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ABSTRACT. In this paper, we prove weak and strong convergence theorems for
Moudafi’s iterative scheme including (a, b)-monotone and nonexpansive mappings
in Hilbert spaces and give some examples to illustrate our main results. The re-
sults in this paper improve and extend the recent results of lemoto and Takahashi,
Lin and Wang and some others.

1. INTRODUCTION

Let C' be a nonempty closed convex subset of a real Hilbert space H. We denote
the set of fixed points of a mapping T': C' — C by F(T). A mapping T': C — C'is
said to be nonexrpansive if

[Tz — Tyl < |z -yl

for all z,y € C. A mapping T : C — C' is said to be quasi-nonexpansive if the set
of fixed points of T' is nonempty and

[Tz —y| <z -yl

forall x € C and y € F(T). If T : C — C is nonexpansive and the set of fixed
points of T is nonempty, then 7' is quasi-nonexpansive. Furthermore, F' is said to
be firmly nonexpansive if

|Fa — Fy||* < (z —y, Fx — Fy)

for all x,y € C. Every firmly nonexpansive mapping is nonexpansive. For some
important examples of nonexpansive mappings and mappings of the from F =
%(I + T') with a nonexpansive mapping 7, see [2, 3].

In 2008, Kohsaka and Takahashi [6] studied the existence and approximation of
fixed points of firmly nonexpansive type mappings in Banach spaces. They [7] also
introduced the class of mappings called the class of nonspreading mappings.
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Let E be a real smooth, strictly convex and reflexive Banach space and j denote
the duality mapping of E. Let C be a nonempty closed convex subset of E. A
mapping T : C' — C' is said to be nonspreading if

¢(Tz,Ty) + ¢(Ty, Tx) < ¢(Tx,y) + o(Ty, x)

for all z,y € O, where ¢(z,y) = ||=||* — 2(x,j(y)) + ||y||? for all 2,y € E. If E is
a Hilbert space, then we know that ¢(z,y) = ||z — y||? for all z,y € E. Thus a
nonspreading mapping S : C'— C in a Hilbert space H is defined as follows:

(1.1) 2|8z — Sy||* < Sz — yl* + [l - Sy|I?
for all z,y € C. Tt is well known ([4]) that (1.1) is equivalent to
(1.2) ISz — Syl* < ||z — yl* + 2(z — Sz,y — Sy)

for all x,y € C.

We know that, in a Hilbert space H, every firmly nonexpansive mapping is non-
spreading and, if the set of fixed points of a nonspreading mapping is nonempty,
then every nonspreading mapping is quasi-nonexpansive ([7]). In 2010, Takahashi
[16] introduced the class of hybrid mappings in Hilbert spaces, that is, a mapping
T :C — C in a Hilbert space H is said to be hybrid if

3T — Tyl* < ||z — yl* + I — y||* + |l — Ty|?

for all x,y € C. The class of hybrid mappings contains the class of firmly nonex-
pansive mappings in Hilbert spaces. Recently, Takahashi and Yao [17] introduced
the new class of mappings T : C — C in a Hilbert space H, that is, a mappings
T:C — C is called a TY -mapping if

(1.3) 2|z — Syl* < [lo -yl + 1Sz - y?
for all x,y € C.

Very recently, Lin and Wang [8] introduced the new class of mappings 7' : C' — C
in a Hilbert space H, that is, a mappings 7' : C' — C'is said to be (a,b)-monotone
if
(1) (o =y, T~ Ty) > all T =Tyl + (1~ a)lle — gl ~ blle — T~ blly — Ty
for all z,y € C, where a € (3,00) and b € (—00,a). This class contains the classes
of nonspeading mappings, hybrid mappings and T'Y-mappings (for more details, see

[8])-

Remark 1.1. From [8], it follows that every (a,b)-monotone mapping is not nec-
essary quasi-nonexpansive, nonspreadings, 7Y, hybrid and A-hybrid mapping.

On the other hand, weak convergence theorems for two nonexpansive mappings
T1,T> of C into itself were discussed by Takahashi and Tamura in [15]. They
considered the following iterative procedure:

{ x1 € C, chosen arbitrary,

(15)
Tn4+1 = (1 - an)xn + a1 (BnTan + (1 - ﬁn)xn>
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for all n > 1, where F(T1) N F(T%) is nonempty. In 2007, Moudafi [9] considered
another iterative procedure for two nonexpansive mappings 71,75 of C into itself:

{ x1 € C, chosen arbitrary,
(1.6)
Tn4+1 = (1 - an)xn + an(ﬂnT1$n + (1 - ﬁn)T2$n)
for all n > 1, where F(T1) and F(T3) are nonempty.

