and taking limit as k — oo, it follows from (4.9) that

li = £0.
klm Q(xn(k’)v mm(k)) €0
Notice that, for all k,

ATk =15 Tnk)) + A Znk)s Trm(e)—1)
A(Tn(k)—1> Tnk)) + €0-

U Znik)—1> Tm(k)—1) <
(4.11) <
Let apply the contractivity condition (C4) to # = x4y and y = ) and we
obtain, using (4.8), that, for all k£ > 0,

(@ Tnky Tmk)) < AUTpm)—15 Tmk) 1) Q@ T Trk)—1, TTm(k)-1))
(412) < (¢_¢)(Q($n(k)—laxm(k)—l))'

By item 1 of Lemma 4.4, we have that q(z,x), Tm)) < ¢(Tnk)—15 Tm(k)—1) for all
k. Joining this inequality to (4.10) and (4.11), we have that, for all k,

€0 < Q(:L'n(k)vl‘m(k)) < Q(:En(k)—hxm(k)—l) < Q(xn(k)—lvxn(k)) + €o-
Letting £ — oo, we deduce that

A q(Zn k)1, Tmk) 1) = <o-
Using condition (F3) applied to {ar = q¢(Tnk)—1: Tmkr)-1)}s {0k = ¢ Tn(k) Tmr)) }
and L = g¢ (notice that by > L for all k£ by (4.10)), we conclude that g9 = 0,
which contradicts g > 0. This contradiction ensures us that {x,} is right-Cauchy
in (X, q), and Step 2 holds.

Since (X, q) is right-complete, there exists u € X such that lim,,_,o ¢(xp,u) = 0.
We will show that u is a fixed point of 7" under two different hypotheses.

Step 8. Assume that T is right-continuous. In such a case, lim;,, o0 ¢(Tzy, Tu) =
0, and taking into account that Tz, = x,41 for all n, then v and Tu are right-limits
of the same sequence {z,}. As we suppose that the right-limit in (X, ¢) is unique,
then Tu = u.

Step 4. Assume that (X,q) is upper-reqular with respect to . In this case, as
{¢(zn,u)} — 0 and a(zy,xn41) > 1 for all n, we have that a(z,,u) > 1 for all
n. Therefore, applying the contractivity condition (Cy) to x = x,, and y = u, we
obtain that, for all n > 0,

P(q(@n+1, Tw)) < awn, w)¢(q(Trn, Tu)) < (¢ =) (q(2n, w)).

As {q(zp,u)} — 0, item 3 of Lemma 4.4 guarantees that {q(zn+1,Tu)} — 0. Rea-
soning as in Step 3, we conclude that Tu = u.
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Part II: Unicity. Let u,v € X be fixed points of T. Using the additional condi-
tion, there exists z € X such that min(a(z,u), a(z,v)) > 1. Let define zyp = z and
Zn+1 = Tz, for all n > 0, and we will prove that {q(z,,u)} — 0 and {q(z,,v)} — 0.
By the unicity of the right-limit, this fact will conclude that v = v. Using the
symmetry in v and v, we will only show that {q(z,,u)} — 0.

Indeed, as zq verifies the initial condition a(zg,u) > 1 and T' is a-admissible, we
have that

alzp,u) >1 = a(Tz,Tu)>1 = az1,u)>1;

Similarly, by induction, it can be proved that «(z,,u) > 1 for all n > 0. Hence, for
all n >0,

P(q(zni1,1)) < alzn, w)d(q(T 20, Tu)) < (¢ = P)(q(zn, u)).

Item 4 of Lemma 4.4 guarantees that {g(z,,u)} — 0. This finishes the proof. O

The previous theorem can be particularized in a variety of different ways. For
instance, in the following result, a transitive relation is involved. This includes the
cases in which the relation is a preorder, a partial order or an equivalence relation.

Corollary 4.22. Let (X,q) be a right-complete quasi-metric space in which each
right-convergent sequence has an unique right-limit and let T : X — X be a map-
ping. Suppose that the following conditions are fulfilled.

e There exist a transitive relation < on X and (¢,v) € F satisfying

(4.13) ¢(q(Tx,Ty)) < ¢(q(x,y)) —Y(q(x,y)) for all z,y € X such that z < y.

o T is <-non-decreasing (that is, if v <y, then Tx < Ty).
e There exists a point xg € X such that xq < Txg.
o At least, one of the following conditions hold:
(A) T is right-continuous.
(B) If{z,} C X is a sequence in X andu € X are such that {q(xn,u)} — 0
and T, X Tpy1 for all n, then x, < u for all n.

Then T has a fixed point.
Additionally, assume that for all u,v € FixT there is z € X such that z < u and
z < v. Then T has a unique fized point.

Proof. Let define a< : X2 — R by:

1, ifxxy,
0, otherwise.

st = {

As < is a transitive relation on X, then ag is upper-transitive. Moreover, as 1" is <-
non-decreasing, then T is ag-admissible. Furthermore, there exists (¢, 1) € F such
that conditions (C3) and (Cy) trivially hold. Therefore, T is an (ax, F)-contractive
mapping. The condition z¢ < T'xrp means that ag(xo,Tz9) = 1. Hence, Theorem
4.21 can be applied. O
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5. APPLICATIONS TO COUPLED FIXED POINT THEOREMS IN THE FRAMEWORKS
OF QUASI-METRIC SPACES AND GG*-METRIC SPACES

In this section, we show some coupled fixed point results in the frameworks of
quasi-metric spaces and G*-metric spaces, and we describe how those results can be
reduced to their corresponding statements in the setting of quasi-metrics (especially,
to Theorems 4.8 and 4.21). To do that, we will use the following characterization
of coupled fixed point using the mapping 7% defined in (2.1).

