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ABSTRACT. The main aim of this paper is to discuss the exponential estimate
of solution of the stochastic functional differential equations under the monotone
condition. Furthermore, almost surely asymptotic estimates and pth moment
continuous of the solution for these equations are given. More accurately, we
shall estimate sample Lyapunov exponent almost surely.

1. INTRODUCTION

With the development of industrial technology, Stochastic systems including
Brownian motion processes has played an important role in many areas of science
and engineering for a long time. Since the white noise is mathematically repre-
sented by a formal derivative of a Brownian motion process, such stochastic system
is based on various types of stochastic functional differential equations (SFDEs) of
1t6 type as stochastic model. After Ito introduced his stochastic calculus, the the-
ory of SFDEs have been developed very quickly. SFDEs is the most fundamental
concept in modern stochastic models.

In recent years, the existence and uniqueness theorem, exponential estimate,
almost sure estimate, stability and approximation of the solution for SFDEs have
attracted great attention (see, [1]-[4], [6]-[11] and references therein for details).

In this, we consider a class of stochastic equations depending on past and present
values that involves derivatives with delays. Such equations historically have been
referred to as stochanstic fundtional differential equtions, or stochanstic fundtional
differential equtions with delay, it becomes apparent that the principle of causality
is often only a first approximation to the true situaton and that a more realistic
model would include some of the past states of the system (see, [2], [6], [7], [9]-[12]
and references therein for details).

One of the classical and a subject for inquiry in the study of stochanstic fund-
tional differential equtions(SFDEs) is an existence and uniqueness theorem of the
solution to SFDEs under some special conditions. For the work on the existence
and uniqueness theorem of the NSFDEs with delay, in 2007 Mao [7] established
the existence and uniqueness theorem of solutions of th e equations under uniform
Lipschitz condition. In 2007, Wei et al. [11] studied the existence and uniqueness
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of the solutions to SFDEs with infinite delay under non-linear growth condition.
In 2008, under non-Lipschitz condition, Ren et al. [9] obtained the existence and
uniqueness theorem and continuous dependence of the solutions to NSFDEs with
infinite delay.

Further, in the study of the solution for the SFDEs, one question arises naturally:
Does the p-th moment of the solution assure the solution for such SFDEs? To the
best of our knowledge, there are few results on this problem. It is also worth noting
that the p-th moment of the solution for such SFDEs has not been fully investigated,
which remains an interesting research topic.

Our study is essentially based on the [7] by Mao referring to the exponential
estimate and almost surely asymptotic estimates of SFDEs. In fact, we improve
Mao’s results by finding sufficient conditions, which are easy to verity, guaranteeing
exponential estimate and almost surely asymptotic estimates of the solutions of
these equations.

2. PRELIMINARY

Let (Q,F, P), throughout this paper unless otherwise specified, be a complete
probability space with a filtration {F;}i>¢, satisfying the usual conditions (i.e. it
is right continuous and Fy, contains all P-null sets). Let | - | denote Euclidean
norm in R™. If A is a vector or a matrix, its transpose is denoted by AT; if A
is a matrix, its trace norm is represented by |A| = y/trace(ATA). Assume that
B(t) is an m-dimensional Brownian motion defined on complete probability space,
that is B(t) = (B1(t), B2(t),..., Bn(t)T. Let £P([a,b]; R?) denote the family of
Ré-valued Fi-adapted processes {f(t)}a<i<p such that f; |f(t)[Pdt < oo a.s.. Let
BC((—00,0]; RY) denote the family of bounded continuous R%-valued functions ¢
defined on (—o0,0] with norm ||¢|| = sup_.,g<g |- Let M2((—o0,0]; RY) denote
the family of JF,-measurable, R%-valued process ¢(t) = ¢(t,w),t € (—o0,0] such
that B [°__ |(t)|2dt < oo.