In 2009, Iemoto and Takahashi [4] extended the result of [9] for the approximation
of common fixed points of nonexpansive mappings and nonspreading mappings in
Hilbert spaces by using Moudafi’s iterative scheme as follows:

x1 € C, chosen arbitrary,
(1.7)
Tnt1 = (1 — ap)xy + an(BpSzy + (1 — Br)Txy)
for all n > 1, where S is a nonspreading mapping, 7' is a nonexpansive mapping
and F(S) N F(S) is nonempty.

The aim of this paper is to study the approximation of common fixed points of
(a,b)-monotone mappings and nonexpansive mappings in Hilbert spaces by using
the Moudafi’s iterative scheme. The main result of this paper extend and generalize
the corresponding results given by Iemoto and Takahashi [4], Lin and Wang [8] and
some others in the literature.

2. PRELIMINARIES

Throughout this paper, we denote R by the set of real numbers. Let H be a real
Hilbert space with an inner product (-,-) and a norm || - ||, respectively. First, we
start with a brief recollection of some basic concepts and results in Hilbert spaces
for our main results in this paper.

In a Hilbert space H, it is well known that

(2.1) Iz +yll* = lzl* + lylI* + 2(z, ).
and
(2.2) oz + (1= a)yll® = aflz]®* + (1 — ) |yl]> — (1 — @) ||z — y|I?

for all z,y € H and o € R (see, for instance, [13]). Further, in a Hilbert space H,
we have

(2.3) 20—y, 2 —w) = o —wl* + |y — 2l — llz — 2] ~ [ly — wl®

for all z,y,z,w € H (see [4]). We know that a Hilbert space H satisfies Opial’s
property ([11]), that is, for any sequence {z,} in H with z,, — x implies

(2.4) liminf||z,, — z|| < liminf||z, — y||
n— 00 n—oo
for all y € H with y # 2. We say that a mapping T : C' — C have the condition (A)

([12]) if there exists a nondecreasing f : [0, 00] — [0, 00] with f(0) = 0 and f(¢) > 0
for all ¢ € (0,00) such that

fld(z, F(T)) < ||z — T
for all x € C, where d(z, F(T)) = inf{||lx — z*| : 2* € F(T)}.
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In 2005, Khan and Fukhar-ud-din [5] modified the condition (A) for two mapping
as follows:

Two mappings S,T : C — C have the condition (A’) if there exists a nonde-
creasing f : [0,00] — [0,00] with f(0) = 0 and f(¢) > 0 for all ¢ € (0,00) such
that

1
fld(z, F)) < S(lle = Tz + ([l= - Sz])
for all z € C, where d(x, F) = inf{||x — z*|| : * € F)} and F := F(T) N F(S).

Lemma 2.1 ([18]). Suppose that {sp} and {e,} are the sequences of nonnegative
real numbers such that sp+1 < sp + ey for alln > 1. If 2701021 en < oo, then
lim,,— o0 Sn, €TisStSs.

Proposition 2.2 ([8]). Let C be a nonempty closed convex subset of a Hilbert space
H and T be a mapping from C' to itself.

(1) If T is a nonspreading mapping, then T is a (1, %)—monotone mapping.

(2) If T is a hybrid mapping, then T is a (%, %)—monotone mapping.

(3) If T is a TY - mapping, then T is a (2, %)—monotone mapping.

Proposition 2.3 ([8]). Let C be a nonempty closed convex subset of a Hilbert space
H and T be a (a,b)-monotone mapping defined on C. Then we have

1-2b
2a — 1

(2.5) lz = pl* > Tz — p* + lw — T |?

for allz € C and p € F(T).

Theorem 2.4 ([8]). Let C' be a nonempty closed convex subset of a Hilbert space
H and T be a (a,b)-monotone mapping defined on C. If a sequence {x,} C C with
Ty — x* and ||z, — Txy|| — 0, then x* = Tx*.

Theorem 2.5. ([14]) Let H be a Hilbert space and {x,} be a bounded sequence in H.
Then {x,} is weakly convergent if and only if each weakly convergent subsequence
of {xn} has the same weak limit, that is, for any x € H,

Ty =T = [Ty, =y = z=1].

3. WEAK CONVERGENCE THEOREMS

In this section, we prove the approximation of common fixed points of (a,b)-
monotone mappings and nonexpansive mappings in a Hilbert space by the using
Moudafi’s iterative scheme.

Theorem 3.1. Let H be a Hilbert space and C' be a nonempty closed convex subset
of H. Let S be a (a,b)-monotone mapping of C into itself and T' be a nonexpansive
mapping of C into itself such that F(S) N F(T) # 0. Define the sequence {x,} in
C as follows:

x1 € C, chosen arbitrary,
(3.1)

T+l = QpTn + (1 - O‘n)(ﬁnsxn + (1 - Bn)TfEn)
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for all n > 1, where {a,} C (0,1) with a, > 2= and {B,} C [0,1]. If

2a—1
lim inf (1 1—2b 0 001
a1 oo+ ) >0 30 A<
n=

then the sequence {x,} converges weakly to a point v € F(S).