Lemma 5.1. Given a mapping F : X?> — X, a point (x,y) € X? is a coupled fived
point of F if, and only if, it is a fixed point of sz«“'

5.1. Coupled fixed point theorems in quasi-metric spaces. We particularize
Theorem 4.8 to the case (X2,Q%) considering the mapping 72 : X2 x X2 — X?
by T2((z,y), (u,v)) = (F(x,y), F(u,v)). We point out that a similar version of the
following symmetric contractivity condition was firstly introduced by Berinde [7]
to show the weakness of the published coupled fixed point theorems with non-
symmetric contractivity condition in the framework of metric spaces, see e.g. [17].
However, Samet et al. understood that such coupled fixed point theorems via sym-
metric contractivity condition are consequence of the existing fixed point theorems.

Theorem 5.2. Let (X, q) be a complete quasi-metric space and let F: X2 — X be
a mapping such that there exists (¢,v) € F satisfying, for all x,y,u,v € X,

5:1) o (alFl@,) Plu,0)) +a(F(y,2), Fv,0) < (6 = ) (ala,u) + aly,v).

Then F' has a unique coupled fized point, which is of the form (z,x). In particular,
there exists a unique v € X such that F(z,x) = x.

Proof. As q is a complete quasi-metric on X, then Q¥ is a complete quasi-metric on
X? (see Lemma 3.3). Notice that, for all (x,v), (u,v) € X2,

Qi((z,y), (u,v)) = q(,u) + q(y,v),  and
Qq(TF(x y) TF(u )) ((F(x y) F(y,m)),(F(u, U)vF(Uvu)))
= q(F(z,y), F(u,0)) + q(F(y, 2), F (v, u)).
1)

Therefore, condition (5.1) can be written as

y)
¢ (QUTE(w,y), Ti(u,v))) < V) (QI((z,y), (u,v)))  for all (z,y), (u,v) € X*.

This means that TJ% is an F-contractive mapping. Theorem 4.8 guarantees that TI%
has a unique fixed point (z,y) € X2, which is a coupled fixed point of F by Lemma
5.1. It only remains to prove that x = y. We have

¢ (q(z,y) +a(y,2)) = ¢ (a(F(z,y), F(y,2)) + ¢(F(y,2), F(z,y)))
< o(q(z,y) + a(y, ) — ¥(a(z,y) + q(y, z))
< ¢(q(z,y) + q(y, 2)),
which means that ¥ (q(z,y) + q(y,x)) = 0. Therefore ¢(x,y) =0 and = = y. O

We can also particularize Theorem 4.8 to the case (X2,Q%,) considering the
mapping T as follows.
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Theorem 5.3. Let (X, q) be a complete quasi-metric space and let F : X? — X be
a mapping such that there exists (¢,v) € F satisfying, for all z,y,u,v € X,

o(q(F(z,y), F(u,v))) <max{¢(q(z,u)), (q(y,v))}
— Y(max {q(z,u), q(y,v)}).

Then F has a unique coupled fized point, which is of the form (x,z). In particular,
there exists a unique x € X such that F(z,z) = x.

(5.2)

Proof. As ¢ is non-decreasing, then ¢(max(t,s)) = max{¢(t),d(s)} for all ¢, s €
[0,00). Then

& (Q(TH(x.9), TH(w.v))) = ¢ (Qh((F (). Fly,2)), (F(u,v), F(v,u)
= ¢ ((max {g(F (2 ). F(u,v)), 4(F (y. 2), F(v,u))})

= max (aﬁ(q(F(w,y),F(u, v))), <b(q(F(y,w)7F(v,u))))

< max {$(q(z, u)), #(q(y,v))} — P(max {q(z,u), q(y,v)})
= ¢ (max {q(z,u), q(y,v)}) — Y (max {g(z, u),q(y,v)})

= (¢ — ) (Q%.((z,y), (u,v))).

Therefore, T}% is an JF-contractive mapping in the complete quasi-metric space
(X2, g2 )- The rest is similar to the proof of Theorem 5.2. O

5.2. Coupled fixed point theorems in G-metric spaces. We particularize
Theorems 5.2 and 5.3 to the case in which ¢(z,y) = G(z,y,y), where G is a com-
plete G*-metric on X. Later, we will show that this particularization lets us to
prove a Shatanawi’s coupled result.

Corollary 5.4. Let (X,G) be a complete G*-metric space and let F : X? — X be
a mapping such that there exists (¢,v) € F satisfying, for all x,y,u,v € X,
(5:3) 6 (G(F(w,y), F(u,v), F(u,v)) + G(P(y, ), F(v,u), F(v,u)

< (¢ =) (G(z,u,u) + G(y,v,v))

Then F has a unique coupled fized point, which is of the form (x,z). In particular,
there exists a unique v € X such that F(z,x) = x.

Corollary 5.5. Let (X,G) be a complete G*-metric (or G-metric) space and let
F : X? — X be a mapping such that there exists (¢,%) € F satisfying, for all
x7y7u7v7w7z e X7

(5.4) & (G(F(2,y), F(u,v), Fw,2)) + G(F(y,2), F(v,u), F(z,w)))

< (d) - ¢) (G(m,u, w) + G(y7v’ Z))

Then F' has a unique coupled fized point, which is of the form (z,x). In particular,
there exists a unique v € X such that F(z,x) = x.

Proof. 1t follows from the fact that condition (5.4) implies condition (5.3). O



FIXED POINT THEOREMS FROM QUASI-METRIC SPACE TO G-METRIC SPACE 1803

We can also particularize Theorem 5.3 to the case q(x,y) = G(x,y,y) considering
the mapping TI% as follows.

