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In 1998 in [6], (see also [4]), a more general fixed point theorem based on the
convexity of JT was given. With more precision, the main result in [6] is the
following. Let C be a weakly compact and convex subset of X. Let T : C → C be
a continuous mapping satisfying (1.1) and such that for every x, y ∈ C,

(1.4) JT (λx+ (1− λ)y) ≤ α (max{JT (x), JT (y)}) ,
where α : [0,∞) → [0,∞) is any continuous strictly increasing function with α(0) =
0. Then, T has a fixed point in C.

Continuous mappings satisfying (1.4) were called α-almost convex in [6]. It turns
out that continuous quasiconvex mappings are α-almost convex, but the converse is
not true. In fact, the class of mappings satisfying (1.4) is quite large and it contains
the strict contractions of C, some Kannan type selfmappings of C, as well as the so
called Γ type mappings on C, among others.

Recall that if Γ denotes the set of all the strictly increasing convex continuous
functions γ : R+ −→ R+ with γ(0) = 0, according to R.E. Bruck [3], a mapping
T : C → X is said to be of type Γ if there exists γ ∈ Γ such that, for all x, y ∈ C
and c ∈ [0, 1]

(1.5) γ (∥cT (x) + (1− c)T (y)− T (cx+ (1− c)y)∥) ≤ ∥x− y∥ − ∥T (x)− T (y)∥.
It is obvious that every Γ-type mapping is nonexpansive, and the set of the

fixed points of a Γ-type mapping is always convex. Immediate examples of Γ-type
mappings are the nonexpansive linear and affine mappings.

A relevant result due to R. Bruck, (see [3] again) is that if the Banach space
(X, ∥.∥) is uniformly convex, and C is a nonempty closed convex and bounded
subset of X, then there exists a function γ ∈ Γ (depending only on (X, ∥.∥) and
the diameter of C) such that every nonexpansive mapping T : C → X is of Γ type
with respect to the function γ. Moreover, in 1989, M.A. Khamsi (see [9]), proved
that this property in fact characterizes the uniformly convex Banach spaces.

Bruck’s result implies in particular that, in uniformly convex Banach spaces,
(single-valued) nonexpansive mappings are α-almost convex with α(t) = t+γ−1(2t)
(see [6] for details).

To develop a similar approach for set-valued mappings, a suitable definition of
the displacement function is required. In fact, two choices are possible, namely
JT (x) := d(x, Tx) and HT (x) := H({x}, T (x)). Here H denotes the Hausdorff
distance in X and it is supposed that T is a multivalued mapping defined on C and
taking nonempty bounded closed values. Note that the zeroes of JT are usually
called fixed points of T , while the zeroes of HT , that is the points x for which
T (x) = {x}, are often called stationary points.

Notice that Caristi type fixed point theorems for set-valued mappings in terms
of the function JT were given by Mizogouchi and Takahashi very early in [12].

In this paper we will give a quite natural definition of Γ-type set-valued mappings,
although we will present an example of a (set-valued) nonexpansive mapping in a
uniformly convex Banach which fails to be a Γ-type mapping. This shows that
a generalization, word by word, of Bruck’s results to the set-valued case is not
possible.
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However we will show also that, roughly speaking, a Bruck’s type result for set
valued mappings still holds.

With a bit more precision we will show that every nonexpansive set-valued map-
ping in a uniformly convex Banach space is strongly convex, or, in other words, it
has an α-almost convex displacement function H(x) := sup{dist(x, y) : y ∈ T (x)}.
This kind of convexity for set-valued mappings is closely related with the similar
concepts considered in Ko [10] or Sach and Yen [14].

2. Notations and preliminaries

If C is a nonempty closed convex subset of a Banach space (X, ∥.∥) , by a set-
valued mapping we usually understand a map T : C → Pbc(X), where Pbc(X) is
the set of all nonempty bounded and closed subsets of X.