Proof. Notice first that there exists a sequence {«,} satisfies our assumptions.

Indeed, b < a and SZj < 1 and so there exists a constant a € R such that

32:11 < a < 1. If we take a;, = o for all n > 1, then {a,} C (0,1) such that

2b—1 L. 1-2b
n> o hmnlggo(l—an)(an—i— 2@_1) > 0.

(67

Moreover, for each n > 1, we have
1-—2b
> 0.
2a —1
Next, we show that {z,} is a bounded sequence in C'. Since S is a (a, b)-monotone
mapping, by Proposition 2.3, for each p € F(S) N F(T) and = € C, we get

(3.2) oy +

1-—2b
. —_pll2 > _ 2 . 2
(33) el > 1Sz~ pl> + 5oz~ Sa
Let U, = 8,S + (1 — B,)T for each n > 1. Then, for all z,y € C, we have
1Unz = Upyll® = [Ba(Sz = Sy) + (1 = Bu)(Tz = Ty)||?
(3.4) = BallSz = Sy|* + (1 = Bu)lI Tz — Ty|*

—Ba(1 = Bn)||(Sz = Sy) — (T = Ty)||*
and
lz —Upz|?> = |z—Sz+ Sz —U,z|?

= |z — Sz|*+ ||Sz — Upz||® + 2(x — Sz, Sz — Upz)

= |lz — Sz|* + ||z — BaSz — (1 — Bn)T||?
(3.5) +2(x — Sz, Sz — Sz — (1 — Bp)T'x)

= |lz — Sz|* + (1 — Ba)?| Sz — Tx||?

+2(1 — Bp){(x — Sz, Sz — Tx)

Using (2.2), (3.3), (3.4) and (3.5), we have

| Zn41 _pH2 = ayllzn _pH2 + (1 — a)[|Unzn — p”2 —an(l —ap)|zn — Un$n||2
= anllzn —plI* + (1 — ) BullSzn — plI* + (1 = Bu) I Tz — pl?
—Bn(1 = Bn)|| Sz — TfUnHQ] —an(l —ap)|z, - Unfﬁn”2

< anllzn _pH2 + (1 — ) [BnllSzn _pH2 + (1= Bu)llzn — pHQ]
—(1 = ) Bn(1 = Bu)I(Sxp — 20) + (T — Txn)HZ
—an(l —ap)[flzn — anHQ +(1— Bn)Qusmn - Txn”Q
+2(1 = Bp){xy — Sz, Sy — Ty)]

< anllzn _pH2 + (1 — an)[Bullzn — p||2
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—2b
5n —llzn — S| + (1= B)llzn — plI]
—(1- an)ﬂn( = Bu)[ISzy — anz + |lzn — Txn||2
+2(Sxy, — Ty, Ty — Txy)]
—an (1 — ap)[[|zn — anuz + (1 - 5n)2\|5%'n - TanQ
+2(1 = Bp){(xy — Szp, Sy — Tp)]

_ _ 2 _ _ 2 - e
= anllzn — ol + (1~ @) [lzn — ol ~ Bug s

—(1 = ) Bu(1 = B[S0 — ol + |20 — Ty |?

—2(xp, — Sy, xy — Ty)]

—ap (1 — ap)[l|zn — anHQ +(1— Bn)QHSJUn - TanQ

+(1 = Bu)lllen — Tanz |lzn — an”2 — [|Szn — Tan2H

—2b

= Jzn—pl*-(1- an)ﬁn L lzn = San?

—(1 = an)Bn(l — 5n)[”xn - anHz + [l — T

—[llzn — T$n||2 + l|lzn — an||2 —[|Szn — T$nH2H

—an (1 —ap)|zn — an||2 —an(l—ay)(1 - Bn)2||sxn - Txn”2

—on (1 = ap)(1 = Bn)llzn — T*'L"nHQ + o (1 = an)(1 = Bn)llan — S’an2

+an(l — ay)(1 = 5,)||Sx, — Tan2

1-2b

1 —ay)pBn o
—(1 = ap)Bn(l = By)|| Sy — Ta:nH2

(
( ||55n - anHQ
(
—an (1 = an)(Bn)llzn — anH2 + an(1 = an)(1 = Bn) Bull Szrn — Txn||2
(
(

= lzn —pl* -

—an(1 = an)(1 = Ba)llzn — Tanl|?