Corollary 5.6. Let (X,G) be a complete G*-metric space and let F : X? — X be
a mapping such that there exists (¢,v) € F satisfying, for all z,y,u,v € X,
(5.5) o(G(F(z,y), F(u,v), F(u,v)))

< max {¢(G(z, u,u)), p(G(y,v,v))} — Y(max{G(z,u,u), Gy, v,v)}).

Then F has a unique coupled fized point, which is of the form (x,z). In particular,
there exists a unique x € X such that F(z,z) = .

Corollary 5.7. Let (X,G) be a complete G*-metric space and let F : X? — X be
a mapping such that there exists (¢,v) € F satisfying, for all z,y,u,v € X,

(5.6) ¢(G(F(z,y), F(u,v), F(w,2)))
< max{¢(G(x, u,w)), p(G(y, v, 2))} — (max {G(z, u, w), G(y, v, 2)})

Then F has a unique coupled fized point, which is of the form (x,x). In particular,
there exists a unique v € X such that F(z,x) = x.

Proof. 1t follows from the fact that condition (5.6) implies condition (5.5). O

5.2.1. Shatanawi’s coupled fized point results in G-metric spaces. In [43], Shatanawi
proved the following theorem.

Theorem 5.8 (Shatanawi [43]). Let (X,G) be a G-complete G-metric space. Let
F: X xX — X be a mapping such that

k
G(F (). F(.), Pw,2)) < 5 (Gl uw) 4Gy 0.2) for all 2,y,u,0.2,0 € X.
If k €[0,1), then there exists a unique x € X such that F(x,z) = x.

Proof. Tt follows from Corollary 5.5 using ¢(t) = t and (t) = (1 — k)t for all
t> 0. O

We note that the previous result is also valid if G is a G*-metric.
Corollary 5.9. Theorem 5.8 also holds even if G is a G*-metric.

The following result is more general than Theorem 5.8 and it can be derived as in
the previous proof using Corollary 5.4 instead of Corollary 5.5. However, we point
out that it was not established in [43].

Theorem 5.10. Let (X, G) be a G-complete G-metric space. Let F: X x X — X
be a mapping such that

G(F(z,y), F(u,v), F(u,v)) < S(G(z,u,u) + G(y,v,v))  forall z,y,u,veX.

Do |

If k € [0,1), then there is a unique x € X such that F(z,z) = x.
In fact, we prove that the previous result admits a more general version.

Corollary 5.11. Theorem 5.10 also holds even if G is a G*-metric.
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5.3. Coupled fixed point theorems in partially ordered quasi-metric spaces.
In 1987, Guo and Lakshmikantham [18] introduced the notion of coupled fized point.

This concept was reconsidered by Gnana-Bhaskar and Lakshmikantham [17] in 2006.

In this paper, they proved existence and uniqueness of a coupled fixed point of an

operator ' : X x X — X on a partially ordered metric space under a condition

called mized monotone property.

Definition 5.12. ( [17]) Let (X, <) be a partially ordered set and let ' : X? — X.
The mapping F' is said to have the mized monotone property with respect to < if
F(z,y) is monotone non-decreasing in = and monotone non-increasing in y, that is,
for any z,y € X ,
z,x2 € X, 122 = Flxy,y) % F(za,y) and
v, € X, sy = Fz,n) = F(z,92)
It is not necessary to consider a partial order < on X to introduce the following

definition. Given a binary relation < on X, let define C, for all (z,y), (u,v) € X2,
by

(5.7) (2,9) C (u,v) <= [z <uandyxo]

<
=

Lemma 5.13. Let F : X% — X be a mapping and let < be a binary relation on X.
(1) < s transitive (respectively, reflexive, a preorder, a partial order) if, and
only if, T is transitive (respectively, reflexive, a preorder, a partial order).
(2) If F has the mized monotone property with respect to <, then Tr is C-non-
decreasing.
(3) If X is reflezive, then F' has the mized monotone property with respect to <
if, and only if, Tr is C-non-decreasing.

Proof. (1) We only study the transitivity. Suppose that =< is transitive and let
(x1,22) C (y1,y2) C (21,22). Then 1 < y1 < 21 and z2 = y2 = 2z2. Therefore
x1 < 21 and x2 = 29, so (r1,x2) C (21, 22). Conversely, assume that C is transitive
and let < y < 2. Then (z,2) C (y,y) C (2, ), which means that (z,2) C (z,x)
and x < z. Other properties are similar.

(2) Suppose that F' has the mixed monotone property with respect to < and let
(z1,y1) E (22,y2). Then 1 < x2 and y; = y2. Using the mixed monotone property
1 Sz = F(o,11) < Fw2,51); v2 S y1 = F(x2,y2) = Fx2,91).

As < is transitive, F(z1,y1) < F(z2,y1) < F(x2,y2) implies that F(z1,11) <
F(z2,y2). Similarly
Y2 <y1 = F(y2,72) < Fy1,72); r1 <522 = F(y1,71) = Fy1, 72).
Therefore F(y2,z2) < F(y1,22) < F(y1,z1) implies that F(y1,z1) = F(y2,22).
Hence
F(z1,91) < F(x2,y2) and F(y1,21) = F(y2, 72)
< (F(z,0), Fy,21)) E (F(22,92), F(y2, 22))
& Ti(z1, 1) T Ti(xo,52).

