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ABSTRACT. In this paper, we propose new implicit and explicit iterative methods
for finding a common element of the set of solutions of a generalized mixed
equilibrium problem and the set of fixed points of a k-strictly pseudocontractive
mapping in Hilbert spaces. We establish the strong convergence of the proposed
iterative algorithms to a common point of two sets, which is a solution of a
certain variational inequality. As a direct consequence, we obtain the unique
minimum-norm common point of two sets.

1. INTRODUCTION

Let H be a real Hilbert space with the inner product (-, -) and the induced norm
|| - ||. Let C be a nonempty closed convex subset of H, and let S : C' — C be a
self-mapping on C'. We denote by Fiz(S) the set of fixed points of S and by P¢
the metric projection of H onto C.

Let A: C — H be a nonlinear mapping, let ¢ : C' — R be a function, and let ©
be a bifunction of C' x C' into R, where R is the set of real numbers.

Then, we consider the following generalized mixed equilibrium problem (for short,
GMEP) of finding x € C such that

(1.1) O(x,y) + (Az,y — x) + p(y) — p(z) >0, VyeCl,

which was introduced by Peng and Yao [23] recently (also see [6,14,17,34]). The set
of solutions of the problem (1.1) is denoted by Q := GMEP(©, ¢, A). Here some
special cases of the problem (1.1) are stated as follows:

If ¢ = 0, then the problem (1.1) reduced the following generalized equilibrium
problem (for short GEP) of finding = € C such that

(1.2) O(z,y) + (Az,y —x) >0, YyeC,

which was studied by Takahashi and Takahashi [27]. The set of solutions of the
problem (1.2) is denoted by GEP(©, A).
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If A =0, then the problem (1.1) reduces the following mixed equilibrium problem
(for short, MEP) of finding = € C such that

(1.3) O(z,y) + o(y) —p(x) >0, VyeC,

which was studied by Ceng and Yao [7] (see also [32]). The set of solutions of the
problem (1.3) is denoted by M EP(©, ¢).

If p =0 and A = 0, then the problem (1.1) reduces the following equilibrium
problem (for short, EP) of finding = € C such that

(1.4) O(z,y) >0, Vyel.

The set of solutions of the problem (1.4) is denoted by EP(©).
If p =0 and O(z,y) =0 for all 2,y € C, the problem (1.1) reduces the following
variational inequality problem (for short, VIP) of finding = € C such that

(1.5) (Az,y —z) >0, VyeC.

The set of solutions of the problem (1.5) is denoted by VIP(C, A).

The problem GMEP (1.1) is very general in the sense that it includes, as special
cases, fixed point problems, optimization problems, variational inequality problems,
minmax problems, Nash equilibrium problems in noncooperative games and others;
see, e.q., [4,7,9,10].

The class of pseudocontractive mappings is one of the most important classes of
mappings among nonlinear mappings. We recall that a mapping T : C' — H is said
to be k-strictly pseudo-contractive if there exists a constant k € [0, 1)such that

1Tz = Tyl* < |l —ylI* + k(I = T)a — (I = Tyl*, ¥z, yeC.

Note that the class of k-strictly pseudocontractive mappings includes the class of
nonexpansive mappings as a subclass. That is, S is nonexpansive (i.e., | Tz —Ty|| <
|z —yl|, Vx, y € C) if and only if T" is O-strictly pseudocontractive. The mapping T’
is also said to be pseudocontractive if k = 1 and T is said to be strongly pseudocon-
tractive if there exists a constant v € (0, 1) such that 7" — vI is pseudocontractive.
Clearly, the class of k-strictly pseudocontractive mappings falls into the one be-
tween classes of nonexpansive mappings and pseudocontractive mappings. Also we
remark that the class of strongly pseudocontractive mappings is independent of the
class of k-strictly pseudocontractive mappings (see [2,3]). Recently, many authors
have been devoting the studies on the problems of finding fixed points for pseu-
docontractive mappings, see, for example, [1,8,12,16,21,22,35] and the references
therein.

Recently, in order to study the GMEP(1.1), GEP(1.2), MEP(1.3), EP(1.4) and
VIP(1.5), respectively, coupled with the fixed point problem, many authors have
introduced some iterative methods for finding a common element of the set of solu-
tions of the GMEP(1.1), GEP(1.2), MEP(1.3), EP(1.4) and VIP(1.5), respectively,
and the set of fixed points of a countable family of nonexpansive mappings or strictly
pseudocontractive mappings; see [7,14,18,24,26,27,32,33] and the references therein.

On the other hand, in 2001, Yamada [31] introduced the hybrid iterative method
for the nonexpansive mapping to solve a variational inequality related to a Lips-
chitzian and strongly monotone operator. Since then, by combining the iterative
method of Yamada [31] with ones of Marino and Xu [19], Tien [28,29] and Ceng et
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al. [5] provided the general iterative methods for finding a fixed point of the nonex-
pansive mapping, which is a solution of a certain variational inequality related to a
Lipschitzian and strongly monotone operator. Cho et al. [8] and Jung [12,13] gave
the general iterative methods for finding a fixed point of the k-strictly pseudocon-
tractive mapping, which is a solution of a certain variational inequality.

