


1848 JINHUA WANG

⟨·, ·⟩. Let T : H ⇒ H be a (set-valued) maximal monotone operator. Let F : H →
H be a Fréchet differentiable function. Consider the generalized equation:

(1.1) Find x∗ ∈ H such that 0 ∈ F (x∗) + T (x∗).

Such problems have been studied by [17, 22] and have important applications in
the physical and engineering sciences and in many other fields (cf. [2, 5, 13]). For
example, let f : H → (−∞,+∞] be a differentiable convex function. Let C be a
nonempty closed convex subset of H, and let NC(x) be the normal cone of C at x.
If F = ∇f and T (·) = NC(·), then problem (1.1) is reduced to the minimization
problem:

min
x∈C

f(x),

or equivalently the variational inequality problem:

Find x∗ ∈ C such that ⟨c− x∗, F (x∗)⟩ ≥ 0 for each c ∈ C.

Recall that the generalized Newton method for inclusion problem (1.1) is given as
follows (cf. [22]): Let x0 ∈ H be given. Have x0, x1, . . . , xn. Define xn+1 such that

0 ∈ F (xn) + F ′(xn)(xn+1 − xn) + T (xn+1).

In [22], Uko established convergence results for the generalized Newton method
under classical Lipschitz condition. In sprit of Smale’s point estimate theory [19,20]
and Wang’s work in [23], the purpose of the present paper is to continue the study
of the generalized Newton method for (1.1) under more generalized Lipschitz con-
dition. Under a generalized L-average Lipschitz condition, we give an estimation
of convergence ball for the generalized Newton method. Moreover, we also get an
estimation of uniqueness ball for the solution of (1.1). As applications, we obtain
Kantorovich type theorem under the classical Lipschitz condition, convergence re-
sults under the γ-condition, and Smale’s point estimate theory. Hence, our results
extend some corresponding results in [22].

The remainder of the paper is organized as follows. In Section 2, some notions,
notations and preliminaries are provided. In Section 3, estimation of convergence
ball is established under a generalized L-average Lipschitz condition, while in Sec-
tion 4, we present an estimation of uniqueness ball of the solution of (1.1). In the
final section, as applications, we get Kantorovich type theorem under the classical
Lipschitz condition, convergence results under the γ-condition, and Smale’s point
estimate theory.

2. Notions and preliminaries

Let x ∈ H, and let r > 0. As usual, we use B(x, r) and B(x, r) to denote,
respectively, the open metric ball and the closed metric ball at x with radius r, that
is,

B(x, r) := {y ∈ H| ∥x− y∥ < r} and B(x, r) := {y ∈ H| ∥x− y∥ ≤ r}.

Recall that a bounded linear operator G : H → H is called a positive operator if G
is self-conjugate and ⟨Gx, x⟩ ≥ 0 for each x ∈ H (cf. [18, p. 313]).
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Lemma 2.1. Let G be a positive operator. Then the following conclusions hold:
(i) ∥G2∥ = ∥G∥2.
(ii) If G−1 exists, then G−1 also is a positive operator.

Proof. Note by definition that G2 is a positive operator and

∥G2∥ = sup
∥x∥=1

⟨G2x, x⟩ = sup
∥x∥=1

⟨Gx,Gx⟩ = sup
∥x∥=1

∥Gx∥2 = ( sup
∥x∥=1

∥Gx∥)2 = ∥G∥2.

Let x, y ∈ H. Since G is self-conjugate, one has

⟨G−1x, y⟩ = ⟨G−1x,GG−1y⟩ = ⟨GG−1x,G−1y⟩ = ⟨x,G−1y⟩.
Hence, G−1 is self-conjugate. Observe further that

⟨G−1x, x⟩ = ⟨G−1x,G(G−1x)⟩ ≥ 0.

Thus, it follows that G−1 also is a positive operator. □
Lemma 2.2. Let G be a positive operator. Suppose that G−1 exists. Then

(2.1) ⟨Gx, x⟩ ≥ ∥x∥2

∥G−1∥
for each x ∈ H.