Thus, T? is C-non-decreasing.
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(3) Assume that T is C-non-decreasing and let z1,z2,y € X be such that
z1 < T2. Asy <y, then (z1,y) C (22,y), so Ta(z1,y) T T2(x2,y). This means that
(F(l'l,y),F(y,l'l)) C (F(:L‘%y)vF(yvl‘Q)) a’nd7 in particular, F(:Elay) < F(any)
The other condition can be proved similarly. U

Remark 5.14. From the original Ran and Reurings’ theorem (see [34]), it is usual
to consider partial orders to establish fixed point theorems in ordered metric spaces.
However, the antisymmetric condition is not usually involved. Therefore, it could
be sufficient to consider preordered spaces (where the relation is reflexive and tran-
sitive). However, as the other authors’ main results have been stated in partially
ordered spaces, we will also use this kind of spaces.

Taking into account the last Remark, we prefer particularize Corollary 4.22 to
the ambient X? using T2 rather than Theorem 4.21 (which could be also useful).

Theorem 5.15. Let (X, q) be a right-complete quasi-metric space in which each
right-convergent sequence has an unique right-limit and let F : X% — X be a map-
ping. Suppose that there is a preorder < on X such that F' has the mized monotone
property and there exists (¢,1) € F satisfying

(5.8) ¢ (q(F(z,y), F(u,v)) +q(F(y, z), Fv,u))) < (¢ =) (q(z,u) +q(y,v))

for all x,y,u,v € X such that © < u and y = v. Assume that there exist xg,yo € X
such that xo < F(xo,y0) and yo = F(yo,x0). Also assume that, at least, one of the
following conditions hold:

(A) F is right-continuous, or
(B) (X, q) verifies the following two properties:
(B.1) If{zn} C X is a sequence in X andu € X are such that {q(zp,u)} — 0
and T, X Tpy1 for all n, then x, <X u for all n.
(B.2) If {yn} C X is a sequence in X andv € X are such that {q(yn,v)} — 0
and Yn = Ynt1 for all n, then y, = v for all n.

Then F' has, at least, a coupled fixed point. Furthermore, any coupled fized point
of F is of the form (x,z), where x € X.

Additionally, assume that for all coupled fized point (xz,x) and (y,y) of F, there
is (z1,22) € X2 such that z1 < x, 21 < Y, 20 = and 22 = y. Then F has a unique
coupled fized point.

Proof. As (X,q) be a right-complete, then (X2, Q%) is also right-complete, and
by item 7 of Lemma 3.3, as each right-convergent sequence in (X, ¢) has an unique
right-limit, then (X2, Q%) also verifies this property. Using the preorder <, we could
consider the preorder C on X? given by (5.7). Item 2 of Lemma 5.13 guarantees
that T% is C-non-decreasing, and the contractivity condition (5.8) can be written
as

¢ (Q1 (T (z,y), T (u,v))) = ¢ (¢ (F(z,y), F(u,v)) + q (F(y, ), F(v,u)))



1806 R. AGARWAL, E. KARAPINAR, AND A.-F. ROLDAN-LOPEZ-DE-HIERRO

for all (z,y), (u,v) € X? such that (z,y) C (u,v). Moreover, (zo,y0) = T2(x0, o).
Corollary 4.22 ensures that T }2; has a fixed point, which is a coupled fixed point of
F.

Let (z,y) be any coupled fixed point of F. Then

¢ (q(z,y) +q(y,2)) = o (q(F(x,y), Fy, x)) + ¢ (F(y, z), F(x,9)))
< (¢ -)(a(z,y) + q(y, v))
< ¢ (q(z,y) +aly,x)),
which means that v (¢(x,y) + q(y,z)) = 0. Therefore ¢(z,y) =0 and z = y.

The additional condition means that (z1,22) C (x,z) and (z1,22) C (y,y), and
we can also apply Corollary 4.22. [l

The same proof is valid for the following result, in which we use Qf,.

Theorem 5.16. Let (X, q) be a right-complete quasi-metric space in which each
right-convergent sequence has an unique right-limit and let F : X% — X be a map-
ping. Suppose that there is a preorder < on X such that F' has the mized monotone
property and there exists (¢,1) € F satisfying

(5.9) ¢ (q(F(x,y), F(u,v)))
< maX{¢ <Q(x7 u)) ) (b (Q(:% ’U))} - 1/} (maX{Q(x7 U), Q(ya U)})

for all x,y,u,v € X such that x < u and y = v. Assume that there exist xg,yo € X
such that xo < F(zo,y0) and yo = F(yo,z0). Also assume that, at least, one of the
following conditions hold:
(A) F is right-continuous, or
(B) (X, q) verifies the following two properties:
(B.1) If{zn} C X is a sequence in X andu € X are such that {q(zp,u)} — 0
and T, X Tpy1 for all n, then x, < u for all n.
(B.2) If {yn} € X is a sequence in X andv € X are such that {q(yn,v)} — 0
and Yn = Yny1 for all n, then y, = v for all n.

Then F has, at least, a coupled fized point. Furthermore, any coupled fized point
of F is of the form (x,z), where x € X.

Additionally, assume that for all coupled fixed point (x,z) and (y,y) of F, there
is (z1,22) € X2 such that z1 < T, 21 KRY, 29 =x and 29 =y. Then F has a unique
coupled fized point.

Proof. We only notice that the contractivity condition (5.9) is equivalent to the
following one:

¢ (QF, (TF(2,y), Ti(u,v))) = ¢ (max {q (F(z,y), F(u,v)),q (F(y, x), F(v,u))})
= max {¢ (q (F(z,y), F(u,v))), ¢ (q (F(y, ), F(v,u)))}
< max{¢ (q(z, )),Gﬁ((J( ,0))} — 1 (max{q(z, u), q(y,v)})
= ¢ (max{q(z, u), q(y,v)}) — ¢ (max{q(z,u),q(y,v)})
= (¢ =) (@, ((2,9), (u,0)))
for all (z,v), (u,v) € X2 such that (x,y) C (u,v). O
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5.4. Coupled fixed point theorems in partially ordered G-metric spaces.
We state Theorems 5.15 and 5.16 in the case in which ¢(z,y) = G(«,y,y) for some
G*-metric G on X, and we obtain the following results. Recall that in a G*-metric
space, right /left convergent (respectively, Cauchy) sequences are the same, and that
every (right-)convergent sequence has a unique (right-)limit.