Motivated by the recent works of [5,13-15,29, 33], in this paper, we introduce
new implicit and explicit iterative methods for finding a common element of the
set of the solutions of the GMEP(1.1) and the set of fixed points of a k-strictly
pseudocontractive mapping 7. Then we establish the strong convergence of the
proposed iterative algorithms to a common point of two sets, which is a solution of
a certain variational inequality. As a direct consequence, we find the unique solution
of the quadratic minimization problem

|2*||* = min{||z||* : 2 € QN Fiz(T)},
where €2 is the set of the GMEP(1.1) and Fliz(T) is the fixed point set of T'.

2. PRELIMINARIES AND LEMMAS

Let H be a real Hilbert space and let C be a nonempty closed convex subset of
H. In the following, we write x,, — z to indicate that the sequence {x,} converges
weakly to z. x, — z implies that {z,} converges strongly to x.

Recall that

(i) amapping V : C — H is called - Lipschitzian if there exists a constant [ > 0
Va—Vyl| <z —yll, Vz, yel;
(ii) a mapping A : C' — H is called monotone if

(iii) a mapping F' : C — H is called p-Lipschitzian and n-strongly monotone if
there exist constants p > 0 and 7 > 0 such that
|Fz— Fy| < pllz — gl and (Fr — Fy,x —y) > nllz —y|}%, Ve, y € C.

For every point © € H, there exists a unique nearest point in C, denoted by
P (x), such that
|z — Po(z)]| < [l —y]
for all y € C. Pg is called the metric projection of H onto C. It is well known that
P¢ is nonexpansive and P satisfies

(& —y, Po(x) — Pe(y)) 2 ||Po(z) — Pe(y)|?
for every x, y € H. Moreover, Pc(x) is characterized by the properties:
lz = ylI* > ||z = Po(@)|I* + ly — Po(@)|
and
(2.1) u=Po(z) = (xr—uu—y) >0 Veec H, yeC.

In the context of the variational inequality problem for a nonlinear mapping A, this
implies that
u € VIP(C,A) <= u = Po(u— NAu) V> 0.
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For solving the generalized mixed equilibrium problem (1.1), mixed equilibrium
problem (1.2), and equilibrium problem (1.3) for a bifunction © : C' x C' — R, let
us assume that O satisfies the following conditions:

(A1) ©(x,z) =0 for all z € C}

(A2) © is monotone, that is, O(z,y) + O(y,z) <0 for all z, y € C;

(A3) for each z,y,z € C,

limsup ©(tz + (1 —t)z,y) < O(x,y);
tl0

(A4) for each z € C,y — O(x,y) is convex and lower semicontinuous.

We can prove the following lemma by using the same method as in [17,34], and
S0 we omit its proof.

Lemma 2.1. Let C be a nonempty closed convexr subset of H. Let © be a bifunc-
tion form C x C to R satisfies (A1)—(A4), and let ¢ : C — R be a proper lower
semicontinuous and conver function. Let A : C' — H be a continuous monotone
mapping. Then, for r >0 and x € H, there exists u € C such that

1

Define a mapping K, : H — C' as follows:
1

Ra) = {u € € 0w+ (A, y—uh+(s) )+ g ) 2 0, ¥y € C
for allx € H and r > 0. Then, the following hold:

(1) For each x € H, K,(x) # 0;

(2) K, is single-valued;

(3) K, is firmly nonexpansive, that is, for any x, y € H,

HKr‘x - KryH2 < <K7“x - Kyy,z — y);
(4) Fiz(K,) =GMEP(©,p,A);
(5) GMEP(©,p,A) is closed and convez.

We need the following lemmas for the proof of our main results.

Lemma 2.2 ([35]). Let H be a Hilbert space and let C' be a closed convex subset
of H. LetT : C — H be a k-strictly pseudocontractive mapping on C. Then the
following hold:
(i) The fized point set Fix(T) is closed conver, so that the projection Pp(ry is
well defined.
(i) Fiz(PeT) = Fiz(T).
(iii) If we define a mapping S : C — H by Sz = Az + (1 — \)Tz for all x €
C. then, as A € [k,1), S is a nonexpansive mapping such that Fiz(T) =
Fix(9).

Lemma 2.3 ([30]). Let {s,} be a sequence of non-negative real numbers satisfying
Sn+1 < (1 - gn)sn + §n5n, Vn > 17
where {&,} and {0, } satisfy the following conditions:
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(i) {&n} € 10,1] and }°77, & = o0,
(i) Hmsup,, o0 0p <0 or Y 07 &ul0n| < c0.