Proof. Let x ∈ H. Since G is a positive operator, we have from [18, p. 313] that

there exists a positive operator G
1
2 such that G

1
2G

1
2 = G. As G−1 exists, it follows

that (G
1
2 )−1 exists. Observe from Lemma 2.1 that (G

1
2 )−1 is a positive operator

and
∥(G

1
2 )−1∥2 = ∥(G

1
2 )−1(G

1
2 )−1∥ = ∥G−1∥.

Thus, it follows that

∥x∥2 = ∥(G
1
2 )−1G

1
2x∥2 ≤ ∥(G

1
2 )−1∥2∥G

1
2x∥2 = ∥G−1∥⟨Gx, x⟩.

Hence, (2.1) is seen to hold. □
Let T : H ⇒ H be a set-valued operator. The domain domT of T is defined

as domT := {x ∈ H| T (x) ̸= ∅}. Below, we recall notions of monotonicity for
set-valued operators (see [1, 26] for details).

Definition 2.3. Let T : H ⇒ H be a set-valued operator. T is said to be

(a) monotone if the following condition holds for any x, y ∈ domT :

(2.2) ⟨u− v, y − x⟩ ≥ 0 for each u ∈ T (y) and v ∈ T (x);

(b) maximal monotone if it is monotone and the following implication holds for any
x, u ∈ H:

(2.3)
⟨u− v, x− y⟩ ≥ 0 for each y ∈ domT and v ∈ T (y) =⇒ x ∈ domT and u ∈ T (x).

Throughout the whole paper, let R be a positive constant and L(·) be a non-
negative nondecreasing integrable function on [0, R) satisfying∫ R

0
L(s)ds ≥ 1.

A generalized Lipschitz condition with L-average has been introduced in [23]. Below,
we extend generalized Lipschitz condition with L-average for operators on Hilbert
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spaces which is slightly different from that in [23]. Throughout the whole paper,
for any bounded linear operator G : H → H, we always adopt the convention

that Ĝ := 1
2(G + G∗) where G∗ is the conjugate operator of G. Clearly, Ĝ is a

self-conjugate operator.

Definition 2.4. Let x̄ ∈ H be such that F̂ ′(x̄)
−1

exists, and let r > 0. Then

∥F̂ ′(x̄)
−1

∥F ′ is said to satisfy
(a) the center Lipschitz condition with L average at x̄ on B(x̄, r) if

∥F̂ ′(x̄)
−1

∥∥F ′(x)− F ′(x̄)∥ ≤
∫ ∥x−x̄∥

0
L(u)du for each x ∈ B(x̄, r).

(b) the radius Lipschitz condition with L average at x̄ on B(x̄, r) if

∥F̂ ′(x̄)
−1

∥∥F ′(x)− F ′(xτ )∥ ≤
∫ ∥x−x̄∥

τ∥x−x̄∥
L(u)du for each x ∈ B(x̄, r), 0 ≤ τ ≤ 1,

where xτ = x∗ + τ(x− x∗).

Let r0 > 0 be such that

(2.4)

∫ r0

0
L(u)du = 1.

Lemma 2.5. Let r < r0. Let x̄ ∈ H be such that F̂ ′(x̄) is a positive operator and

F̂ ′(x̄)
−1

exists. Suppose that ∥F̂ ′(x̄)
−1

∥F ′ satisfies the center Lipschitz condition

with L average at x̄ on B(x̄, r). Then, for each x ∈ B(x̄, r), F̂ ′(x) is a positive

operator and F̂ ′(x)
−1

exists. Moreover,

(2.5) ∥F̂ ′(x)
−1

∥ ≤ ∥F̂ ′(x̄)
−1

∥

1−
∫ ∥x−x̄∥

0
L(u)du

.