Corollary 5.17. Let (X,G) be a complete G*-metric space and let F : X? — X
be a mapping. Suppose that there is a preorder < on X such that F' has the mized
monotone property and there exists (¢,v) € F satisfying

(5.10) ¢ (G (F(z,y), F(u,v), F(u,v)) + G (F(y,x), F(v,u), F(v,u)))
S (¢ - sz)) (G(x’ U, u) + G(ya v, U))

for all x,y,u,v € X such that x < u and y = v. Assume that there exist xg,yo € X
such that xo < F(zo,y0) and yo = F(yo, o). Also assume that, at least, one of the
following conditions hold:
(A) F is continuous, or
(B) (X, q) verifies the following two properties:
(B.1) If {xn} C X is a sequence in X and u € X are such that {z,} Su
and Tp X Tpt1 for all n, then x, < u for all n.
(B.2) If {yn} € X is a sequence in X and v € X are such that {yy} A
and Yn = Ynt1 for all n, then y, = v for all n.
Then F' has, at least, a coupled fixed point. Furthermore, any coupled fized point
of F is of the form (x,z), where x € X.
Additionally, assume that for all coupled fized point (x,z) and (y,y) of F, there
is (z1,22) € X? such that 21 < x, 21 < Y, 29 = and z9 = y. Then F has a unique
coupled fixed point.

Corollary 5.18. Let (X,G) be a complete G*-metric space and let F : X? — X
be a mapping. Suppose that there is a preorder < on X such that F' has the mized
monotone property and there exists (¢,1) € F satisfying

(5.11) ¢ (G (F(z,y), F(u,v), F(u,v)))
< max{¢ (G(z,u,u)), ¢ (G(y,v,v))} — ¢ (max{G(z,u,u), G(y,v,)})

for all x,y,u,v € X such that © < u and y = v. Assume that there exist xg,yo € X
such that xo < F(xo,y0) and yo = F(yo,x0). Also assume that, at least, one of the
following conditions hold:

(A) F is continuous, or
(B) (X, q) verifies the following two properties:
(B.1) If {zn} C X is a sequence in X and v € X are such that {z,} Su
and T, X Tpy1 for all n, then x, < u for all n.
(B.2) If {yn} C X is a sequence in X and v € X are such that {y,} EINY
and Yy, = Yn+1 for all n, then y, = v for all n.

Then F' has, at least, a coupled fized point. Furthermore, any coupled fized point
of F is of the form (x,x), where x € X.
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Additionally, assume that for all coupled fixed point (x,z) and (y,y) of F, there
is (z1,22) € X2 such that 21 <, 21 < Y, 20 =« and 22 = y. Then F has a unique
coupled fixed point.

The following results also hold for G*-metric spaces, but we enunciate them in
G-metric spaces to respect the original versions.

5.4.1. Choudhury and Maity’s coupled fixed point results in G-metric spaces. Choud-
hury and Maity [12] proved the following coupled fixed point theorems on ordered
G-metric spaces.

Theorem 5.19 (Choudhury and Maity [12], Theorem 3.4). Let (X, <) be a partially
ordered set and G be a G-metric on X such that (X, G) is a complete G-metric space.
Let F: X x X = X be G-continuous mapping having the mized monotone property
on X. Suppose that there exists a k € [0,1) such that

(5.12) G(F(z,y), F(u,v), F(w,z)) < g[G(x, u,w) + G(y,v, z)]

for all x,y,u,v,w,z € X with x X u <X w and y = v = z where either uw # w or
v # z. If there exist xo,yo € X such that xo < F(x0,y0) and F(yo,xo) = yo, then F
has a coupled fized point, that is, there exists (x,y) € X x X such that v = F(x,y)
and y = F(y,x).

Theorem 5.20. If in the above theorem, instead of G-continuity of F', we assume
that X is ordered complete, then I has a coupled fixed point.
We prove that the previous results can be improved as follows.

Corollary 5.21. Theorems 5.19 and 5.20 also hold if G is a G*-metric.

Proof. 1t follows from Corollary 5.17 using ¢(t) = t and ¥(t) = (1 — k)t, for all
t>0. O

5.4.2. Aydi et al’s coupled fized point results in G*-metric spaces. We consider
next fixed point theorems established by Aydi et al. [11]. Let denote by € the set
of functions ¢ : [0,00) — [0, 00) satisfying the following conditions:

() @1 ({0}) = 0,

(Q2) @(t) <t for all t > 0;

(Q3) lim p(r) < t.

r—tt

As ¢(0) = 0, we notice that ¢(t) < ¢ for all ¢ > 0. The following property is

trivial.

Lemma 5.22. (See [11]) Let p € Q. For allt > 0, we have le ©"(t) =0.

Aydi et al. [6] proved the following fixed point theorems.