Recall that on Pbc(X) one can define the Hausdorff metric H induced by the
norm of X in the following way. For M,N ∈ Pbc(X)

H(M,N) := max{β(M,N), β(N,M)}
where

β(M,N) := sup{dist(x,N) : x ∈M}.
Sometimes the following alternative expression is useful

H(M,N) := inf{ε > 0 :M ⊂ Nε, N ⊂Mε},
where Aε := {x ∈ X : dist(x,A) < ε} denotes the so called open expansion of the
nonempty set A ⊂ X. It is well known that (Pbc(X),H) is a complete metric space.

If M ⊂ X we will use Pbc(M) and Pkv(M) to denote the set of all nonempty
bounded and closed subsets of M , and the set of all nonempty compact convex
subsets of M , respectively.

Given a set-valued mapping T : C −→ Pbc(X), we can consider the associate
displacement functions JT : C −→ R and HT : C −→ R respectively defined by

JT (x) := dist(x, T (x)) = inf{∥x− y∥ : y ∈ T (x)} = β ({x}, T (x)) ,
and

HT (x) := H({x}, T (x)) = β(T (x), {x}) = sup{∥x− y∥ : y ∈ T (x)}.
If x, y ∈ C, for simplicity we will write mT (x, y) instead of max{JT (x), JT (y)}, and
MT (x, y) instead of max{HT (x),HT (y)}.

According to [11], for a continuous strictly increasing function α : [0,∞) → [0,∞)
with α(0) = 0, we say that the set-valued mapping T : C −→ Pbc(X) is α-almost
convex if for all x, y ∈ C and all λ ∈ [0, 1] one has that

JT (λx+ (1− λ)y) ≤ α(mT (x, y)).

In the same way, we say that the set-valued mapping T : C −→ Pbc(X) is said to
be strongly α-almost convex if for all x, y ∈ C and all λ ∈ [0, 1]

HT (λx+ (1− λ)y) ≤ α(MT (x, y)).

When the previous definitions are fulfilled with a α(t) = rt, for some r > 0, we will
say that T is r-almost convex (resp. strongly r-almost convex).
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Notice that the set of all the fixed points of an α-almost convex mapping is
convex. In the same way, the set of all the stationary points of a strongly α-almost
convex mapping is convex

If the mapping T is α-almost convex (or strongly α-almost convex) and single
valued (i.e. T (x) is a singleton for every x ∈ C), then the corresponding single-
valued mapping is α-almost convex in the sense of [6].

Finally we recall that a set-valued mapping T : C −→ Pbc(X) is called nonex-
pansive whenever for all x, y ∈ C

H(T (x), T (y)) ≤ ∥x− y∥.

3. Main result

In a uniformly convex Banach space every nonexpansive (single valued) mapping
T : C → X is a Γ-type mapping, and hence an α-almost convex mapping (in the
sense of [6]). We will show in this section that an analogous result holds for the
set-valued case.

Theorem 3.1. Let (X, ∥.∥) be a uniformly convex Banach space. Let C be a
nonempty, closed, convex and bounded subset of X. Let T : C −→ Pbc(X) be a
nonexpansive mapping. Then there exists a continuous strictly increasing function
α : [0,∞) → [0,∞) with α(0) = 0 such that T is strongly α-almost convex. The
function α only depends on the diameter of C and on the modulus of convexity of
(X, ∥.∥).

Proof. Let δ the modulus of convexity of (X, ∥.∥). It is well known that

η := δ−1 : [0, 1] −→ [0, 2]

is a continuous strictly increasing function with η(0) = 0 and η(1) = 2.

Let us define the function a : R+ → R+ by

a(ε) := sup

{
(r + ε)η

(
ε

r + ε

)
: r ∈ [0, diam(K)]

}
.

Given r > 0, the real function φ(t) := t
r+t , (t ≥ 0), satisfies that φ(0) = 0 and, for

t > 0,

φ′(t) =
r

(r + t)2
≥ 0.