Proof. Note that

∥F̂ ′(x)− F̂ ′(x̄)∥ ≤ ∥F ′(x)− F ′(x̄)∥.
Hence, it follows that

∥F̂ ′(x̄)
−1

∥ · ∥F̂ ′(x)− F̂ ′(x̄)∥ ≤ ∥F̂ ′(x̄)
−1

∥ · ∥F ′(x)− F ′(x̄)∥

≤
∫ ∥x−x̄∥

0
L(u)du(2.6)

<

∫ r0

0
L(u)du

= 1.

Thus, by the Banach Lemma, F̂ ′(x)
−1

exists and (2.5) holds. Observe from (2.6)
that

(2.7) ∥F̂ ′(x)− F̂ ′(x̄)∥ ≤ 1

∥F̂ ′(x̄)
−1

∥
.
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Let y ∈ H. Then, it follows from (2.7) that

⟨(F̂ ′(x̄)− F̂ ′(x))y, y⟩ ≤ ∥F̂ ′(x̄)− F̂ ′(x)∥∥y∥2 ≤ 1

∥F̂ ′(x̄)
−1

∥
∥y∥2,

which implies that

(2.8) ⟨F̂ ′(x̄)y, y⟩ − 1

∥F̂ ′(x̄)
−1

∥
∥y∥2 ≤ ⟨F̂ ′(x)y, y⟩.

Note by Lemma 2.2 that

⟨F̂ ′(x̄)y, y⟩ ≥ 1

∥F̂ ′(x̄)
−1

∥
∥y∥2.

Combining this with (2.8) yields that

⟨F̂ ′(x)y, y⟩ ≥ 0.

Hence, it follows that F̂ ′(x) is a positive operator. □

3. Convergence ball

Let T : H ⇒ H be a (set-valued) maximal monotone operator. Let F : H → H
be a Fréchet differentiable function. Consider the generalized equation:

(3.1) Find x∗ ∈ H such that 0 ∈ F (x∗) + T (x∗).

Newton’s method for inclusion problem (3.1) is given as follows:

Algorithm 3.1. Let x0 ∈ H be given. Have x0, x1, . . . , xk. Define xk+1 such that

(3.2) 0 ∈ F (xk) + F ′(xk)(xk+1 − xk) + T (xk+1).

Remark 3.2. Fix n. If there exists a constant c > 0 such that

(3.3) ⟨F ′(xk)y, y⟩ ≥ c∥y∥2 for each y ∈ H,

then there exists a unique point xn+1 such that (3.2) holds because T is maximal
monotone (see [22, Lemma 2.2]). Hence, if for each n, there exists a constant c > 0
such that (3.3) holds, then the sequence generated by (3.3) is well defined.

Recall that r0 > 0 is such that∫ r0

0
L(u)du = 1.

Let r̄ > 0 be such that

(3.4)

∫ r̄

0
L(u)udu

r̄

(
1−

∫ r̄

0
L(u)du

) ≤ 1.

Clearly, r̄ ≤ r0.
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Theorem 3.3. Let r ≤ r̄. Suppose that x∗ is a solution of (3.1) such that F ′(x∗)

is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists. Suppose

further that ∥F̂ ′(x∗)
−1

∥F ′ satisfies the radius Lipschitz condition with L average at
x∗ on B(x∗, r). Let x0 ∈ B(x∗, r). Then, the sequence {xk} generated by Newton’s
method (3.2) with initial point x0 is well defined and

(3.5) ∥xk − x∗∥ ≤ λ2k−1∥x0 − x∗∥ for each k = 0, 1, 2, . . . ,

where

(3.6) λ =

∫ ρ(x0)

0
L(u)udu

ρ(x0)

(
1−

∫ ρ(x0)

0
L(u)du

) < 1

and ρ(x0) = ∥x0 − x∗∥.