Theorem 5.23 (Aydi et al., Theorem 3.1). Let (X, <) be a partially ordered set and
G be a G-metric on X such that (X,G) is a G-complete G-metric space. Suppose
that there exist o € Q and F : X x X — X such that
G(z,u,w) + G(y,v, z))
2

(5.13) G(F(x,y), F(u,v), F(w,z)) < ¢ <



FIXED POINT THEOREMS FROM QUASI-METRIC SPACE TO G-METRIC SPACE 1809

for all z,y,u,v,w,z € X with x K u X w and y > v = z. Suppose also that F is
G-continuous and has the mized monotone property. If there exist xg,yg € X such
that xo < F(xo,y0) and yo = F(yo,x0), then F has a coupled fized point, that is,
there exists (x,y) € X2 such that x = F(z,y) and y = F(y,z).

Replacing the G-continuity of F' by ordered completeness of X yields the next
result.

Theorem 5.24 (Aydi et al., Theorem 3.2). Let (X, <) be a partially ordered set
and G be a G-metric on X such that (X, G, <) is G-complete. Suppose that there
exist o € Q and F: X x X — X such that

(5.14) G(F(z,y), F(u,v), F(w,z)) < ¢ <G(x,u,w) + G(y,v,z))

2

for all x,y,u,v,w,z € X withx < u<xw and y = v = z. Suppose also that F has
the mixed monotone property and X is ordered complete. If there exist xg,yg € X
such that xo < F(x0,y0) and yo = F(yo,x0), then F has a coupled fized point, that
is, there exists (x,y) € X2 such that v = F(x,y) and y = F(y, z).

Next, we prove more general statements using complete G*-metrics and a weaker
contractivity condition, taking into account the following fact.

Lemma 5.25. If ¢ € Q and ¢(t) =t for all t > 0, then (¢, — ) € F.

Proof. Let ¢ = ¢—¢. Clearly, ¢ is non-decreasing and ¢(t) =0 <t =0 < ¢(t) = 0.
Let {ax}, {br} C [0,00) be sequences such that {ax} — L, {bx} — L and verifying
L < b and ¢(br) < (¢ — ) (ag) for all k. This means that L < by = ¢(by) < (¢ —
¥)(ar) = p(ar) < ay for all k. Letting k — oo, we deduce that limg_,o, ¢(ar) = L.
If L > 0, then, by (Q3),

L=1 = 1l L
Qo Plon) = I o) < £
which is impossible. Therefore L = 0 and (¢, ¢ — ) € F. O

Corollary 5.26. Theorems 5.28 and 5.24 also hold even if G is a G*-metric and
even replacing inequality (5.13) by

G(F(z,y), F(u,v), F(u,v)) < ¢ <G(x,u,u) + G(y,vjv))

2

for all x,y,u,v € X with x < u and y = v.

Proof. It is only necessary to apply Corollary 5.17 and Lemma 5.25 to the case in
which ¢(t) =t for all t > 0 and 1) = ¢ — ¢. Notice that the same proof of Lemma
3.4 shows that

G ((z,y), (u,v), (w,2)) = G(z,u,w) + G(y,v,2)

2

for all (z,7), (u,v), (w,z) € X?

is a complete G*-metric on X? verifying G’ = G?/2. O
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5.4.3. On Coupled fized point results by Abbas et al. in G-metric spaces. Let © be
the set of functions 6 : [0,00)? — [0, 1) which satisfy the condition:

{0(tn,sn)} —1 = [{ty} = 0and {s,} = 0].
The following theorems have been given by Abbas et al. [1].

Theorem 5.27 (Abbas et al. [1], Theorem 3.1). Let (X, <) be a partially ordered
set such that there exists a complete G-metric on X and F : X x X — X be a
continuous mapping having the mixed monotone property. Suppose that there exists

0 € © such that
(5.15) G(F(z,y), F(u,v), F(w,2)) + G(F(y,z), F(v,u), F(w, 2))
<O0(G(z,u,w),G(y,v,2)) [G(z,u,w) + G(y, v, 2)]
for all x,y,z,u,v,w € X for which x = u %= w and y < v < z where either u # w
or v # z. If there exists xg,yo € X such that
zo < F(zo,90) and  yo = F(yo, z0),
then F has a coupled fixed point.

In the following result, F' is not necessarily continuous.

Theorem 5.28 (Abbas et al. [1], Theorem 3.2). Let (X, <) be a partially ordered
set such that there exists a complete G-metric on X and F : X x X — X be a
mapping having the mized monotone property. Suppose that there exists 6 € © such
that

(5.16) G(F(z,y), F(u,v), F(w,z)) + G(F(y,z), F(v,u), F(w, 2))
<0(G(z,u,w),G(y,v,2)) [G(x,u,w) + G(y,v, 2)]
for all z,y, z,u,v,w € X for which x = u > w and y < v X z where either u # w
or v # z. If there exists xg,yo € X such that
zo < F(xo,y0) and  yo = F(yo, xo),
and X has the following property:

(1) if a non-decreasing sequence {x,} — x, then x, < x for alln € N,
(ii) if a non-increasing sequence {yn} — y, then y, =y for alln € N,

then F has a coupled fixed point.

We extend the previous results to the case in which G is a G*-metric on X taking
into account the following fact.

Lemma 5.29. Let 0 € © and define fp : [0,00) — R, for allt >0, by:
| sup({O(s,r):s+r>t}), ift>0,
Bo(t) = { 6(0,0), ift =0.
Then the following properties hold.

(1) Bo(t) € [0,1) for all t € [0,00).
Bo is a Geraghty function.

(2)
(3) O(t,s) < Bo(t+s) for allt,s > 0.
(4) If p(t) =t and (t) =t — By(t)t for allt >0, then (p,7) € F
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Proof. (1) As 0 < 6(t,s) < 1 for all t,s € [0,00), we have that 0 < Sy(t) < 1 for
all t € [0,00). Clearly By(0) = 0(0,0) < 1. Suppose that there is ¢y > 0 such that
Bo(tg) = 1. Therefore there are sequences {s,} and {r,} such that s, + r, > to
verifying {0(sn, )} — 1. As 6 € ©, then {s,} — 0 and {r,} — 0, but this is a
contradiction with the fact that s,, +7, > to > 0 for all n € N.