Then lim,, oo sp, = 0.

Lemma 2.4 ([25]). Let {z,,} and {z,} be bounded sequences in a real Banach space
E, and let {vn} be a sequence in [0, 1] which satisfies the following condition:

0 < liminf v, <limsup-y, < 1.
n—oo

n—o0

Suppose that T, 11 = Yoy + (1 — yn)zn for alln > 1 and

lim sup(||zn+1 — 2nl| = |21 — 2nl]) <0.
n—oo

Then limy, o0 ||2r, — xp|| = 0.
Lemma 2.5 ([11, Demiclosedness principle]). Let C be a nonempty closed convex
subset of a real Hilbert space H, and let S : C — C be a nonexpansive mapping.

Then, the mapping I — S is demiclosed. That is, if {xn} is a sequence in C such
that x, = x* and (I — S)x, — y, then (I — S)z =y.

The following lemmas can be easily proven, and therefore, we omit their proofs.

Lemma 2.6. Let V : H — H be an [-Lipschitzian mapping with constant [ > 0,
and let F' : H — H be a p-Lipschitzian and n-strongly monotone mapping with
constants p > 0 and n > 0. Then for 0 < vl < un,

(WF = yV)z — (uF —yV)y,z —y) > (un =)z -yl Vo, y € H.
That is, uF — vV is strongly monotone with constant un — yl.

Finally, we need the following lemma. We can refer to [13,31] for the proof.

Lemma 2.7. Let H be a real Hilbert space H. Let F': H — H be a p-Lipschizian
and n-strongly monotone mapping with constants p >0 andn > 0. Let 0 < p < i—g
and 0 <t <¢<1. Then G :=<Il —tuF : H— H is a contraction with contractive
constant s — tT, where T =1 — /1 — u(2n — pp?).

3. ITERATIVE ALGORITHMS

Throughout the rest of this paper, we always assume the following:

H is a real Hilbert space;

C' is a nonempty closed convex subset of H;

© is a bifunction from C' x C' — R satisfying (A1)—(A4);

A : C — H is a continuous monotone mapping;

V : C — H is I-Lipschitzian with constant [ € [0, c0);

F : C — H is a p-Lipschitzian and n-strongly monotone mapping with
constants p > 0 and n > 0;

Constants u, [, 7, and v satisfy 0 < p < f}—Z} and 0 < vl < 7, where
T =1— /1= u(2n— pup?);

K, is a mapping defined as in Lemma 2.1 for r > 0;

e Q:=GMEP(©,p,A) is the set of solutions of the GMEP (1.1);
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e T :C — C'is a k-strictly pseudocontractive mapping for k € [0, 1) such that
Fix(T)NQ # 0;
e T, : C — C is a mapping defined by Tyx = Mz + (1 — M\)Tz, t € (0,1), for
0<k<XM<A<I1andlimi gl = A;
e T, : C — C is a mapping defined by T,z = Az + (1 — A\y)Tz for 0 < k <
An <A< 1andlimy, o0 Ay = A
e Pc is a metric projection of H onto C.
By Lemma 2.2 (iii), T} and T}, are nonexpansive and Fix(T) = Fiz(1;) = Fix(T,).
In this section, we introduce the following algorithm that generates a net {xt}te(o,l)
in an implicit way:
(3.1) xy = TiPotyVay + (I — tuF) K, (x4)].

We prove strong convergence of {z;} as t — 0 to a point Z of Fiz(T) N Q which
is a solution of the following variational inequality:

(3:2) (uF =9V)g,p—q) 20, Vpe Fiz(T)NQ.

We also propose the following explicit algorithm which generates a sequence in
an explicit way:
(3.3)  xpt1 = Bnrn+ (1 = Bn)ThPolanyVa, + (I — anuF) K, ()], VYn >0,

where {a,}, {8} C (0,1) and zp € C is an arbitrary initial guess.
Consider the following mapping @; on C' defined by

Qv =T Pe[tyVe + (I — tuF) K, ().
By Lemmas 2.1, 2.2 and 2.7, we have
Qe — Quyll < ty[[Ve = Vyl + [(I — tpF) Ky (z) — (I — tnF) K (y)]
< e —yll + (1 — t7)[| K (2) — K (y)]]
< tylflz —yll+ (1 —t7)]lz -y
=1 =t(r =)z —yll.
Since 0 < 1—t(7—~1) < 1, Q¢ is a contraction. Therefore, by the Banach contraction

principle, @; has a unique fixed point z; € C', which uniquely solves the fixed point
equation

xy = TiPotyVay + (I — tpF) Ky ().
Now, we establish the strong convergence of the net {z;} generated by (3.1) and

show the existence of the ¢ € Fiz(T) N 2, which solves the variational inequality
(3.2).

Theorem 3.1. The net {x:} defined via (3.1) converges strongly, ast — 0, to a
point q € Fix(T) N Q, which solves the variational inequality (3.2).