1

—2b
= |lan - p”2 l_an)ﬁn(an‘Fm)Hxn_S-TnHQ

—(1- Oén) Bn(1 = Bn)||Szr — TanQ
—ap(1 = an)(1 = Bn)llzn — TfUnHZ
< an —pl?

for all n > 1. Thus lim,_, ||z, — p|| exists, say ¢ = lim,, o ||z, — p||, and hence
{zy} is bounded. Moreover, {||Tx, —Sz,]||} is bounded. In deed, by (3.3), we have

IN

IN

(1- O‘n)Qﬂn(l = Bl Txn — anHQ
o =PI = l2ns1 = plI? = (1 = an)Bn (@

—an (1 —an)(1 = Bn)|lzn — Tanz
20 = plI* = |01 — pl?

1—-2b

+ 1) lon = Sl
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Without loss of generality, we may assume that 3, # 0 and 8, # 1 for all n > 1
and hence, by using the boundedness of {z,}, then || Tz, — Sxz,|| is also bounded.
Let zp41 = anzp + (1 — ay) Sz, for all n > 1. Then we get
|Tnt1 — znt1l] = |lanzn + (1 —an)Uxy — apey — (1 — @) Sy ||
(1 — an)||BnSxn + (1 — Bp)Txy — Sy |
= (1= an)(1 = Bn)||Tzy — Sy
(1= Bu)l|Tzn — Sanl|.
Since Y o7 (1 — B,) < 0o and {||Txy, — Sz,|} is bounded, we have

IN

o
(3.7) > lwn — znl| < 0.
n=1
Therefore, we have
(3.8) nh%n;o |xrn — 20| =0
and hence
(3.9) lim ||z, —p|| = lim ||z, —p| = ¢
n—oo n—oo
Since
|2n+1 — p||2 = [lanzn + (1 — an)Szy, — p”2

= apllz, — sz + (1 — an) || Szn — pH2 —an(l—ap)|zn — anHZ

1—2b
< anllan =l + (1 = an) 10 = pl? = 5 0 = Szal?]
(3.10) —an(1 = ap)||zn — Sz
1-2b
= |lzn _pH2 —(1— o) 2% — 1 |2 — SwnH2
—an (1 = a)||zn — Sz ?
1-2b
= low = pl? = (1 = an)(an + 5— ) lvn — Szall%,
we have
1-2b 9 9 9
(1= @) (an + 5= )20 = Szal® < 0 = pl* = l|zn41 = p
and hence
3.11 lim (1 L =20 Sz,|? =0
( . ) nl_{go( _O‘n)<an+2a_1>||l‘n_ Tnll =U.
Thus, from (3.11) and liminf, (1 — ay)(an + %;2!1’) > 0, we conclude that

lim ||z, — Szy]|? = 0.
n—oo
Since {z,} is bounded, there exist a subsequence {x,,} of {x,} and a point v € C
such that x,, — v. Since S is a (a,b)-monotone mapping, by Theorem 2.4, we
obtain v € F'(5).

Let {z,,} be another subsequence of {z,} which converges weakly to v* € C. By
the same argument as above, we can see that v* € F'(5).
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Finally, we show that v = v*. Before proving this, we prove that, for any z €
F(S), limy_o0 ||z, — 2| exists. In the same way of the inequality (3.10), we can
show that, for any z € F(.5),

|2nt1 — 2] < [Jzn — 2|
and so
2n41 — 2l < llzn — 2l < lzn — 2l + |20 — 2a]-

By (3.7) and Lemma 2.1, it follows that lim,_, ||z, — z|| exists. From (3.8), we
also have lim,_, ||z, — z|| exists.
Suppose that v # v*. Then, by Opial’s property, we have

liminf||z,, —v|| < liminf|z,, — v
1—00 1—00
= lim |z, — v
n—oo
= liminf||z,, —v"|
J—00
< liminf|ja,; — v
j—o0
= lim ||z, — |

n—o0

= liminf||z,, — |,
1—00

which is a contradiction. Therefore, v = v* and, by Theorem 2.5, the sequence {x,}
converges weakly to v € F(S). This completes the proof. O

If T' is a nonspreading mapping and nonexpansive mapping, then I — T is demi-
closed at zero (see [1, 4]) and so we have the following:

Corollary 3.2 ([4]). Let H be a Hilbert space and C be a nonempty closed convex
subset of H. Let S be a nonspreading mapping of C into itself and T be a nonexpan-
sive mapping of C into itself such that F(S)NF(T) # 0. Let {x,} be the sequence
in C defined by (3.1). If

oo
lim inf (1 - au)(an) >0, 2_31(1 — Bn) < o0,

then the sequence {x,} converges weakly to a point v € F(S).