(2) Let {t,} C [0,00) be a sequence such that {8y (t,)} — 1. Then there is ng € N
such that ¢, > 0 and ((t,) > 0 for all n > ng. Let define &,, = min(1/n, By(t,)/2) >
0 for all n > ng. As Byp(ty) is a supremum and &, > 0, for all n > ng, there are
Sn,Tn € [0,00) such that s, + 7, > t, and 1 — &, < 0(sp, ) < Bp(tn) < 1. This
process define two sequences { sy }n>n, and {t, }n>n, such that 1—g, < 0(sp, 1) < 1
for all n > ng. As {e,} — 0, we have that {0(s,,m,)} — 1. As 6 € ©, we deduce
that {s,} — 0 and {r,} — 0, so {t,} — 0. This proves that 5y is a Geraghty
function.

3)If t = s = 0, then 6(0,0) = [p(0). If t+ s > 0, then 0(t,s) <
sup ({0(u,v) :u+v>t+s}) = Bo(t + s).

(4) It follows from Lemma 4.5. O

Corollary 5.30. Theorems 5.27 and 5.28 also hold even if G is a G*-metric.

Proof. As 6 € ©, item 4 of Lemma 5.29 guarantees that (¢,1) € F, where ¢(t) =t
and 1(t) =t — By(t)t for all t > 0. Notice that (¢ — ) (t) =t —(t — Ba(t)t) = Ba(t)t
for all ¢ > 0. Hence,
¢ (G(F(z,y), F(u,v), F(w, z)) + G(F(y, z), F(v,u), F(z,w)))

= G(F(z,y), F(u,v), F(w, 2)) + G(F(y, z), F(v,u), F(z,w))

< 0(G(z,u,w),G(y,v,2)) [G(z,u, w) + G(y, v, 2)]

< B@(G(.%, u, w) + G(y7 v, Z)) [G(l’, u, w) + G(yv v, Z)]

= (¢ =) (G(z,u,w) + G(y,v, 2)).
As F' is G-continuous, Corollary 5.17 implies that F' has a coupled fixed point. The
case in which (X, G, <) is regular is also included in Corollary 5.17. O

6. APPLICATIONS TO TRIPLED FIXED POINT THEOREMS IN THE FRAMEWORKS OF
QUASI-METRIC SPACES AND G*-METRIC SPACES

Exactly the same arguments of the previous section can be applied in order to
obtain tripled/quadrupled fixed point results. We only show some examples, but
they can be easily generalized.

6.1. Tripled fixed point theorem by Aydi, Karapinar and Shatanawi in
partially ordered G-metric spaces. Let ' be the set of all non-decreasing
functions ¢ : [0,00) — [0,00) such that lim, . ¢"™(t) = 0 for all ¢ > 0. If ¢ € OV,
then following Matkowski [30], we have: (1) ¢(t) <t for all t > 0; (2) ¢(0) = 0. In
particular, ¢(t) <t for all t > 0.

Using this kind of test functions, Aydi et al. [5] proved the following result.

Theorem 6.1 (Aydi, Karapmar and Shatanawi [5], Theorem 2.1). Let (X, <) be
partially ordered set and (X, G) a G-metric space. Let F : X3 — X be a continuous
mapping having the mized monotone property on X. Assume there exists o €
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such that, for x,y,z,a,b,c,u,v,w € X, withrx <a<xu,y=bx=v, and z < c K w,
one has
(6.1)

G (F(,y,2), F(a,b,c), F(u,v,w)) < ¢ (max {G(z,a,u),G(y,b,v), G(z,c,w)}).

If there exist xg,yo,20 € X such that zo < F (x0,%0,20), Yo = F (y0,20,y0) and
20 < F (20,90, 20), then F has a tripled fized point in X, that is, there exist x,y,z €
X such that

F(x,y,2) =z, F(y,z,y)=y and F(zy,2) =z

In order to extend this result to the framework of G*-metric spaces, we must take
into account the following considerations. Let (X, ¢q) be a quasi-metric space and
define anQ?ﬂ : (X3)2 — [O, OO), for all (mlaylazl)v (x25y2722) € X37 by

Qg((mla Y1, Zl)u (x27 Y2, 22)) =q (£U1, .TQ) +q (ylu y?) +q (Z17 ZQ) ;
Q;In((xlﬂ Y1, Zl)a (1'2, Y2, 22)) = Imnax {q (1'1, 1’2) , 4 (yla 92) » q (21, 22)} .
Then (X 3,@?) and (X 3,@?,1) are quasi-metric spaces. Moreover, all properties of

Lemma 3.3 also hold. Given a mapping F : X? — X, let denote by Tg& c X3 X3
the mapping

Ti(w,y,2) = (F(2,y,2), F(y,2,9), F(z,y,2))  forall (z,y,2) € X°.
A tripled fixed point of F' is nothing but a fixed point of TI‘?.
Furthermore, given a binary relation < on X, let define
(71,y1,21) C (22,Y2,22) & [71 <72, y1 = y2 and 21 X 22 |.

As in Lemma 5.13, if F' has the mixed monotone property with respect to <, then
T;L is C-non-decreasing.

The following lemma lets us to show how Theorem 6.1 is also valid if G is a
G*-metric.

Lemma 6.2. If ¢ € Q' and we define ¢(t) =t and (t) =t — p(t) for all t > 0,
then (p,) € F.