Therefore, if 0 ≤ ε1 ≤ ε2 <∞,

(r + ε1)η

(
ε1

r + ε1

)
≤ (r + ε1)η

(
ε2

r + ε2

)
.

We easily derive that 0 = a(0) ≤ a(ε1) ≤ a(ε2). It is unclear whether a is a
continuous function.

We now extend the function η as follows: Let η̃ : [0,∞) → [0,∞) given by

η̃(t) :=

{
η(t) 0 ≤ t ≤ 1
2t 1 < t.

As η is continuous and η(1) = 2 it is obvious that η̃ is continuous and strictly
increasing.
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Now let α : R+ → R+ be the function given by

α(ε) := max{η(1)ψ(ε), (ε+ diam(C))η̃(ψ(ε))},

where ψ(ε) := max{ε,
√
ε}.

If 0 < ε < 1 in [15], p. 447 one can see that

a(ε) ≤ max{
√
εη(1), (diam(C) + ε)η(

√
ε)} = α(ε).

On the other hand, if 0 ≤ r ≤ diam(C),

(1 + r)η

(
1

1 + r

)
≤ (1 + diam(C))η(1).

Taking the supremum of the right hand side of this inequality we obtain

a(1) ≤ (1 + diam(C))η(1) = α(1).

Finally, for ε > 1 and for all r ∈ [0, diam(C)] we have

(r + ε)η̃

(
ε

r + ε

)
≤ (ε+ diam(C))η̃(ε) = α(ε).

Taking again the supremum of the right hand side of this inequality when r ∈
[0, diam(C)] we obtain a(ε) ≤ α(ε).

In summary, for all ε ∈ R+,

2ε ≤ a(ε) ≤ α(ε),

and the function α is strictly increasing, continuous and satisfies α(0) = 0.

The inequality HT (cx + (1 − c)y) ≤ α(MT (x, y)) trivially holds for the cases
c = 0, c = 1 and x = y. Now let x, y be two different points of C and c ∈ (0, 1).
Let σ :=MT (x, y).

We claim that, for every z ∈ T (cx+ (1− c)y) either∥∥∥∥x− cx+ (1− c)y − z

2

∥∥∥∥ ≥ ∥x− (cx+ (1− c)y)∥(3.1)

or ∥∥∥∥y − cx+ (1− c)y − z

2

∥∥∥∥ ≥ ∥y − (cx+ (1− c)y)∥.(3.2)

Otherwise we would have the following contradiction:

∥x− y∥ ≤
∥∥∥x− cx+(1−c)y−z

2

∥∥∥+
∥∥∥ cx+(1−c)y−z

2 − y
∥∥∥

< ∥x− (cx+ (1− c)y)∥+ ∥y − (cx+ (1− c)y)∥
= (1− c)∥x− y∥+ c∥x− y∥ = ∥x− y∥.

Let us suppose that z ∈ T (cx + (1 − c)y) satisfies inequality (3.1). Since T is
nonexpansive one has

∥x− (cx+ (1− c)y)∥ =: r ≤ σ + r
∥x− z∥ ≤ H({x}, T (cx+ (1− c)y)) ≤ H({x}, T (x)) + r ≤ σ + r∥∥∥x− cx+(1−c)y−z

2

∥∥∥ ≥ ∥x− (cx+ (1− c)y)∥
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Therefore, from a well known property of the function η, (see for example, [15]),

∥cx+ (1− c)y − z∥ ≤ (r + σ)η

(
σ

r + σ

)
.

If inequality (3.2) holds for z, we easily get the same conclusion. As the right hand
side of the above inequality does not depend on z,

sup{∥cx+ (1− c)y − z∥ : z ∈ T (cx+ (1− c)y)} ≤ (r + σ)η

(
σ

r + σ

)
or, in other words

HT (cx+ (1− c)y) = H({cx+ (1− c)y}, T (cx+ (1− c)y))

≤ (r + σ)η

(
σ

r + σ

)
≤ a(σ) ≤ α(σ).