Proof. First, we can show easily the uniqueness of a solution of the variational
inequality (3.2). In fact, noting that 0 < 4l < 7 and un > 7 & p > n, it follows
from Lemma 2.8 that

(WF = AV)z — (uF —AV)y,x —y) > (un — )|z — y|>.
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That is, uF — vV is strongly monotone for 0 < ~I < 7 < un. So the variational
inequality (3.2) has only one solution. Below we use ¢ € Fiz(T) N to denote the
unique solution of the variational inequality (3.2).

Now, we divide the proof into several steps

Step 1. We show that {z;} is bounded. To this end, let u; = K,(z;) for all
t € (0,1). Take p € Fiz(T) N Q. Then, from Fizx(T) = Fiz(T;) by Lemma 2.2
(iii), it follows that p = Typ = Ty Pcp, and it is clear that p = K,(p). Since K, is
nonexpansive, we have that
(3.4) lue = plI* = 1K (2e) — Kr(p)|” < [l — p]%,
that is, ||uy — p|| < ||z — pl|. Also it follows from (3.1) and Lemma 2.7 that
e = pll = ITePeltyVa + (I — tpF)u] — TiPo[tyVp + (I — tuF)p]
+ TiFeltyVp + (I — tpF)p] — Ty Fep||
< |[tyVay + (I = tpF)ug — (tyVp + (I — tuF)p||
+ [[tvVp + (I — tnF)p — p
< Y[V = Vpll + (1 = t7)[Jus — pll + vV — wFp]|
< tylf|ze — pll + (L = t7)||ze — pl| + t(V[Vpll + pllwFpl)-

So, we have that

Vol + pllnFpl
T - '
Thus, {z;} is bounded and we also obtain that {u;}, {Vz;}, and { Fu;} are bounded.

e = pll <

Step 2. We show that limy;_,¢ [|z; — u]| = 0. In fact, from (3.4) and (3.5), we have
(1= t90)2 — I < (1= t7)lle — pll + 62 Vol + l Fpll)?
— (1= t7)?lwr — pl* + (5 Vll + ullFpll)?
+2(1 = t7)t|jug — pll(YIVpIl + pl[ F'pl])
< s = pl|* + tM,

(3.6)

where M = sup{t(+||Vpll + | Epl) + 2[1us — pll (7 Vpll + l| Fpl)}. By Lemma 2.1,
we obtain

lug = pl* = | K () — K (p)]?
< <Kr37t — Kyp,xy — p)

= (ut — p,xt — p)
1
= 5z = pl* + llue = plI* = lle = wil)),
which implies that
(3.7) lue = plI? < Ml = plI* — [l — .
By (3.6) and (3.7), we have

(1= ty0)* ||y — plI* < llwe — plI® — llwe — wel|* + tM.
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It follows that
2t — uel|* < t(291 — t9°12)||we — pl|* + tM.

This together with Step 1 implies that

lim ||z — ug|| = 0.
lim [|z¢ —uef| = 0

Step 3. We show that limy_,¢ ||z — Ty2¢|| = 0. Indeed, from Step 2, we have
”HZ't — TtxtH = HTtPC[t")/V.%t -+ (I — t,uF)ut] — TtPCxtH
< |tYVay + (I — tuF)uy — |
< flue = @il + t(y Vel + pl[Fue|)) = 0 (as t — 0).

Step 4. We show that {z;} is relatively norm compact as ¢t — 0. To this end,
let {t,} C (0,1) be a sequence such that t, — 0 as n — oo. Put z,, := x4, and
Up, = uy, . From Step 3, we have

|xn — T}, xnl| = 0 (as n — 00).
By (3.1), we deduce
|l — pl?
= | Ty Pc[tyV e + (I — tuF)us] — Ty Pop))?
<NtV + (I = tuF)ug] — pl|®
= (I = tpF)us — (I = tpF)p — t(uF = AV)p + ty(Va, — Vp)||?
= (I = tpF)u; — (I — tpF)p|
= 2t[{(nF = V)p,ur — p) — t((F = YV )p, pFus — pFp)]
+ 2ty[(Vay — Vp,uy — p) — t{Vay — Vp, uFuy — uFp)]
— 26y ((uF —AV)p, Viy — Vp) + 8[| (uF = AV)pl|* + t*9? |V — Vp|?
< (1= t7)?lur — pl* = 26((uF — yV)p, ue — p) + 231z — pl|[|lue — pl|
+ 2% (uF = AV)pl (| Fuel| + || Fpl])
+ 2691 |z, — pll(|wFue|l + | nFpll) + 26U (F — AV )pll||z: — pl|
+ (| (F = V)pl|* + 2P|z — pl|)
= [1 = 2t7 + *7%)[|us — p||> — 2t((uF — AV )p, usr — p)
+ 291, — plllfue — pl| + 2% (F — AV)pl|([|(wF )| + || Fpl])
+ 26%51||z¢ — pl| (|uFul| + | Fpll) + 2621 (uF — AV )pl |z — p
+ (| (F = V)pl* + 2P|z = pl)
< (1= 2t7)|lug — plI* = 26{(uF — AV )p, up — p) + tyl([|ze — pl|* + lue — pl|*)
+ t2M,
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where
M =sup{7?|u¢ — p||* + 2(||(kF — vV )p| + vipl|ze — p|) (| Fue|| + || Fpll)
+2U|(uF — AV)pllllze — pll + | (nF — yV)pl|* + ¥ ||z — pl|*}-