Proof. Since the function t →
∫ t
0 L(u)udu

t2
is nondecreasing (see [24, Lemma 2.2]), it

follows that

λ =

∫ ρ(x0)

0
L(u)udu

ρ(x0)2

1−

∫ ρ(x0)

0
L(u)du

ρ(x0)

≤

∫ r̄

0
L(u)udu

r̄2

1−

∫ r̄

0
L(u)du

ρ(x0)

≤ ρ(x0)
r̄

< 1.

Below we will show that (3.5) holds for each k = 0, 1 . . . , by induction. Clearly, it
is trivial in the case when k = 0. Now assume that (3.5) holds for k. Then, (3.5)
implies xk ∈ B(x∗, r) and

∥xk − x∗∥ < r ≤ r̄ ≤ r0.

This, together with the assumption that F ′(x∗) is a positive operator and F̂ ′(x∗)
−1

exists, implies that Lemma 2.5 is applicable to concluding that F̂ ′(xk) is a positive
operator and

(3.7) ∥F̂ ′(xk)
−1

∥ ≤ ∥F̂ ′(x∗)
−1

∥

1−
∫ ∥xk−x∗∥

0
L(u)du

.

Hence, it follows from Lemma 2.2 that for each y ∈ H

⟨F̂ ′(xk)y, y⟩ ≥
∥y2∥

∥F̂ ′(xk)
−1

∥
.
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Note that ⟨F ′(xk)y, y⟩ = ⟨F̂ ′(xk)y, y⟩. Thus F ′(xk) satisfies (3.3). Then, by Remark
3.2, we have that xk+1 is well defined. Consequently, to complete the proof, it
remains to verify that (3.5) holds for k + 1. Since x∗ is a solution of (3.1), we have
that

0 ∈ F (x∗) + T (x∗).

Observe further from (3.2) that

0 ∈ F (xk) + F ′(xk)(xk+1 − xk) + T (xk+1).

As T is maximal monotone, it follows that

⟨F (xk)− F (x∗) + F ′(xk)(x
∗ − xk) + F ′(xk)(xk+1 − x∗), x∗ − xk+1⟩ ≥ 0,

and so

(3.8) ⟨F (xk)−F (x∗)+F ′(xk)(x
∗−xk), x

∗−xk+1⟩ ≥ ⟨F ′(xk)(x
∗−xk+1), x

∗−xk+1⟩.

Since F̂ ′(xk) is a positive operator and F̂ ′(xk)
−1

exists, one get from Lemma 2.2
that

(3.9)
∥x∗ − xk+1∥2

∥F̂ ′(xk)
−1

∥
≤ ⟨F̂ ′(xk)(x

∗ − xk+1), x
∗ − xk+1⟩.

Observe further that

⟨F̂ ′(xk)(x
∗ − xk+1), x

∗ − xk+1⟩ = ⟨F ′(xk)(x
∗ − xk+1), x

∗ − xk+1⟩.
This, together with (3.9) and (3.8), yields that

(3.10) ∥x∗ − xk+1∥ ≤ ∥F̂ ′(xk)
−1

∥ · ∥F (xk)− F (x∗) + F ′(xk)(x
∗ − xk)∥.

Note that

F (xk)− F (x∗) + F ′(xk)(x
∗ − xk)

=

∫ 1

0
F ′(x∗ + t(xk − x∗))(xk − x∗)dt+ F ′(xk)(x

∗ − xk)

=

∫ 1

0
[F ′(xk)− F ′(x∗ + t(xk − x∗))](x∗ − xk)dt.

Combining this with (3.10) and (3.7) yields that

∥x∗ − xk+1∥ ≤ ∥F̂ ′(x∗)
−1

∥

1−
∫ ∥xk−x∗∥

0
L(u)du

∫ 1

0
∥F ′(xk)− F ′(x∗ + t(xk − x∗))∥∥xk − x∗∥dt

≤ 1

1−
∫ ∥xk−x∗∥

0
L(u)du

∫ 1

0

∫ ∥xk−x∗∥

t∥xk−x∗∥
L(u)du∥xk − x∗∥dt(3.11)