□
Example 3.2. Let (X, ∥.∥) be the space R2 endowed with the ordinary Euclidean
norm. Let T : BX → Pbc(X) be the mapping given by

T (x1, x2) := ({x1} × [−1, 1]) ∩BX ,

where BX := {x ∈ R2 : ∥x∥ ≤ 1}. The set of the stationary points of this mapping
is just

{(−1, 0), (1, 0)}
which is not convex. Hence T can not be nonexpansive. Otherwise, T would be
strongly α-almost convex, and hence the set of the stationary points of T would be
convex, which it is no true.

The requirement of uniform convexity for (X, ∥.∥) in the above theorem is not
superfluous. This is clear when the following example is considered.

Example 3.3. Let (X, ∥.∥) be the Banach space (R2, ∥.∥∞) where ∥.∥∞ is the
standard sup norm. If

C := {(x1, x2) :∈ R2 : |x1|+ |x2| ≤ 1},
let T : C −→ Pkv(C) be the mapping given by

T ((x1, x2)) := {x1} × [|x1| − 1, 1− |x1|].

On can see that T (x) is the largest vertical segment included in C which contains
the point x. Hence the set of fixed points of T is C, while the set of stationary
points of T is S(T ) = {(−1, 0), (1, 0)}, which is non convex. (Even disconnected).

Let H∞ be the Hausdorff metric associated to the metric d∞(x, y) = ∥x − y∥∞.
First let us point out that, if A = {x} × [a, b] ⊂ R2, then it is straigtforward to
check that, given ε > 0,

Aε := {y ∈ R2 : d∞(y,A) < ε} = (x− ε, x+ ε)× (a− ε, b+ ε).

We claim that
H∞(T ((x1, x2)), T ((y1, y2))) ≤ |x1 − y1|.
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Indeed, let ε′ > ε := |x1 − y1|.
As |y1| − |x1| ≤ |x1 − y1| < ε′, then

|y1| − ε′ − 1 < |x1| − 1
1− |x1| < 1 + ε′ − |y1|

}
⇒ [|x1| − 1, 1− |x1|] ⊂ (|y1| − 1− ε′, 1− |y1|+ ε′).

This inclusion together with the fact that

x1 ∈ (y1 − ε′, y1 + ε′)

yield

T ((x1, x2)) := {x1}× [|x1|−1, 1−|x1|] ⊂ (y1−ε′, y1+ε′)× (|y1|−1−ε′, 1−|y1|+ε′)
Thus, for all ε′ > ε,

T ((x1, x2)) ⊂ (T ((y1, y2)))ε′

and, by the same argument,

T ((y1, y2)) ⊂ (T ((x1, x2)))ε′ .

Therefore, for all ε′ > ε

H∞(T ((x1, x2)), T ((y1, y2))) ≤ ε′

which proves the claim.

As a direct consequence we have that T is ∥.∥∞-nonexpansive, that is

H∞(T ((x1, x2)), T ((y1, y2))) ≤ ε = |x1 − y1| ≤ ∥(x1, x2)− (y1, y2)∥∞.
Nevertheless, the mapping T can not be strongly α-almost convex in this space
(R2, ∥.∥∞). Otherwise the set of the stationary points of T would be convex. Hence
the requirement of the uniform convexity in Theorem 3.1 can not be dropped.

Proposition 10.2 in the book by Goebel and Kirk [7] reads

Suppose K is a bounded closed and convex subset of a uniformly convex Banach
space X, and suppose T : K → X is a nonexpansive mapping which satisfies

inf{∥x− T (x)∥ : x ∈ K} = 0.

Then T has a fixed point.

The following corollary is an extension (in some sense) of this result to set-valued
mappings.

Corollary 3.4. Suppose C is a bounded closed and convex subset of a uniformly
convex Banach space (X, ∥.∥), and suppose T : C → Pbc(X) is a nonexpansive
mapping which satisfies

inf{HT (x) : x ∈ C} = 0.(3.3)

Then T has a stationary point.