Hence, for small enough ¢, we obtain

1 —2t7 + tyl 2t t?
ol < 2 T P P, — w12 = F -~V —
R — [ _W<(u VP ue = p) + 5 i
1 — 2t7 + tyl 5 2t t2
_ o2 — F—~V . M.
< lze = plI” = —m«“ YWV, ur —p) + 1 -
It follows that
(3.5) = plI2 < ——{(uF = 1V)p.p— ur) + 5
In particular,
M
3.9 n—p|? < F—=AV)p,p—upn) + s——.
(3.9) |zn — pl| f7_7l<(u YV)p, p U>+2(T_7l)

Since {x,} is bounded, without loss of generality, we may assume that {z,} con-
verges weakly to a point ¢ € C. We show that ¢ € Fiz(T). To this end, define
S:C = Cby St =X+ (1—-\NTx, Vx € C. Then S is nonexpansive with
Fix(S) = Fiz(T) by Lemma 2.2 (iii). Notice that
[Szn — znl| < |Szn — Tt @nll + (|11, 20 — 24|
= (A =M )lzn = Tan| + | Tr, 20 — 24|

A—A
= 2 o = Tyl + [Ty —
v
1+ A—2\,
= ﬁllfcn — Ty,

By Step 3 and Ay, — X\ as n — oo, we have ||Sz, — x| — 0 as n — oo, and
q € Fiz(S) from Lemma 2.5. So, we get ¢ € Fiz(T") by Lemma 2.2 (iii).
Now, we show that ¢ € Q. By u, = K,(z,), we know that

1
O(un,y) + (Atn, y — un) + ©(y) — @(un) + ;(y — Up,Un — Tp) >0, VyeC.

It follows from (A2) that

1
(310) <Aun7 Yy — un> + tp(y) - SO(UTL) + ;<y — Up, Up — $n> > 6(2/, Un), Vy eC.

For t with 0 <t <1landye€ C,let yy =ty + (1 —t)q. Since y € C and q € C, we
have y; € C. So, from (3.10), we have

(Yt — Uny Aye) > (Y — n, Aye) — o(ye) + o(un) — (Yt — un, Auy)
Up — Ty
- <yt — Unp, r > + @(yt7un)
= (Yt — un, Ayr — Aup) — ©(yt) + @(un)

Up — T
- <yt — Unp, n r n> + C—)(yhun)'
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Since [|uy, — 2| — 0 by Step 2, we have *»—*= — 0 and u,, — ¢. Moreover, from
the monotonicity of A, we have (y; — up, Ayy — Aup) > 0. So, from (A4) and the
weak lower semicontinuity of ¢, it follows that

(3.11) (ye — q, Ay) > —o(ye) + (q) + ©(yt,q) as n — oo.
By (A1), (A4) and (3.11), we also obtain
0 =0y, ) +¢(y) — e(ye)
<tO(yr,y) + (1 = 1)O(yr, q) + to(y) + (1 = t)e(q) — ¢(yr)
<Oy, y) + ¢(y) — o)) + (1 — ) {ye — ¢, Ayr)
=[Oy, y) + o(y) — p(y)] + (1 — Oty — ¢, Awr),
and hence
(3.12) 0<O(yt,y) +y) — e(ye) + (1 = )y — ¢, Ayy).
Letting t — 0 in (3.12), we have for each y € C
O(q,y) + (Agq,y — q) + »(y) — ¢(q) > 0.

This implies that ¢ € Q. Therefore, ¢ € Fiz(T) N Q.
We substitute ¢ for p in (3.9) to obtain

(3.13) lon — all? <

tn M
F—AV)q,q — un) + s
T = V) g — ) + 5

Note that u, — ¢. This facts and the inequality (3.13) imply that z,, — ¢ strongly.
This has proved the relative norm compactness of the net {z;} as t — 0.

Step 5. We show that ¢ solves the variational inequality (3.2). In fact, taking the
limit in (3.9) as n — oo, we get

lg — p||* < (uF —yV)p,p—q), Vp € Fiz(T)N Q.

T—
In particular, ¢ solves the following variational inequality
q € Fiz(T)nQ, ((uF—~V)p,p—q) 20, pe€ Fiz(T)NQ,
or the equivalent dual variational inequality (see [20])
(3.14) g€ Fiz(T)NnQ, ((uF —~V)g,p—q) >0, pe Fiz(T)NQ.