Consider a d-dimensional stochastic functional differential equations

(2.1) dx(t) = f(x, t)dt + g(xe, t)dB(t) on to <t <T,

where z; = {x(t+6) : —0o < 6 < 0} can be regarded as a BC((—oo0, 0]; R%)-value sto-
chastic process, where f : BC((—o0,0]; RY)x[tg, T] — R% and g : BO((—0o0,0]; R%)x
[to, T] — R¥™ be Borel measurable.

The first question is what is the solution of (2.1). More accurately, what is the
smallest date of stochastic prcess z(t) defined on [tp,7]? On a moment’s thought,
we derive that initial data of stochastic process must define on (—oo,tg], so, the
initial value is followed:

xpy =& ={£(0) : —00 <0 <0} isanFy, — measurable
BC([—00,0]; RY) — value random variable such that & € M?((—o0,0]; RY).
In [9], the author presented a result stating that, for initial value x4, = &, there

exists a unique solution z(t),t9p < t < T to the equation (2.1) under non-Lipschitz
condition and non-linear growth condition. We reproduce the result here.
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Theorem 2.1. Assume that there exists a constant K and a concave function s
such that

(i) (non-Lipschitz condition) For any @, € BC((—o0,0]; RY) and t € [to, T), it
follows that

[f(o.t) = F@, )1V g (0,t) — g(v, 1) < ([l — vII),

where K(+) is a concave nondecreasing function from Ry to Ry such that k(0) =
0,k(u) >0 foru > 0.
(ii) (non-linear growth condition) f(0,t),g(0,t) € L? and for all t € [to, T}, it
follows that s
£ 1)V 1g(0,1)* < K,

where K > 0 is a constant. Then, there exist a unique solution to (2.1) with initial
data.

3. MAIN RESULTS

The topic of our analysis is the equations (2.1) with initial data x;, = £&. An
{F;}—adapted process z(t) with values in R? is said to be the solution to equation
(2.1) if it satisfies the initial condition and the corresponding stochastic integral
equation holds a.s., i.e. for every t > tq,

¢ t
xz(t) =&0)+ [ f(xs,s)ds +/ g(zs,8)dB(s) a.s.
to to
The basic existence and uniqueness theorem based on the Picard method
of iterations requires the global(see, [1], [7], [9]-[11]). Moreover, there exists a
unique a.s. continuous and adapted solution z(t) to equation (2.1) satisfying
E|sup,,<;<7 (t)|* < oo for every T > to under the linear growth condition. Since
our goal is to study exponential estimates and almost surely asymptotic estimates
problems, we assume that there exists a unique solution z(¢) to equation (2.1) under
non Lipschitz condition and non-linear growth condition. We also assume that all
the Lebesgue and It6 integrals employed further are well defined.
In this section we shall give the exponential estimates for the solution of equation
(2.1), namely

(3.1) dz(t) = f(xg, t)dt + g(x¢, t)dB(t) on t € [tg, 00)

with initial data z;, = £&. We assume that this equation has a unique global solution
x(t). We also impose the non-linear growth condition: For any ¢ € BC((—o0,0]; RY)
and t € [to,T], it follows that

(3-2) [F@, O VIg(e,t)” < w(1+ [loll?),

where k(-) is a concave nondecreasing function from R to Ry such that x(0) =
0, k(u) > 0 for u > 0.
We start with following an exponential estimate.

Theorem 3.1. Let p > 2 and E|&|| < oo. Assume that for all (p,t) €

BC((—00,0; RY) x [to,00), {f(x(t),0)} € L[to,T];R?), and {g(x(t),t)}

m
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L2([to, T]; RY), it follows that

(33) o fp ) v 2 gl O < w1+ 6],

where K(+) is a concave nondecreasing function from Ry to Ry such that k(0) =
0,k(u) > 0 for u > 0. Then for a pair of positive constants a and b such that
k(u) < a+ bu, we have

(3.4) B( sw_las)P) < 521+ el expler(t o)

—oo<s<t

for allt > ty, where ¢c; = 4p(a +b)(1 + 16p/(p — 1)).