Proof. If T is nonexpansive, since (X, ∥.∥) is uniformly convex then from the above
theorem we can assure that T is strongly α-almost convex, and, of course Lip-
schitzian. These properties along with condition (3.3) yield the conclusion by a
direct application of Corollary 7 of [11]. □
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Remark 3.5. Regarding Theorem 3.1, the question of whether it holds for another
class of Banach spaces beyond the uniformly convex ones naturally arises.

4. Γ type set valued mappings

A natural way of defining Γ-type set-valued mappings could be the following

Definition 4.1. A mapping T : C → Pbc(X) is said to be of type Γ if there exists
γ ∈ Γ such that, for all x, y ∈ C and c ∈ [0, 1]

γ (H(cT (x) + (1− c)T (y), T (cx+ (1− c)y))) ≤ ∥x− y∥ −H(T (x), T (y)).

If T is, in particular, single valued this concept of Γ-type is the same as the
corresponding one defined by Bruck.

Example 4.2. Let (X, ∥ · ∥) be a Banach space and let T : BX −→ Pbc(BX) be the
multivalued mapping given by

T (x) := B[0X , ∥x∥].

Here and henceforth B[0X , r] stands for the closed ball of (X, ∥.∥) centered at
0X and with radius r > 0, and BX := B[0X , 1]. Let us recall that, for r, s > 0,
B[0X , r] +B[0X , s] = B[0X , r+ s] and H(B[0X , r], B[0X , s]) = |r− s|. Therefore, if
x, y ∈ BX , (we may suppose ∥x∥ ≤ ∥y∥), one has.

∥x− y∥ −H(T (x), T (y)) = ∥x− y∥ −
∣∣∥x∥ − ∥y∥

∣∣
= ∥x− y∥ − ∥y∥+ ∥x∥
≥ c (∥x− y∥ − ∥y∥+ ∥x∥)
= c∥x∥+ (1− c)∥y∥ − ∥y∥+ c∥y − x∥
≥ c∥x∥+ (1− c)∥y∥ −

∣∣ ∥y∥+ c∥y − x∥
∣∣

≥ c∥x∥+ (1− c)∥y∥ − ∥y + c(y − x)∥
= H(cT (x) + (1− c)T (y), T (cx+ (1− c)y)).

Thus, T is a Γ-type set valued mapping with respect to the function γ(t) = t.

Remark 4.3. The above definition can be the most direct extension of the single
valued case. Nevertheless, one can point out that, if x, y are fixed points of such a
set valued Γ-type mapping T , that is, if x ∈ T (x), y ∈ T (y), then it does not follow
that the right hand side of the above inequality is equal to 0, although this is true
whenever x, y are stationary points. Then, the set of the all the stationary points
of a Γ-type mapping T : C → Pbc(X) is convex.

In the same way as the single-valued case, the class of Γ-type set-valued mappings
is included in the class of the strongly α-almost convex mappings.

Proposition 4.4. If T : C −→ Pbc(X) is a Γ-type set valued mapping, then T
is strongly α-almost convex (with respect to the real function α given by α(t) :=
t+ γ−1(2t)).

Proof. There exists a function γ ∈ Γ such that, for all x, y ∈ C and c ∈ [0, 1],

γ (H(cT (x) + (1− c)T (y), T (cx+ (1− c)y)))

≤ ∥x− y∥ −H(T (x), T (y))
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≤ H({x}, T (x)) +H(T (x), T (y)) +H(T (y), {y})−H(T (x), T (y))

≤ 2max{H({x}, T (x)),H(T (y), {y})}
= 2MT (x, y).

Thus,
H(cT (x) + (1− c)T (y), T (cx+ (1− c)y)) ≤ γ−1(2MT (x, y)).