=

∫ ∥xk−x∗∥

0
L(u)udu

1−
∫ ∥xk−x∗∥

0
L(u)du
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As ∫ ∥xk−x∗∥

0
L(u)udu

1−
∫ ∥xk−x∗∥

0
L(u)du

=

∫ ∥xk−x∗∥

0
L(u)udu

∥xk − x∗∥2(1−
∫ ∥xk−x∗∥

0
L(u)du)

∥xk − x∗∥2

≤

∫ ∥x0−x∗∥

0
L(u)udu

∥x0 − x∗∥2(1−
∫ ∥x0−x∗∥

0
L(u)du)

∥xk − x∗∥2

≤ λ
∥xk − x∗∥2

∥x0 − x∗∥
≤ λ2k+1−1∥x0 − x∗∥

This, together with (3.11), implies that (3.5) holds for k + 1. □

4. Uniqueness ball of the solution

This section is devoted to the uniqueness ball of the solution of (3.1). Let r̂ > 0
be such that

(4.1)
1

r̂

∫ r̂

0
L(u)(r̂ − u)du ≤ 1.

Theorem 4.1. Let r ≤ r̂. Suppose that x∗ is a solution of (3.1) such that F ′(x∗)

is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists. Suppose

further that ∥F̂ ′(x∗)
−1

∥F ′ satisfies the center Lipschitz condition with L average at
x∗ on B(x∗, r). Then, x∗ is the unique solution of (3.1) on B(x∗, r).

Proof. Since x∗ is a solution of (3.1), one has

0 ∈ F (x∗) + T (x∗).

Assume on the contrary that y∗ is another solution of (3.1). Then, it follows that

0 ∈ F (x∗) + T (x∗).

As T is maximal monotone, we get

⟨F (y∗)− F (x∗), x∗ − y∗⟩ ≥ 0,

which implies that

⟨F (y∗)− F (x∗)− F ′(x∗)(y∗ − x∗) + F ′(x∗)(y∗ − x∗), x∗ − y∗⟩ ≥ 0

and so

(4.2) ⟨F (y∗)− F (x∗)− F ′(x∗)(y∗ − x∗), x∗ − y∗⟩ ≥ ⟨F ′(x∗)(x∗ − y∗), x∗ − y∗⟩.

Since F ′(x∗) is a positive operator and F̂ ′(x∗)
−1

exists, we apply Lemma 2.2 to get
that

(4.3) ⟨F ′(x∗)(x∗ − y∗), x∗ − y∗⟩ = ⟨F̂ ′(x∗)(x∗ − y∗), x∗ − y∗⟩ ≥ ∥x∗ − y∗∥2

∥F̂ ′(x∗)
−1

∥
.
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Observe further that

F (y∗)−F (x∗)−F ′(x∗)(y∗−x∗) =

∫ 1

0
F ′(x∗+t(y∗−x∗))(y∗−x∗)dt−F ′(x∗)(y∗−x∗).

Combining this with (4.2) and (4.3) yields that

∥y∗ − x∗∥ ≤
∫ 1

0
∥F̂ ′(x∗)

−1
∥∥F ′(x∗ + t(y∗ − x∗))− F ′(x∗)∥∥y∗ − x∗∥

≤
∫ 1

0

∫ t∥y∗−x∗∥

0
L(u)dudt∥y∗ − x∗∥

= 1
∥y∗−x∗∥

∫ ∥y∗−x∗∥

0
L(u)(∥y∗ − x∗∥ − u)du∥y∗ − x∗∥

< 1
r̂

∫ r̂

0
L(u)(r̂ − u)du∥y∗ − x∗∥

≤ ∥y∗ − x∗∥,
where the third strict inequality holds because of the fact that the function t →
1
t

∫ t
0 L(u)(t − u)du is increasing monotonically (cf. [23]) and ∥y∗ − x∗∥ < r̂. This

implies that y∗ = x∗. □

5. Applications

This section is devoted to the application of our previous results for some special
cases such as the classical Lipschitz condition and the γ-condition.