Step 6. We show that the entire net {x;} converges strongly to ¢. To this end, let
{zp, } be another subsequence of {z,} and assume z,, — ¢. By the same as the
proof above, we have § € Fiz(T') N ). Moreover, it follows from (3.14) that

(3.15) (WF —=9V)g,4—q) > 0.
Interchanging ¢ and ¢, we obtain
(3.16) (WF =9V)4,q—qG) > 0.

Lemma 2.6 and adding these two inequalities (3.15) and (3.16) yields

(un = D)llg = dl* < ((uF =AV)g = (uF =~V)d,q = G) < 0.
Hence ¢ = ¢. Therefore we conclude that z; — q as t — 0.
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The variational inequality (3.2) can be rewritten as
(WE=WV)g,p—q) = (I +9V = puF)g—q,q—p) 20, Vp€ Fix(T)NLQ.
By (2.1), this is equivalent to the fixed point equation
q= Ppiryno +9V — puF)g.

From Theorem 3.1, we can deduce the following result.

Corollary 3.2. Let {x;} be a net generated by
(3.17) = Ty Po[(1 — ) K (z¢)], Vte(0,1).

Then {x:} converges strongly, ast — 0, to a point q¢ € Fixz(T)NQ, which solves the
following minimum norm problem: find x* € Fix(T) N such that

3.18 = i .
(318) o'l = _min o]

Proof. In (3.8) with F =1, u=1,7=1,V =0, and | =0, letting ¢t — 0 yields
lg = pl* < (p,p —a), Vp € Fiz(T)N Q.
Equivalently,
(¢.p—q) >0, Vpe Fiz(T)NQ
This obviously implies that
lall* < (p.a) < llplllall, ¥p € Fiz(T)N Q.
It turns out that ||g|| < ||p|| for all p € Fiz(T)N2. Therefore, g is the minimum-norm
point of Fiz(T) NKQ. O

Next, we show strong convergence of the explicit algorithm (3.3) to a point ¢ of
Fiz(T) N Q, which is also a solution of the variational inequality (3.2).

Theorem 3.3. Let {x,} be a sequence generated by
(3.3)  zpy1 = Pran+ (1= Bn)TnPoloanyVa, + (I — anuF) K, (x,)], ¥Yn >0,
where {ay} and {B,} are two sequences in [0, 1] satisfying the following conditions:
(C1) limpoo 0, =0, D07 0y = 00;
(C2) 0 < liminf, o B, < limsup, o Bn < 1.
Then {x,} converges strongly to a point q € Fix(T)NY, which solves the variational
inequality (3.2).

Proof. First, from a,, — 0 in condition (C1), without loss of generality, we assume
that 2(1 — 5,,)(7 — yl)ay, < 1. From now, let p € Fiz(T) N and set u, = K, (x,)
for all n > 0.

We divides the proof several steps:

Step 1. We show that ||z, — p| < max{\xo -, W’)QJ:;W} for all n > 0.

Indeed, from Lemma 2.1,

[un = pll = | Kr(2n) = K ()| < [l2n — pl|-
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Then, from Lemma 2.7 and p = T,,p = T,, Pcp, we have
[#n+1 — Pl
= [|Bnzn + (1 = Bn) T PolanyV (2n) + (I — anpF)un, — T Popl|
< Bullzn —pll + (1 = Bu)llanyVan + (I — anpF )un — pl|
< Bullzn —pll + (1 = B)lany [V, — V|
+ |(I — anpF)up — (I — anpl)pll + anl|(vV — pF)pl|]
< Bullen — pll + (1 = Bu)[anylllzn — pll + (1 — an7)|un — pl[]
+ (1 = Bn)an([yVoll + lnFpll)
< Bullzn — pll + (1 = Bu)[anylllzn — pll + (1 = an7)|un — pl[]
+ (1 = Bn)an([yVpll + |nFpll)
< Bullzn — pll + (1 = Bu)[anylllzn — pll + (1 — an7) |20 — pl]
+ (1 = Bn)an([yVoll + [|nFpll)
= [1 =1 = Bu)an(t = yDlllzn — pll + an(l = Ba)([VVpll + 1Fpl)

= [~ (7 = an(1 = Bl — bl + (7 —2an(1 - ) IELIEEL

From induction, we have

Vol + pl|F

zn — pll < maX{on il YVl + pl| Fpl } n>0.
T =7l

Hence {z,} is bounded. From (3.3), {u,}, {Vz,}, and {Fu,} are also bounded.

