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of the solutions to SFDEs with infinite delay under non-linear growth condition.
In 2008, under non-Lipschitz condition, Ren et al. [9] obtained the existence and
uniqueness theorem and continuous dependence of the solutions to NSFDEs with
infinite delay.

Further, in the study of the solution for the SFDEs, one question arises naturally:
Does the p-th moment of the solution assure the solution for such SFDEs ? To the
best of our knowledge, there are few results on this problem. It is also worth noting
that the p-th moment of the solution for such SFDEs has not been fully investigated,
which remains an interesting research topic.

Our study is essentially based on the [7] by Mao referring to the exponential
estimate and almost surely asymptotic estimates of SFDEs. In fact, we improve
Mao’s results by finding sufficient conditions, which are easy to verity, guaranteeing
exponential estimate and almost surely asymptotic estimates of the solutions of
these equations.

2. Preliminary

Let (Ω,F , P ), throughout this paper unless otherwise specified, be a complete
probability space with a filtration {Ft}t≥t0 satisfying the usual conditions (i.e. it
is right continuous and Ft0 contains all P -null sets). Let | · | denote Euclidean
norm in Rn. If A is a vector or a matrix, its transpose is denoted by AT ; if A
is a matrix, its trace norm is represented by |A| =

√
trace(ATA). Assume that

B(t) is an m-dimensional Brownian motion defined on complete probability space,
that is B(t) = (B1(t), B2(t), . . . , Bm(t))T . Let Lp([a, b];Rd) denote the family of

Rd-valued Ft-adapted processes {f(t)}a≤t≤b such that
∫ b
a |f(t)|pdt < ∞ a.s.. Let

BC((−∞, 0];Rd) denote the family of bounded continuous Rd-valued functions φ
defined on (−∞, 0] with norm ∥φ∥ = sup−∞<θ≤0 |φ|. Let M2((−∞, 0];Rd) denote

the family of Ft0-measurable, Rd-valued process φ(t) = φ(t, ω), t ∈ (−∞, 0] such

that E
∫ 0
−∞ |φ(t)|2dt <∞.

Consider a d-dimensional stochastic functional differential equations

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t0 ≤ t ≤ T,(2.1)

where xt = {x(t+θ) : −∞ < θ ≤ 0} can be regarded as aBC((−∞, 0];Rd)-value sto-
chastic process, where f : BC((−∞, 0];Rd)×[t0, T ] → Rd and g : BC((−∞, 0];Rd)×
[t0, T ] → Rd×m be Borel measurable.

The first question is what is the solution of (2.1). More accurately, what is the
smallest date of stochastic prcess x(t) defined on [t0, T ]? On a moment’s thought,
we derive that initial data of stochastic process must define on (−∞, t0], so, the
initial value is followed:

xt0 = ξ = {ξ(θ) : −∞ ≤ θ ≤ 0} is anFt0 −measurable

BC([−∞, 0];Rd)− value randomvariable such that ξ ∈ M2((−∞, 0];Rd).

In [9], the author presented a result stating that, for initial value xt0 = ξ, there
exists a unique solution x(t), t0 ≤ t ≤ T to the equation (2.1) under non-Lipschitz
condition and non-linear growth condition. We reproduce the result here.
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Theorem 2.1. Assume that there exists a constant K and a concave function κ
such that

(i) (non-Lipschitz condition) For any φ,ψ ∈ BC((−∞, 0];Rd) and t ∈ [t0, T ], it
follows that

|f(φ, t)− f(ψ, t)|2 ∨ |g(φ, t)− g(ψ, t)|2 ≤ κ(∥φ− ψ∥2),

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0.

(ii) (non-linear growth condition) f(0, t), g(0, t) ∈ L2 and for all t ∈ [t0, T ], it
follows that s

|f(0, t)|2 ∨ |g(0, t)|2 ≤ K,

where K > 0 is a constant. Then, there exist a unique solution to (2.1) with initial
data.

3. Main results

The topic of our analysis is the equations (2.1) with initial data xt0 = ξ. An
{Ft}−adapted process x(t) with values in Rd is said to be the solution to equation
(2.1) if it satisfies the initial condition and the corresponding stochastic integral
equation holds a.s., i.e. for every t ≥ t0,

x(t) = ξ(0) +

∫ t

t0

f(xs, s)ds+

∫ t

t0

g(xs, s)dB(s) a.s.