5.1. The classical Lipschitz condition. Let L > 0 be a constant, and let r > 0.

Let x̄ ∈ H be such that F̂ ′(x̄)
−1

exists. Then ∥F̂ ′(x̄)
−1

∥F ′ is said to satisfy:
(i) the center Lipschitz condition with L on B(x̄, r) if

∥F̂ ′(x̄)
−1

∥∥F ′(x)− F ′(x̄)∥ ≤ L∥x− x̄∥ for each x ∈ B(x̄, r).

(ii) the radius Lipschitz condition with L on B(x̄, r) if

∥F̂ ′(x̄)
−1

∥∥F ′(x)− F ′(xτ )∥ ≤ L(1− τ)∥x− x̄∥ for each x ∈ B(x̄, r), 0 ≤ τ ≤ 1,

where xτ = x∗ + τ(x− x∗).
Since L(·) ≡ L, it follows from (3.4), (3.6) and (4.1) that

r̄ =
2

3L
, λ =

L∥x0 − x∗∥
2(1− L∥x0 − x∗∥)

and r̂ =
2

L
.

Hence, the following two corollaries follow directly from Theorems 3.3 and 4.1.

Corollary 5.1. Let r ≤ 2
3L . Suppose that x∗ is a solution of (3.1) such that F ′(x∗)

is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists. Suppose

further that ∥F̂ ′(x∗)
−1

∥F ′ satisfies the radius Lipschitz condition with L on B(x∗, r).
Let x0 ∈ B(x∗, r). Then, the sequence {xk} generated by Newton’s method (3.2) with
initial point x0 is well defined and

∥xk − x∗∥ ≤ λ2k−1∥x0 − x∗∥ for each k = 0, 1, 2, . . . ,
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where

λ =
L∥x0 − x∗∥

2(1− L∥x0 − x∗∥)
.

Corollary 5.2. Let r ≤ 2
L . Suppose that x∗ is a solution of (3.1) such that F ′(x∗)

is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists. Suppose

further that ∥F̂ ′(x∗)
−1

∥F ′ satisfies the center Lipschitz condition with L on B(x∗, r).
Then, x∗ is the unique solution of (3.1) on B(x∗, r).

5.2. The γ-condition. Let r > 0 and γ > 0 be such that γr ≤ 1. In this sub-
section, we always assume that F : H → H is a C2 function. The γ-conditions
for operators in Banach space were first presented by Wang [25] for the study of
Smale’s point estimate theory. Below, it’s an analogue of γ-condition for operators,
which is slightly different from the one given in [25].

Definition 5.1. Let x̄ ∈ H be such that F̂ ′(x̄)
−1

exists. F is said to satisfy γ-
condition at x̄ in B(x̄, r), if

(5.1) ∥F̂ ′(x̄)
−1

∥ · ∥F ′′(x)∥ ≤ 2γ

(1− γ∥x− x̄∥)3
for each x ∈ B(x̄, r).

The following proposition shows that the γ-condition implies the radius Lipschitz
condition with L average, where the function L is defined by

(5.2) L(s) :=
2γ

(1− γs)3
, ∀s ∈ [0, r).

Proposition 5.1. Let x̄ ∈ H be such that F̂ ′(x̄)
−1

exists. Suppose that F satisfies γ-

condition at x̄ in B(x̄, r). Then ∥F̂ ′(x̄)
−1

∥F ′ satisfies the radius Lipschitz condition
with L average at x̄ on B(x̄, r), where L is given by (5.2).

Proof. Let x ∈ B(x̄, r), τ ∈ [0, 1] and xτ = x̄+ τ(x− x̄). Then

F ′(x)− F ′(xτ ) =

∫ 1

τ
F ′′(x̄+ s(x− x̄))(x− x̄)ds.