Step 2. We show that lim, o ||Zn+1 — 2n]] = 0. To show this, let z, =
TnPolanyV e, + (I — anpuF)uy] for all n > 0, Then, we write (3.3) as follows:

Tnt1 = BnTn + (1 — Bn)zn, VYn >0.
It follows from the definition of z, that

| 2041 — 2nl|
= ||TnPC[O‘n+1'7vxn+1 + (I - 04n+1,uF)un+1]
(3.19) — ThPolanYVirn + (I — an i )uy]||

< Nans1yVani + (I — ang1pF)ungy — anyVian — (I — o pF )un |
< Nunt1 = unll + a1 (VIVanall + [[pFuniall) + an(YIVaal + pl| Fon ).
From Lemma 2.1, we also have
(3.20) [tni1 = unll = [ K (2ni1) = Ke(@n) | < llznes — znll-
By (3.19) and (3.20), we derive
|2n11 = 2nll = [Tne1 — 2nl| < (ng1 + an) My,
where M = sup{~||Va,| + || Fun| }. Therefore,

lim sup(||zn41 — 2nl| = [|Znr1 — 2nl]) <O0.
n—oo
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Hence, by Lemma 2.4, we obtain
lim ||z, — z,|| = 0.
n—oo

Thus, from condition (C2), it follows that

nh_{go |Znt1 — 2n| = nh_?;o(l — Ba)llzn — xn|| = 0.

Step 3. We show that lim,,_, ||2 — un|| = 0. Indeed, In fact, from (3.3) and the
convexity of || - ||%, we have
|41 = plI?

= [|Ba(zn = p) + (1 = Bn) (2 — )II?

< Buallzn = pl* + (1 = Bn)llzn = plI®

< Bullen = pl* + (1 = Bu)llanyVan + (I — anpF)up — p||?

= Bullzn — pII*
(321)  + (1= Bu)llanyVan + (I = anpF)un — (I — onpF)p — anpuFpl|*

< Bullen —pl* + (1 = Bu)[(1 = 7o) un — pll + cn (Y| V|l + pll FpIDP?

< Bullen = plI* + (1 = B)llun — pll + an(3[Vanll + ullFpl)]?

= Bullzn = plI* + (1 = Ba)lllun — pl* + o (V[Vanll + ull Fpl)?

+ 20 |[un — pl[(Y[[Vaa| + plwFpl])
< Ballzn — plI* + (1 = Bu)llun — pl* + an Mo,

where Mp = sup{(Y[|Vaa | + ullFpll)* + 2[wn — pll(¥[Vznl + | Fpl))}. Since K is
firmly nonexpansive in Lemma 2.1, we obtain

lun = plI* = 1K (2z0) — K (p)]?
K,xp, — rpaxn_p>

(
= <un D Tn _p>
1

= 5 {llun = pI” + llzn = pII* = lon — unl*}

IN

Thus, we deduce
(3.22) tn = plI* < |2 — plI* = |20 — unl|*.
From (3.21) and (3.22), we have
201 = PI* < Ballzn — plI> + (1= Bo)(2n — plI* = |20 — unll®) + an My
< ||zn — pH2 — (1= Bu)llzn — unH2 + ap Ma.
Thus we obtain
(1= Bn)llzn — unH2 < |lzn — un”2 — [|Tn41 — p”2 + an Mo
< (o = pll + |21 = 2D 1Tnt1 — 2all + o Ma.
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Since ay, — 0 in condition (C1) and ||z,4+1 — @n|| by Step 2, we deduce

lim ||z, — uy,|| = 0.
—00

Step 4. We show that lim,_,c ||un, — Thun|| = 0. To this end, first, from «,, — 0
in condition (C1), we note that

|20 = Tun || = | ToPclonyVan + (I — anpd ) un] — Tn Poun||
< an(Y[[Van | + pl| Funl]) — 0.
Then we obtain
lxn — Thunl| < l|zn — 20|l + ||2n — Thun|| — 0.
Hence, from Step 3 with this fact, we have

| Tnuin — un|l < | Tatn — znll + |20 — unll — 0.

Step 5. We show that
limsup((uF —yV)q,q — up) <0,

n—oo

where ¢ = Ppiym)no(I+7V —pF)q is a unique solution of the variational inequality
(3.2). To show this inequality, we choose a subsequence {uy,} of {uy} such that

Jn (" = 4V)q, ¢ = un,) =l sup((uF = Vg, q = tn).

Since {up,} is bounded, there exists a subsequence {um]} which converges weakly
to w. Without loss of generality, we can assume that u,, — w. From Step 3 and
Step 4, we obtain x,, — w and T,,u,, — w. We show that w € Fiz(T). To this
end, define S: C' — C by Sx = Az + (1 — \)Tz, Vo € C. Then S is nonexpansive
with Fiz(S) = Fiz(T) by Lemma 2.2 (iii). Notice that
HSunl - um” < HSUM - TmunzH + HTmule - umH
= ()‘ - )\tnl)Hunz - Tum” + HTmum - unzH