The basic existence and uniqueness theorem based on the Picard method
of iterations requires the global(see, [1], [7], [9]-[11]). Moreover, there exists a
unique a.s. continuous and adapted solution x(t) to equation (2.1) satisfying
E| supt0≤t≤T x(t)|2 < ∞ for every T ≥ t0 under the linear growth condition. Since
our goal is to study exponential estimates and almost surely asymptotic estimates
problems, we assume that there exists a unique solution x(t) to equation (2.1) under
non Lipschitz condition and non-linear growth condition. We also assume that all
the Lebesgue and Itô integrals employed further are well defined.

In this section we shall give the exponential estimates for the solution of equation
(2.1), namely

dx(t) = f(xt, t)dt+ g(xt, t)dB(t) on t ∈ [t0,∞)(3.1)

with initial data xt0 = ξ.We assume that this equation has a unique global solution
x(t).We also impose the non-linear growth condition: For any φ ∈ BC((−∞, 0];Rd)
and t ∈ [t0, T ], it follows that

(3.2) |f(φ, t)|2 ∨ |g(φ, t)|2 ≤ κ(1 + ∥φ∥2),

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0.

We start with following an exponential estimate.

Theorem 3.1. Let p ≥ 2 and E∥ξ∥ < ∞. Assume that for all (φ, t) ∈
BC((−∞, 0];Rd) × [t0,∞), {f(x(t), t)} ∈ L1([t0, T ];R

d), and {g(x(t), t)} ∈
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L2([t0, T ];R
d), it follows that

xT f(φ, t) ∨ p− 1

2
|g(φ, t)|2 ≤ κ(1 + ∥φ∥2),(3.3)

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0. Then for a pair of positive constants a and b such that
κ(u) ≤ a+ bu, we have

E
(

sup
−∞<s≤t

|x(s)|p
)
≤ 3

2
2p[1 + E∥ξ∥p] exp(c1(t− t0))(3.4)

for all t ≥ t0, where c1 = 4p(a+ b)(1 + 16p/(p− 1)).

Proof. By Itô’s formula, we can derive that for t ≥ t0,

[1 + |x(t)|2]p/2 = [1 + ∥ξ∥2]p/2 + p

∫ t

t0

[1 + |x(s)|2](p−2)/2xT (s)f(xs, s)ds

+
p

2

∫ t

t0

[1 + |x(s)|2](p−2)/2|g(xs, s)|2ds

+
p(p− 2)

2

∫ t

t0

[1 + |x(s)|2](p−4)/2|xT (s)g(xs, s)|2ds

+p

∫ t

t0

[1 + |x(s)|2](p−2)/2xT (s)g(xs, s)dB(s).

By the condition (3.3), it is easy to see that

[1 + |x(t)|2]
p
2 ≤ 2

p−2
2 (1 + ∥ξ∥p) + 2p

∫ t

t0

[1 + |x(s)|2]
p−2
2 κ(1 + ∥xs∥2)ds(3.5)

+p

∫ t

t0

[1 + |x(s)|2](p−2)/2xT (s)g(xs, s)dB(s).

Given that κ(·) is concave and κ(0) = 0, we can find a pair of positive constants a
and b such that κ(u) ≤ a+ bu for all u ≥ 0. Therefore

E
(

sup
t0≤s≤t

[1 + |x(s)|2]
p
2

)
(3.6)

≤ 2
p−2
2 [1 + E∥ξ∥p] + 2p(a+ b)E

∫ t

t0

[1 + ∥xs∥2]
p
2 ds

+pE

(
sup

t0≤s≤t

∫ s

t0

[1 + |x(r)|2]
p−2
2 xT (r)g(xr, r)dB(r)

)
.