Proof. By Itd’s formula, we can derive that for ¢ > ¢,

L+ lz@OPP? = L+ [EPP? +p/t [+ [2(s) ] P72 (s) f (25, 5)ds

t

p

B [ kel B g )P
0

222D [ P12 (g, o)

2
+p/tt[1+ ()P~ (s)g(s, 5)dB(s).

By the condition (3.3), it is easy to see that

—_ t —
Bo< 2" (14 ¢ +2p / [+ |2(s)2]"7 £(1 + [Jas][?)ds

to

+p/ [+ ()] P=72aT (s)g (s, 5)dB(s).

to

(3.5) [1+ |z(t)’]

Given that (+) is concave and k(0) = 0, we can find a pair of positive constants a
and b such that k(u) < a + bu for all u > 0. Therefore

(3.6) B( g [+ (o))
< 2T+ B+ 200+ 0B [ 1+ [alPlEds
+pE<t gt /tsu +12(r)P)Z 2 (r)g e, r)dB(r ’)

On the other hand, by the Burkholder-Davis-Gundy inequality(see, [7], Theorem
1.7.3), we derive that

i sup /t;m )14 (gt B ()

to<s<t

< 4\/5pE</t[1+ Ja(s) P72 |27 (s)g (s, )!2d5>1

to
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< avape{( sw 1+ 121

to<s<t

/u+u@m%m$Ww%@WmF

to

IN

1 t -
E(wpu+M$ﬂQ+ﬂwE [+ |2(s)2)"7 Ja(s)|? g s, 5)[*ds
2 \to<s<t to

[MS]

IN

1E<sm>u44x@>ﬂ

32 2 t
> + 2P e 0E [ [+ |as]?) B ds.
2 \tp<s<t

p—1 to
Substituting this into (3.6) yields that
t
6:1) B sup [1+[o(s)P1E) < 281+ EleP) + ea [ [1+ o)) Eds,
to<s<t to

where ¢; = 4p(a + b)(1 + 16p/(p — 1)). Note that

B( sw_[1+]a(s)}) <27 1+ Bl + B( sup [1+]a(s) ),
—oo<s<t to<s<
It then follows from (3.7) that
3 t
B swp_[1+laP)E) < 320+ Blel) +er [ B( sup_[14 % )ds.
—oo<s<t 2 to —oo<s<t

An application of the Gronwall inequality implies that

3
(3.8) E( sup [1+ ’x(s)|2]%) < 2o —i—EHpr]ecl(t_tO),
—oo<s<t 2
and the desired inequality follows. The proof is compliet. ]

Let us now turn to consider the case of 0 < p < 2. This is rather easy if we note
that the Holder inequality implies

p

Elz(t)P < (Blz(t)]*)2.

In other words, the estimate for E|z(t)|P can be done via the estimate for the second
moment. For instance, we have the following corollary.

Corollary 3.2. Let 0 < p < 2 and E||§|| < oco. Assume that for all (p,t) €
BC((=00,0; RY) x [to,00), {f(x(t),t)} € L[to,T];R?), and {g(z(t),t)} €
L2([to, T]; RY), it follows that

(39) 7 H (1) V Glale O < w1+ el?)

where K(+) is a concave nondecreasing function from Ry to Ry such that k(0) =
0,k(u) > 0 for u > 0. Then for a pair of positive constants a and b such that
k(u) < a+ bu, we have

(3.10) B( suwp_|o(s)I") <301+ ElI¢]*)% explea(t - o))

—oo<s<t

for all t > tg, where co = 4p(a + b)(1 + 16p).



1866 YOUNG-HO KIM

We now consider a nonlinear growth condition

(3.11) [F(@, )V Ig(e,t)” < ma(1+ [loll?)

for all (p,t) € BCO((—00,0]; RY) x [tg,00) with 1(-) is a concave nondecreasing
function from R4 to R4 such that x1(0) = 0,1 (u) > 0 for u > 0.