Proof. Since S is a (a,b)-monotone mapping with b = %, then ggj = 0. Thus

Corollary 3.2 follow from Theorem 3.1. O

Corollary 3.3. Let H be a Hilbert space and C' be a nonempty closed conver subset
of H. Let S be a mapping of C into itself which satisfies one of the following
conditions:

(1) S is a hybrid mapping;

(2) S is a TY -mapping.
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Let T be a nonexpansive mapping of C into itself such that F(S)NF(T) # 0 and
{zn} be the sequence defined by (3.1). If

lim inf (1 - au)(an) >0, }_:1(1 — Bn) < 0,

then the sequence {x,} converges weakly to a point v € F(S5).

Proof. Since S is a (a,b)-monotone mapping with b = %, then gg—j = 0. Thus
Corollary 3.3 follow from Theorem 3.1. O

Corollary 3.4 ([8]). Let H be a Hilbert space and C be a nonempty closed convex
subset of H. Let S be a (a,b)-monotone mapping mapping of C into itself such that
F(S) # 0. Define the sequence {xy} in C as follows:

x1 € C, chosen arbitrary,
(3.12)
Tl = nZn + (1 — ap)Sz),

: 21
for all n > 1, where {an,} C [0,1] with a,, > 52=5. If
1—-2b
lim inf (1= ay)(an + 5 ) >0,
1mn1200( an) | a +2a—1 >0

then the sequence {x,} converges weakly to a point v € F(S5).
Proof. Setting B, =1 for all n > 1 in Theorem 3.1, we obtain Corollary 3.4. U

Corollary 3.5 ([10]). Let H be a Hilbert space and C' be a nonempty closed convex
subset of H. Let S be a nonspreading mapping of C into itself such that F(S) # 0.
Define the sequence {x,} in C as follows:
x1 € C, chosen arbitrary,

(3.13)

Tnt1 = nZn + (1 — ap)Sz),
for alln > 1, where {a,} C [0,1]. If liminf, o (1 —ay)(an) > 0, then the sequence
{zn} converges weakly to a point v € F(S5).

Proof. Setting 8, = 1 for all n > 1 in Corollary 3.2, we obtain Corollary 3.5. O

Next, we give an example of (a,b)-monotone mappings and nonexpansive map-
pings to illustrate Theorem 3.1.

Example 3.6. Consider a Hilbert space H = R? with the usual inner product. Let
¢6:RxH—-H,S:H— H and T : H— H be the mappings defined by

d(w,z) = (rcos(d + w), rsin(d +w)),

(3.14) Sz = Z(b(%r,x) = §<rcos (0 + %W),rsin (0 + 277))

and

T(a,b) = (=b,a)
for all w € R, © = (rcosf,rsinf) € H and (a,b) € H, respectively. We know
that, from [8], the mapping S defined by (3.14) is a (4,3)-monotone mapping,
but it is not quai-nonexpansive, nonspreading, 7Y, hybrid and A-hybrid. Clearly,
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F(S)=1{(0,0)} and T is a nonexpansive mapping. For any fixed 1 € H, take the
sequence {x,} defined in Theorem 3.1 with «,, = % foralln>1and 8, =1— 2%
Then, for each n > 1, we have

3 1 1 1
3 1 1\ 15v2 5V2 /m 1
P 1 Y P gy 4 2T )] 4 T
4x+4< o 8¢(7r1:)+8<z52:c +2n+2x
and hence
[Zn+1]|

_ \/C’; BELI 2{))1 (53“25(1 - L)+ WL)Q(MD

9 25 152 25\ 1 25  5v2 1
= —t— - — 2 ) = 122 _2ve
16256 64 ( W2 -3 ) ont6 < t16~ 4 )22n+4 (lzall)

(169 -60v2)  40v2-25 41 -20V2
B 256 + on+7 + 92n+8 (Han)

85  40v2—25 41 —20V2
T% + on+7 + 922n+8 (”an)

M|jznl],

IN

where M = sup{ % + 405{2;25 + 412533};/5 tn > 1}, which M < 1. Therefore,
{z,} is bounded. Setting z,11 = %:L‘n + %Sl’n for all n > 1, as in the proof of
Theorem 3.1, we can see that

lim ||z, — Sz,||* = 0.
n—oo

Therefore, by Theorem 2.4 and Theorem 2.5, we conclude that z, — (0,0).