On the other hand, by the Burkholder-Davis-Gundy inequality(see, [7], Theorem
1.7.3), we derive that

pE

(
sup

t0≤s≤t

∫ s

t0

[1 + |x(r)|2]
p−2
2 xT (r)g(xr, r)dB(r)

)

≤ 4
√
2pE

(∫ t

t0

[1 + |x(s)|2]p−2|xT (s)g(xs, s)|2ds
) 1

2
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≤ 4
√
2pE

{(
sup

t0≤s≤t
[1 + |x(s)|2]

p
2

)∫ t

t0

[1 + |x(s)|2]
p−4
2 |x(s)|2|g(xs, s)|2ds

} 1
2

≤ 1

2
E

(
sup

t0≤s≤t
[1 + |x(s)|2]

p
2

)
+ 16p2E

∫ t

t0

[1 + |x(s)|2]
p−4
2 |x(s)|2|g(xs, s)|2ds

≤ 1

2
E

(
sup

t0≤s≤t
[1 + |x(s)|2]

p
2

)
+

32p2

p− 1
(a+ b)E

∫ t

t0

[1 + ∥xs∥2]
p
2 ds.

Substituting this into (3.6) yields that

E
(

sup
t0≤s≤t

[1 + |x(s)|2]
p
2

)
≤ 2

p
2 [1 + E∥ξ∥p] + c1E

∫ t

t0

[1 + ∥xs∥2]
p
2 ds,(3.7)

where c1 = 4p(a+ b)(1 + 16p/(p− 1)). Note that

E
(

sup
−∞<s≤t

[1 + |x(s)|2]
p
2

)
≤ 2

p−2
2 [1 + E∥ξ∥p] + E

(
sup

t0≤s≤t
[1 + |x(s)|2]

p
2

)
,

It then follows from (3.7) that

E
(

sup
−∞<s≤t

[1 + |x(s)|2]
p
2

)
≤ 3

2
2p[1 + E∥ξ∥p] + c1

∫ t

t0

E
(

sup
−∞<s≤t

[1 + ∥xs∥2]
p
2

)
ds.

An application of the Gronwall inequality implies that

E
(

sup
−∞<s≤t

[1 + |x(s)|2]
p
2

)
≤ 3

2
2p[1 + E∥ξ∥p]ec1(t−t0).(3.8)

and the desired inequality follows. The proof is compliet. □

Let us now turn to consider the case of 0 < p < 2. This is rather easy if we note
that the Hölder inequality implies

E|x(t)|p ≤ (E|x(t)|2)
p
2 .

In other words, the estimate for E|x(t)|p can be done via the estimate for the second
moment. For instance, we have the following corollary.

Corollary 3.2. Let 0 < p < 2 and E∥ξ∥ < ∞. Assume that for all (φ, t) ∈
BC((−∞, 0];Rd) × [t0,∞), {f(x(t), t)} ∈ L1([t0, T ];R

d), and {g(x(t), t)} ∈
L2([t0, T ];R

d), it follows that

xT f(φ, t) ∨ 1

2
|g(φ, t)|2 ≤ κ(1 + ∥φ∥2),(3.9)

where κ(·) is a concave nondecreasing function from R+ to R+ such that κ(0) =
0, κ(u) > 0 for u > 0. Then for a pair of positive constants a and b such that
κ(u) ≤ a+ bu, we have

E
(

sup
−∞<s≤t

|x(s)|p
)
≤ 3[1 + E∥ξ∥2]

p
2 exp(c2(t− t0))(3.10)

for all t ≥ t0, where c2 = 4p(a+ b)(1 + 16p).
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We now consider a nonlinear growth condition

|f(φ, t)|2 ∨ |g(φ, t)|2 ≤ κ1(1 + ∥φ∥2)(3.11)

for all (φ, t) ∈ BC((−∞, 0];Rd) × [t0,∞) with κ1(·) is a concave nondecreasing
function from R+ to R+ such that κ1(0) = 0, κ1(u) > 0 for u > 0.

In fact, using (3.11) and the elementary inequality 2ab ≤ a2 + b2 one can derive

that the condition (3.3) is satisfied with κ(u) = u
√
κ1(u) ∨ p−1

2 κ1(u).
As an application of Theorem 3.1 we give one of the important properties of the

solution.

Theorem 3.3. Let p ≥ 2 and and E∥ξ∥ < ∞. Assume that the nonlinear growth
condition (3.11) for all (φ, t) ∈ BC((−∞, 0];Rd)× [t0,∞). Then

E|x(t)− x(s)|p ≤ γ(t)(t− s)
p
2 ,

where

γ(t) =
[1
2
c3(2α)

p
2 + 3c32

p−2(2β)
p
2 [1 + E∥ξ∥p]ec1(t−t0)

]
,

c3 = (2(t− t0))
p
2 + 1

2(2p(p− 1))
p
2 , and α and β are a pair of positive constants such

that κ1(u) ≤ α+ βu for all u ≥ 0. In particular, the pth moment of the solution is
continuous.