Proof. Clearly ¢ is non-decreasing. If there exists ¢y € [0,00) such that ¢ (ty) = 0,
then ¢(tg) = to, which is only possible when ty = 0. In this case, ¢~1(0) = {0}.
Finally, to prove (F3), let {ax}, {bx} C [0,00) be sequences such that {a;} — L,
{bx} — L and verifying L < by, and ¢(by) < (¢ — ¢)(ax) for all k. We will prove
that L = 0 reasoning by contradiction. Assume that L > 0. Therefore

L <by = ¢(b) < (¢ —)(ar) = p(ax) < ap  for all k,
which means that
lim ¢(a;) = L.
k—o00
As ¢ is non-decreasing, there exists the limit

L'= lim ¢(s).

s—Lt+
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As {a} is a sequence converging to L and ay > L for all k, and the previous limit
exists, then

L' = lim ¢(s) = klim o(ag) = L.
—00

s—Lt+

Next, we claim that ¢(t) > L for all ¢ > L. Assume that there is ¢y € |L, oo[ such
that ¢(tg) < L. As ¢ is non-decreasing, L = lim,_,;+ ¢(s) < p(t9) < L. Hence, it
follows that ¢(s) = L for all s € | L, to], but this is a contradiction with the fact that
L < b, < ¢(ag) for all k, being {ar} — L. This contradiction proves that ¢(t) > L
for all £ > L. In such a case, notice that

a>L = pla)>L = ¢ (a)>L = -+ = ¢ ay)>L

for all n € N, which contradicts the fact that lim,, o ¢©™(a1) = 0. This contradiction
shows that L =0 and (¢,v) € F. O

Corollary 6.3. Theorem 6.1 also holds even if G is a G*-metric.

Proof. 1t follows from Lemma 6.2 and the fact that the contractivity condition (6.1)
can be seen as condition (4.13) in Corollary 4.22 using T3 in the ordered G*-metric

space (X3, QIS ), where qa(z,y) = G(z,y,y) for all z,y € X. a

6.2. Tripled fixed point theorem by Mohiuddine and Alotaibi in partially
ordered G-metric spaces. Let ©' be the set of functions 6 : [0,00)% — [0,1)
which satisfy the condition:

{0(tn, sn,mn)} =1 = [{tn} =0, {sp} = 0and {r,} - 0].

Using this kind of test functions, Mohiuddine and Alotaibi [32] presented the fol-
lowing result.

Theorem 6.4 (Mohiuddine and Alotaibi [32], Theorem 2.1). Let (X, <) be a par-
tially ordered set and G be a G-metric on X such that (X, G) is a complete G-metric
space. Suppose that F: X x X x X — X s a continuous mapping having the mixed
monotone property. Assume that there exists 0 € ©' such that
G(F(2,y,2),F(s,t,u), F(p,q,7))
+ G(F<y7 m’ z)’ F(t7 87 u)’ F(Q7p7 T)) + G(F(z7 y? x)? F(“) t? 8)7 F(/’n7 q?p))

<0(G(z,5,p), Gy, t,q),G(z,u,7)) [ G(z,5,p) + Gy, t,q) + G(z,u,7) |
for all x,y,z,s,t,u,p,q,r € X withx = s =p andy <t < q and z = u = r, where
either s # p ort # q or uw # r. If there exist xg,yo, 20 € X such that

zo < F(20,90,20), Yo = F(yo,w0,%0) and 20 < F(z0,y0,20)
then F' has a tripled fized point; that is, there exist x,y,z € X such that

x=F(z,y,2), y=F(y,z,y) and z=F(z,y,x).

Remark 6.5. Notice that in the statement of Theorem 6.4 there is a gap. It is
clear that in the expression

(6.2) G(F(y,x,z), F(t,s,u), F(q,p,7))
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is not coherent with the notion of mixed monotone property. Theorem 6.4 can be
corrected by replacing (6.2) by the term

G(F(y,a:, y), F(t, 37t)7F(Q7p7 q))

The given proof in [32] is valid for our suggested version.

Extending to the tripled case the techniques showed in Subsection 5.4.3 and
following the same notation as in Subsection 6.1, it is not difficult to prove the
following result.

Corollary 6.6. Theorem 6.4 also holds even if G is a G*-metric.

The previous technique can also be applied to prove quadrupled or even multidi-
mensional fixed point results. For instance, in [35], Rolddn and Karapmar showed
how to extend unidimensional fixed point results to the multidimensional case, us-
ing a mapping Fy : X"™ — X" which is defined using F' : X" — X. As the test
functions we use here are more general than used in [35], we point out that all
results in [35] are also consequences of Theorems 4.8 (in the non-ordered case) and
4.21 (in the partially ordered case).

7. CONCLUSION

In this paper, we examine several multidimensional (coupled, tripled and so on)
fixed point theorem under various contraction condition in the context of G. One
of the outcomes of this paper is that all discussed these multidimensional fixed
point theorems are consequences of either Theorem 4.8 or 4.21. More precisely all
mentioned multidimensional (coupled, tripled and so on) results in the context of
G-metric spaces can be concluded from a fixed point theorem in the setting of quasi
metric spaces, in particular from 4.8 or 4.21. In this case, it can be considered
as a subsequent of [9,19,42]. Second interesting conclusion of this paper is the
following: Most of the multidimensional fixed point theorems can be concluded from
the uni-dimensional (one-dimensional) fixed point theorem that trend was initiated
by Samet et al. [41], Agarwal and Karapinar [2], Karapinar et al. [24],Roldan et
al. [37]. We also underline that the product of G*-metric space is again G*-metric
space that improves the investigations of G-metric space theory.
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