Theorem 3.7. Let H be a Hilbert space and C be a nonempty closed convex subset
of H. Let S be a (a,b)-monotone mapping of C into itself and T be a nonexpansive
mapping of C into itself such that F(S) N F(T) # 0. Let {zn}, {an} and {B,}be
the sequence as in Theorem 8.1. If

1-2b
lim inf (1 — ay) (an + ) >0, lim inf (1— 8,)(8n) >0,

n—00 20 —1 n—»00
then the sequence {x,} converges weakly to a point v € F(S)N F(T).
Proof. Since (3.1) can be written as
Tn+1 = Bnlom@y + (1 — an)Szn] + (1 = Bo)lanzn + (1 — an)Tzy)

for all n > 1, putting V,, = Bulanl + (1 — an)S] + (1 — Bn)]and + (1 — a,)T], we
have z,11 =V, for all n > 1.
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First, we show that sequence {z,} converges weakly to a point in F(S). Let
u € F(S)NF(T). Since

(3.15)

|Sz —Tz||> = ||Sz—2+x— Tx|?

1Sz — z||? + ||x — Tz||®> + 2(Sx — z,x — Tx)

for all z € C, it follow from (2.2), (3.3) and (3.15) that

[Vatn — U||2

Ballatnzn + (1 — an) Sz — ul|* + (1 = Bo)llanzn + (1 — an) Tz, — ul|?
—Bn(1 = Bn)(1 — )| Sy, — Tan2

Bn [aonn —ul? + (1 = )|y — ul* = an(l — ap)|| Sz, — xn”Q]

+(1 = Bn) [aonn —ull® + (1 = )| Tzn — vl = an(l — )| Ty — wn”ﬂ
—Bn(1 = Bp)(1 — an) || Sz — T$n|’2

< Bnan|zn — u||2 + Bu(l — an)|| Sz — uH2 — Brnan (1 — an)||Szy — wnHQ
(3.16) +(1 = Bn)anllzn — ull* + (1 = Bn) (1 — an) |20 — ul|®
—(1 = Bn)an(l — an)|| Tz, — anQ = Bn(1 = Bn)(1 — an) || Szn — TanZ
= Bnon|zn — u||2 + (1= Bn)llzn — UH2 + Bn(1 — an)|| Sz — UH2
—Bnan(l = an)||Szn — zl* = (1 = Ba)an(l — an)|| Tz, — 24
—Bn(1 = Bn)(1 — )| Sz — Txn”2
< Buamlzn —ull® + (1= Ba)l|zn — ull? + Bu(1 — an) |z, — ull?
1-2b
—Bn(1 — O‘n)muxn - anHQ = Bnan(1 — ap)||Szp — J:nHQ
—(1 = Bn)an(l — ap)|| Tz, — anZ = Bn(1 = Bn)(1 — an) || Szn — TanQ
1-2b
_ _ 2 _ _ _ 2
= o —ull? = Bl = @) (n + 5— ) lan = Sz
—(1 = Bn)an(l — an)|| Tz, — an2 = Bn(1 = Bn)(1 — an) || Szn — Txnuz
1-2b
< —ull? = _ _ 2
< flan = ull? = Bu(t = an) (e + 57 ) e = Sl
—(1 = Bn)an(l — an)||Txy — anQ
< g — ul?
and hence
(3.17) 0 < flon —ull® = [[Vazn — ul]® = [lzn — ull® = |21 —ul?.

Taking n — oo in the above inequality, by (3.9), we get

(3.18)

: . 2 o 2 —
i (ln — ull? ~ [Vaza — ul]?) = 0.

From (3.16), we can see that

1-2b
2a — 1

IVawn = ul? < llzn = ull? = Ba(l = o) (e + 5 ) 20 = Szl
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and hence
0 <l —ull® = [ln — ull?  Ba(1 o) (0 + 5o Yllrn — S
= n n n n n 2 — 1 n n
1-2b )
= Bu(l—ay) (an + %7_1) |xn — Sz ||
< lzn - U||2 — |[Vazy — U||27
which implies that
1—2b )
0 — B8)Bn(1 = @) (@ + 57— ) 2 — S

<
(3.19) <

Since liminf,, (1 —
from (3.18) and (3.19) that

(3.20) lim ||z, — Sx,||* = 0.
n—o0

(
(1= Bu)(lzn = ull® = [Vazn — ull?).

an 4+ 1228) > 0 and liminf,,_00 (1 — B,)(Bn) > 0, it follow
2a—1

By the same argument in the proof of Theorem 3.1, there exist a subsequence {z,, }
of {zy,} such that {z,,} converges weakly to a point v € C' and v € F(S).

Next, we show that v also an element in F(7T). From (3.16), for any u € F(S) N
F(T), we see that

[Vazn — “H2 = Bullanzn + (1 — an)Szy, — UH2 + (1 = Bp)lanzy
(3.21) +(1 — )Ty, — ul]?
—Bu(L = Bn) (1 = )|y, — T ||
By (2.2), (3.3), (3.21), the triangle property and the property of 7', we have
[Van — u||2
= Bullanz, + (1 — an)Sz, — ul|* + (1 = Bp)||anzn + (1 — )Tz, — ul?
—Bn(1 = Bn)(1 = )|y, — Ty ||?