Applying this inequality together with Corollary 1.18 of [8], it follows that

MT (cx+ (1− c)y) = H({cx+ (1− c)y}, T (cx+ (1− c)y))

≤ H({cx+ (1− c)y}, cT (x) + (1− c)T (y))

+H(cT (x) + (1− c)T (y), T (cx+ (1− c)y))

≤ H(c{x}+ (1− c){y}, cT (x) + (1− c)T (y)) + γ−1(2MT (x, y))

≤ cH({x}, T (x)) + (1− c)H({y}, T (y)) + γ−1(2MT (x, y))

≤ max{H({x}, T (x)),H({y}, T (y))}+ γ−1(2MT (x, y))

=MT (x, y) + γ−1(2MT (x, y)).

As γ ∈ Γ, the function α : R+ → R+ given by α(t) := t+ γ−1(2t) is continuous and
strictly increasing. We have seen that

MT (cx+ (1− c)y) ≤ α(MT (x, y))

for all x, y ∈ C and c ∈ [0, 1], that is, we have seen that T is strongly α-almost
convex in C. □
Corollary 4.5. Suppose C is a nonempty weakly compact subset of a Banach space
(X, ∥.∥), and suppose T : C → Pbc(X) is a Γ-type mapping which satisfies condition
(3.3). Then T has a stationary point.

Proof. Indeed Γ-type mappings are nonexpansive and, from Proposition 4.4 are
strongly α-almost convex too. The conclusion follows again from Corollary 7 of
[11]. □

5. On the failure of Bruck’s property in the set valued case

At this point still one could ask whether the conclusion of Bruck’s Theorem, which
establish that in uniformly convex Banach spaces nonexpansive mappings are Γ type
mappings, remains true for nonexpansive set-valued mappings in uniformly convex
Banach spaces. The aim of this section is to show that the answer to this question
is negative, at least whenever the definition of Γ-type mapping is stated as in this
paper.

Example 5.1 (Hwei-Mei Ko, 1972, [10]). Let (X, ∥.∥) be the (uniformly convex)
Banach space (R2, ∥.∥2), where ∥.∥2 is the ordinary Euclidean norm. Let C =
[0, 1]× [0, 1] ⊂ X and let T : C → Pkv(C) be the mapping given by

T ((x1, x2)) := co ({(0, 0), (x1, 0), (0, x2)}).
Note that T ((x1, x2)) is the triangle with vertices (0, 0), (x1, 0), (0, x2), ant that, if
x1x2 = 0, then T ((x1, x2)) is a degenerate triangle.
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It is clear that T has compact convex values and, according with [10], T is nonex-
pansive. The (nonconvex) set of fixed points of T is W = {(x1, x2) ∈ C : x1x2 = 0}.
Moreover (0, 0) is the unique stationary point of T .

Let us observe that, for x = (1, 1) and y = (1, 0) one has

T (x) = co ({(0, 0), (1, 0), (0, 1)})

and

T (y) = co ({(0, 0), (1, 0)}) = [0, 1]× {0}.
Therefore, it is easy to check that

H(T (x), T (y)) = 1 = ∥x− y∥2.

But

H

(
1

2
T (x) +

1

2
T (y), T

(
1

2
x+

1

2
y

))
̸= 0.

Otherwise 1
2T (x) +

1
2T (y) = T

(
1
2x+ 1

2y
)
, a contradiction because(

1

2
,
1

2

)
̸∈ T

(
1

2
x+

1

2
y

)
= T

((
1,

1

2

))
= co

({
(0, 0)(1, 0),

(
0,

1

2

)})
whereas (

1

2
,
1

2

)
=

1

2
(0, 1) +

1

2
(1, 0) ∈ 1

2
T (x) +

1

2
T (y).

If T were a Γ-type mapping (w.r.t. γ ∈ Γ), we would have the following contradiction

0 < γ

(
H

(
1

2
T (x) +

1

2
T (y), T

(
1

2
x+

1

2
y

)))
≤ ∥x− y∥2 −H(T (x), T (y)) = 0.
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