In fact, using (3.11) and the elementary inequality 2ab < a? 4 b% one can derive
that the condition (3.3) is satisfied with x(u) = uy/k1(u) V p%llil (u).

As an application of Theorem 3.1 we give one of the important properties of the
solution.

Theorem 3.3. Let p > 2 and and E||£|| < co. Assume that the nonlinear growth
condition (8.11) for all (p,t) € BC((—o0,0]; R?) x [tg,o0). Then

Ela(t) — x(s)” < v(t)(t - 9)?,

where

1(1) = [3es(20)

c3 = (2(t—t0))? + $(2p(p— 1))2, and a and B are a pair of positive constants such
that k1(u) < a+ Pu for all u > 0. In particular, the pth moment of the solution is
continuous.

P

+ 3032 2(28) 8L+ BllglPle-],

Proof. Applying the elementary inequality |a 4 b|P < 2P~1(|a|P + |b|P), it is easy to

see that

t P t p

Blz(t) — z(s)|P < 2P7'E / flxp,r)dr +2p_1E/ g(zr,r)dB(r)| .
S S

Using the Holder’s inequality, the moment inequality ([7], Theorem 1.7.1), and the
condition (3.11), one can show that

Ble(t) ~o(s)P < (2t~ s)E [ |f(ar)lar
5@ = 15 =T E [ lo(arn)lar
< alt-9)TE [ (a1 o)t dr

where ¢3 = (2(t — t0))% + 2(2p(p— 1)). Given that () is concave and #,(0) = 0,

we can find a pair of positive constants « and 8 such that x1(u) < a + Bu for all
u > 0. So we have

1 P

2

Elx(t) —xz(s)|P < 503(20[)

Substituting this into (3.8) yields that

ca(20)8(t =)' [ BQ+ |l )5 ar.

[NIIS]

Bla(t) ~ ()P < (Ges(20)5 + 352> @B)E[1 + EJPe ) ¢ - 5)f,

which is required inequality. H
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In view of Theorem 3.1, we know that the pth moment of the solution satisfies
3
Blz@®)PP < 5271 + Ell€]"] exp(e1(t — to))

for all t > tg. This means that the pth moment will grow at most exponentially with
exponent 4p(a + b)(1 + 16p/(p — 1)). This can also be expressed as

. 1 » 16p
(3.12) lim sup + log(Elz(1)]") < 4p(a +b) (1 = 1)).

The left-hand side of (3.12) is called the pth moment Lyapunov exponent, and
(3.12) shows that the pth moment Lyapunov exponent should not be greater than
4p(a + b)(1 + 16p/(p — 1)). In next, we shall establish the asymptotic estimate for
the solution almost surely. More accurately, we shall estimate

1
lim sup n log |z(t)]

t—o00

almost surely, which is called the sample Lyapunov exponent.

Theorem 3.4. Under the condition (3.9) the sample Lyapunov exponent of the
solution of equation (3.1) should not be greater than 264(a + b), that is

1
limsup - log |x(¢)| < 264(a + b)
t—o00 t
almost surely.

Proof. For each n =1,2,..., it follows from Theorem 3.1 (taking p = 2) that
B swp fa(t)P) < pe”,
to+n—1<t<to+n
where p = 6(1+ E||€||?), and v = 264(a + b). Hence, for arbitrary € > 0,
P {w : sup lz(t)]? > e(”+€)n} < pe” .
to+n—1<t<to+n

The Borel-Cantelli lemma now yields that for almost all w € €, there is a random
integer ng = ng(w) such that

sup  |a(t)]? < eFm
to+n—1<t<to+n

whenever n > ng. Consequently, for almost all w € Q, iftg+n—1<t <ty+n and
n > no,

1 (v+en
-1 ) < ——m——.
Thus
1
lim sup - log |z(t)| < v 264(a +b) + <
t—oo t 2 2

almost surely. Since € is arbitrary, the assertion must hold. O
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