Hence, it follows

∥F̂ ′(x̄)
−1

∥∥F ′(x)− F ′(xτ )∥ ≤
∫ 1

τ
∥F̂ ′(x̄)

−1
∥∥F ′′(x̄+ s(x− x̄))∥∥x− x̄∥ds

≤
∫ 1

τ

2γ

(1− γs∥x− x̄∥)3
ds

=

∫ ∥x−x̄∥

τ∥x−x̄∥

2γ

(1− γu)3
du.

Thus, the conclusion follows. □
Let L be given by (5.2). Then, it follows from (3.4), (3.6) and (4.1) that

r̄ =
5−

√
17

4γ
, λ =

4∥x0 − x∗∥
1− 4γ∥x0 − x∗∥+ 2(γ∥x0 − x∗∥)2

and r̂ =
1

2γ
.
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Hence, the following two corollaries follow directly from Proposition 5.1, Theorems
3.3 and 4.1.

Corollary 5.3. Let r ≤ 5−
√
17

4γ . Suppose that x∗ is a solution of (3.1) such that

F ′(x∗) is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists.
Suppose further that F satisfies γ-condition at x∗ in B(x∗, r). Let x0 ∈ B(x∗, r).
Then, the sequence {xk} generated by Newton’s method (3.2) with initial point x0 is
well defined and

∥xk − x∗∥ ≤ λ2k−1∥x0 − x∗∥ for each k = 0, 1, 2, . . . ,

where

λ =
4∥x0 − x∗∥

1− 4γ∥x0 − x∗∥+ 2(γ∥x0 − x∗∥)2
.

Corollary 5.4. Let r ≤ 1
2γ . Suppose that x∗ is a solution of (3.1) such that F ′(x∗)

is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists. Suppose
further that F satisfies γ-condition at x∗ in B(x∗, r). Then, x∗ is the unique solution
of (3.1) on B(x∗, r).

5.3. Analytic cases. Let x∗ be a solution of (3.1). In this subsection, we assume

that F is analytic at x∗. Let x∗ be such that F̂ ′(x∗)
−1

exists. Define

γ(F, x∗) := ∥F̂ ′(x∗)
−1

∥ sup
k≥2

∥∥∥∥F k(x∗)

k!

∥∥∥∥
1

k−1

.

Also we adopt the convention that γ(F, x∗) = ∞ if F̂ ′(x∗) is not invertible. Note that

this definition is justified, and in the case when F̂ ′(x∗) is invertible, by analyticity,
γ(F, x∗) is finite. The following lemma shows that if F is analytic , then F satisfies
the γ-condition. Its proof is easy and so is omitted here (see also [23,24]).

Lemma 5.2. Let γ := γ(F, x∗). Let 0 < r ≤ 1
γ . Then F satisfies γ-condition at x∗

in B(x∗, r).

Hence, the following two corollaries follow directly from Lemma 5.2, Corollaries
5.3 and 5.4.

Corollary 5.5. Let r ≤ 5−
√
17

4γ . Suppose that x∗ is a solution of (3.1) such that

F ′(x∗) is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists. Let
x0 ∈ B(x∗, r). Then, the sequence {xk} generated by Newton’s method (3.2) with
initial point x0 is well defined and

∥xk − x∗∥ ≤ λ2k−1∥x0 − x∗∥ for each k = 0, 1, 2, . . . ,

where

λ =
4∥x0 − x∗∥

1− 4γ∥x0 − x∗∥+ 2(γ∥x0 − x∗∥)2
.

Proof. Since r = 5−
√
17

4γ < 1
γ , it follows from Lemma 5.2 that F satisfies the γ-

condition at x∗ in B(x∗, r). Thus, Corollary 5.3 is applicable and the conclusions
follow. □



1858 JINHUA WANG

Corollary 5.6. Let r ≤ 1
2γ . Suppose that x∗ is a solution of (3.1) such that F ′(x∗)

is a positive operator (not necessary self-conjugate) and F̂ ′(x∗)
−1

exists. Then, x∗

is the unique solution of (3.1) on B(x∗, r).
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