< B [O‘anEn - u||2 + (1 — ap)||Szn — U||2 —ap(l = on)|Szn — anQ]
2
+(1 = Bn) [O‘onn —ull + (1 — )| Tz, — u”]
—Bn(1 = Bn)(1 — an)||Szn — Tanz
< Bn [an”wn - uH2 + (1 — an) || Szn — uH2 — ap (1 — ap)|| Sy — anQ]

(3.22)  +(1 = B [anllzn — ull + (1 — an)[lzn — ul|]”
—Bn(1 = Bn)(1 — an)|[Szpn — Tan2
= Bnanllzn — u||2 + Bn(1 — an)||Szn — uH2 — Bran (1 — an)||Szy — $n||2
+(1 = Bu)llzn — U||2 = Bn(1 = Bp)(1 — )| Sz — Tanz

1—2b
= Bunllan = ul2+ Bu(l = @) (|len — ull? = 5—= 120 — Sza )

—Bnan(l — an) || Sy — $n||2 + (1= Bn)llzn — u||2
—Bn(1 = Bn)(1 — an)||Szn — TanQ
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1-2b
= Jon — ul® = Ba(1 - @) (an + —

—Bn(1 = Bn)(1 — ay)[|Szpn — TanQ
it follows that
Brn(1 = Bn)(1 — an)|| Sz — TanQ < lon — u||2 — [|[Vazn — u||2

Yl = Sal?

(3.23) —~Ba(1 = ) (n + ﬁ) |20 — Sz
and hence
1—2b )
(3.24) Bp(1 - Ba)(1 — an) (an o 1) 1Szn — Ty
< _ _ _ _ _ - = _
< (ant5—7 ) (len=ul2=Vazn—ul2) = Bu(1=an) (@t 53— ) llon—Saal

Since lim inf,, o0 (1 — o ) (v + %;_211’) > 0 and liminf,, (1 —3,)(8,) > 0, it follows
from (3.18) and (3.20) that

(3.25) lim ||Sx, — Ta,|> = 0.
n—oo
From the fact that
|l zn — Taan2 = ||lzp — Sz, + Sz, — Taan2
(3.26) = |lzn — Szn||* + ||Szn — Txp|® + 2(zy — Sz + Sz — Txy,)

< Nl = Sapl” + [|S20 — Tnl* + 2/|2n — Spll||Szn — Tyl
By (3.20), (3.25) and (3.26), we obtain
(3.27) lim ||z, — Tz, ||> = 0.
n—00
Since {z,,} converges weakly to v, we have v € F(T). Let {xy, } be another subse-
quence of {z,} such that {z,, } converges weakly to a point v* € C'. We show that
v =v*.
Suppose that v # v*. By Opial’s property, we have

liminf||z,, —v|| < liminf||z,, — v
1—00 1—r 00

lim ||z, — 0"
n—oo

lim inf||z,, — v*||
k—o0

oo et —
< liminffz,, — o]

lim ||z, —v||
n—oo

lim inf||z,, — vl
1—00

which is a contradiction and hence v = v*. Therefore, we can conclude that the
sequence {z,} converges weakly to v € F(S)NF(T). This completes the proof. [

Now, we establish an example of (a,b)-monotone mappings and nonexpansive
mappings to illustrate Theorem 3.7.
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Example 3.8. Let H, ¢, S and T be same in as Example 3.6. Then F(S)NF(T) =
{(0,0)}. For any fixed z; € H, take the sequence {x,} defined in Theorem 3.1 with
oy = % and [, = % for all n > 1. Then we get

1/1 1
Tn + — <S:cn + 2Txn>

4
A0 + 2 ()] +

3
Tn4+1 4
3
1" t3
for all n > 1 and hence

el = \/(i‘%@*@f + 2 el

617 — 100v/2
= A\ = Ulznll)
1024
11

< el

Therefore, {z,} is bounded. By the similar argument of Example 3.6 and the proof
of Theorem 3.7, we can conclude that z,, — (0,0).

Corollary 3.9 ([4]). Let H be a Hilbert space and C be a nonempty closed convex
subset of H. Let S be a nonspreading mapping of C into itself and T' be a nonexpan-
sive mapping of C into itself such that F(S)NF(T) # 0. Let {x,} be the sequence
in C defined by (3.1). If
lim inf (1 —ay,)(ay) >0, lim inf (1—3,)(8,) >0,
n—oo

n—oo

then the sequence {x,} converges weakly to a point v € F(S) N F(T).

Corollary 3.10. Let H be a Hilbert space and C' be a nonempty closed convex
subset of H. Let S be a mapping of C' into itself which satisfies one of the following
conditions:

(1) S is a hybrid mapping;

(2) S is a TY -mapping.