Proof. Applying the elementary inequality |a+ b|p ≤ 2p−1(|a|p + |b|p), it is easy to
see that

E|x(t)− x(s)|p ≤ 2p−1E

∣∣∣∣∫ t

s
f(xr, r) dr

∣∣∣∣p + 2p−1E

∣∣∣∣∫ t

s
g(xr, r) dB(r)

∣∣∣∣p.
Using the Hölder’s inequality, the moment inequality ([7], Theorem 1.7.1), and the
condition (3.11), one can show that

E|x(t)− x(s)|p ≤ (2(t− s))p−1E

∫ t

s
|f(xr, r)|pdr

+
1

2
(2p(p− 1))

p
2 (t− s)

p−2
2 E

∫ t

s
|g(xr, r)|p dr

≤ c3(t− s)
p−2
2 E

∫ t

s
(κ1(1 + ∥xr∥2))

p
2 dr,

where c3 = (2(t− t0))
p
2 + 1

2(2p(p− 1))
p
2 . Given that κ1(·) is concave and κ1(0) = 0,

we can find a pair of positive constants α and β such that κ1(u) ≤ α + βu for all
u ≥ 0. So we have

E|x(t)− x(s)|p ≤ 1

2
c3(2α)

p
2 (t− s)

p
2 +

1

2
c3(2β)

p
2 (t− s)

p−2
2

∫ t

s
E(1 + ∥xr∥2)

p
2 dr.

Substituting this into (3.8) yields that

E|x(t)− x(s)|p ≤
(1
2
c3(2α)

p
2 + 3c32

p−2(2β)
p
2 [1 + E∥ξ∥p]ec1(t−t0)

)
(t− s)

p
2 ,

which is required inequality. □
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In view of Theorem 3.1, we know that the pth moment of the solution satisfies

E|x(t)|p ≤ 3

2
2p[1 + E∥ξ∥p] exp(c1(t− t0))

for all t ≥ t0. This means that the pth moment will grow at most exponentially with
exponent 4p(a+ b)(1 + 16p/(p− 1)). This can also be expressed as

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ 4p(a+ b)

(
1 +

16p

(p− 1)

)
.(3.12)

The left-hand side of (3.12) is called the pth moment Lyapunov exponent, and
(3.12) shows that the pth moment Lyapunov exponent should not be greater than
4p(a + b)(1 + 16p/(p − 1)). In next, we shall establish the asymptotic estimate for
the solution almost surely. More accurately, we shall estimate

lim sup
t→∞

1

t
log |x(t)|

almost surely, which is called the sample Lyapunov exponent.

Theorem 3.4. Under the condition (3.9) the sample Lyapunov exponent of the
solution of equation (3.1) should not be greater than 264(a+ b), that is

lim sup
t→∞

1

t
log |x(t)| ≤ 264(a+ b)

almost surely.

Proof. For each n = 1, 2, . . . , it follows from Theorem 3.1 (taking p = 2) that

E
(

sup
t0+n−1≤t≤t0+n

|x(t)|2
)
≤ µeν ,

where µ = 6(1 + E∥ξ∥2), and ν = 264(a+ b). Hence, for arbitrary ϵ > 0,

P

{
ω : sup

t0+n−1≤t≤t0+n
|x(t)|2 > e(ν+ϵ)n

}
≤ µe−ϵn.

The Borel-Cantelli lemma now yields that for almost all ω ∈ Ω, there is a random
integer n0 = n0(ω) such that

sup
t0+n−1≤t≤t0+n

|x(t)|2 ≤ e(ν+ϵ)n

whenever n ≥ n0. Consequently, for almost all ω ∈ Ω, if t0 + n− 1 ≤ t ≤ t0 + n and
n ≥ n0,

1

t
log |x(t)| ≤ (ν + ϵ)n

2(t0 + n− 1)
.

Thus

lim sup
t→∞

1

t
log |x(t)| ≤ ν + ϵ

2
= 264(a+ b) +

ϵ

2

almost surely. Since ϵ is arbitrary, the assertion must hold. □
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