Let T be a nonexpansive mapping of C into itself such that F(S)NF(T) # 0 and
{zn} be the sequence in C defined by (3.1). If

Iimniggo(l — ap)(an) >0, limniggo(l — Bn)(Bn) >0,

then the sequence {x,} converges weakly to a point v € F(S) N F(T).

4. STRONG CONVERGENCE THEOREMS

In this section, we prove the approximation of common fixed points of (a,b)-
monotone mappings and nonexpansive mappings satisfying the condition (A’) in
Hilbert spaces by using Moudafi’s iterative scheme.
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Theorem 4.1. Let H be a Hilbert space and C' be a nonempty closed convex subset
of H. Let S be a (a,b)-monotone mapping of C into itself and T be a nonexpansive
mapping of C' into itself satisfying the condition (A’) and F := F(S)NF(T) # (. Let
{zn}, {an} and {5, }be the sequence as in Theorem 3.1. If

1-2b ..
5 — 1) >0, lim nl_n>£o(1 — Bn)(Bn) >0,

then the sequence {x,} converges strongly to a point v € F(S)N F(T).

lim inf (1 — «y) (an +

n—oo

Proof. From the inequalities (3.20) and (3.27), we obtain
(4.1) lim ||z, — Sz,||> = 0= lim ||z, — Tx,|*
n—oo n—o0

Moreover, by the similar argument of the proof of Theorem 3.1, we can show that
(4.2) [Znt1 = pll < llzn — pll
for any p € F(S)N F(T).

On the other hand, by the condition (A") of S and T', we get

1
(4.3) Fd(wn, F)) < 5 (lwn = Szall + ll2n — Tnl))
for all n > 1. Taking the infimum over all p € F on both sides of (4.2), we can show
that lim d(z,, F) exists.
n—o0
Now, we claim that lim d(z,,F) = 0. Suppose the contrary, choose ny > 1 such
n— o0

that 0 < & < d(x,, F) for all n > ng. Since f is nondecreasing, it follows from (4.1)
and (4.3) that

0 < f(5) < F(d(an, 7)) < 3 (hon — Sl + 7 — Taall) =0

as n — oo, which is a contradiction. Therefore, lim d(x,,F) = 0 and hence there
n—oo

exists n1 > 1 such that

(4.4) d(xy, F) <

N

for all n > ny. Let m,n > ny and p € F. Then it follows from (4.2) that
|20 — Zm| < |lzn — pll + |2m — Pl < 2[|20, — pl|-
Taking the infimum over all p € F on both sides of the above inequality, it follows
from (4.4) that
|xn — Tml|| < 2d(xn,, F) <€
for all m,n > ny, which implies that {z,} is a Cauchy sequence. Suppose that

lim x,, = v for some v € H. Since F is closed, we have v € F. Therefore, the
n—oo

sequence {x,} converges strongly to v € F. This completes the proof. O

Corollary 4.2. Let H be a Hilbert space and C' be a nonempty closed convex subset
of H. Let S be a nonspreading mapping of C into itself and T be a nonexrpansive
mapping of C into itself satisfying the condition (A’) and F := F(S)NF(T) # 0.
Let {x,,} be the sequence in C defined by (3.1). If

lim igf (1 —oap)(ay) >0, lim igf (1= 8.)(Bn) >0,
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then the sequence {x,} converges strongly to a point v € F(S) N F(T).

Corollary 4.3. Let H be a Hilbert space and C be a nonempty closed convex subset
of H. Let S be a mapping of C into itself which satisfies one of the following
conditions:

(1) S is a hybrid mapping;

(2) S is a TY -mapping.

Let T be a nonexpansive mapping of C into itself satisfying the condition (A")
and F(S)NF(T) # 0. Let {x,} be the sequence in C defined by (3.1). If

Iimniggo(l —ap)(an) >0, limniglgo(l — Bn)(Bn) >0,

then the sequence {x,} converges strongly to a point v € F(S)NF(T).

Corollary 4.4. Let H be a Hilbert space and C' be a nonempty closed conver subset
of H. Let S be a (a,b)-monotone mapping mapping of C into itself satisfying the
condition (A) and F(S) # 0. Let {x,,} be the sequence defined as follows:

x1 € C, chosen arbitrary,
(4.5)
Tntl = ATy + (1 — ap) Sy

for all n > 1, where {ay} C [0,1]. If iminf, oo (1 — o) (an + 2=22) > 0, then the
sequence {x,} converges strongly to a point v € F(S).

Proof. Putting 8, = 1 for all n € N in Theorem 4.1, the conclusion follow from
Theorem 4.1. 0
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