A— tn.:
— At
14+ A—=2\,,
=1 I Taten, =]l
ng

By Step 4 and Ay, — A, we have |[Sup, — un,|| — 0. So, we can use Lemma 2.5 to
get w € Fiz(S). By Lemma 2.2 (iii), w € Fiz(T).
By the same argument as in the proof of Theorem 3.1, we also have w € €2, and
hence w € Fix(T) N Q. Since ¢ = Ppiyryno(l +vV — pF)g, it follows that
limsup((uF —=2V)q, ¢ = un) = lm ((uF = V)q, q = uny)

n—oo
= ((uF —~vV)q,q —w) < 0.
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Step 6. We show that lim,, o |7, — ¢f| = 0 where ¢ = Ppiyryno(l +7V — pF)q
is a unique solution of the variational inequality (3.2). From (3.3), we know that

Tpi1 — q = Bn(zn —q) + (1 = Bn)(2n — @),
where z, = T, Po[anyVx, + (I — appuF)uy| for all n > 0. Applying the convexity
of || - ||* and Lemma 2.7, we have
i1 — ql|®
< Ballwn — gl + (1 = Ba)llzn — qll®
< Bullzn — gl + (1 = Bo)llenyVan + (I — anpF)un — q|?
< Bullzn —ql* + (1 = Bu)llany(Van — V) + (I — anpF)un — (I — anpF)q|?
— (1= Bn)20n((uF = AV)q, un — q) + (1 = Bp) 203l xn — glll|(wF — AV )ql|
+ (1= Ba)20q ([uFun | + [|LFa) || (nF = V)]
+ (1= Ba)ap | (uF —yV)gl®
< Ballen — gl + (1 = Bo)lan |z — gl + (1 = an7)|lun — qll)?
+ (1= Bn)2an((uF = 4V)q, q = un) + 2057 |z0 — qll||(uF — ¥V )]
+ 207 ([uFun || + [|LFa) | (nF = 4V)gll + @il (nF —~V)q|?
<Bnllzn — qll* + (1 = Bo)anylllan — gll + (1 = anT)|l2n — qll)?
+ (1= )20 ((F = 4V)q,q — un) + 20531 |20 — gl (WF — V)4l
+ 207 ([uFun || + [|LFq) | (nF = yV)qll + a2 (F = 4V)q|?
Bullzn — all” + (1 = B2) (1 = (= D) an)?||lzn — gl
+ (1= Bn)2an((uF = 4V)q, q = un) + 2a571|z5 — qll]|(uF =V )]
+ 20, (||pFun|| + |uFglD[|(uF —AV)qll + ozl (nF — vV )q|?
= (1=2(1 = Bu) (7 = D)) | xn — gl
+ (1= Bn) 205 ((LF = V)g, q — up) + oy M3
= (1= &)llen — ql” + &b,
where
Mz = sup{(1 — 71)*[|lzn — pII* + 2+l[|zn — gll| (uF —~V)d]|
+ 2u([|Fun || + | Fa) | (uF = V)l + | (uF —V)q|*},
&n=2(1— Bp)(t — vy, and

1
Op = (WF =~V)q,q — upn) +
T—l

anM3
2(1 = Bp) (T =)
From conditions (C1) and (C2) and Step 5, it is easy to see that &, — 0, > 7 (&, =

oo and limsup,, ,., 0n < 0. Hence, by Lemma 2.3, we conclude x,, — ¢ as n — oo.
This completes the proof. Il

From Theorem 3.3, we deduce immediately the following result.
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Corollary 3.4. Let {x,} be a sequence generated by
(3.23) Tnt1 = Bnn + (1 = Bn)TnPo[(1 — an) Ky (zy)], ¥n > 0.

Let {a,} and {B,} be two sequences in [0, 1] satisfying conditions (C1) and (C2) in
Theorem 3.3. Then {x,} converges strongly to a point q € Fix(T) NS, which solves
the minimum norm problem (3.18).

Proof. Take F =1, p =17 =1,V =0, and | = 0 in Theorem 3.3. Then the
variational inequality (3.2) is reduced to the inequality

(:p—q) >0, Vpe Fiz(T)NQ.
This is equivalent to |l¢||? < (p,q) < |Ipllllq| for all p € Fiz(T) N Q. It turns

out that [|¢]] < |[p|| for all p € Fiz(T) N Q and ¢ is the minimum-norm point of
Fiz(T) N Q. O

Remark 3.5. 1) We point out that our implicit algorithms (3.1) and (3.17) are
different from those considered by many authors. The explicit algorithms (3.3) and
(3.23) are also different from those introduced by many authors in this direction.

2) As special cases of Theorem 3.1 and Theorem 3.3, we can also provide the
corresponding iterative methods for finding a common element of the set of solutions
of the GEP(1.2), MEP(1.3), EP(1.4) and VIP(1.5), respectively, and the set of fixed
points of a strictly pseudocontractive mapping.

3) As in Corollary 3.2 and Corollary 3.4, we can obtain the minimum-norm point
of Fiz(T) N GEP(©,A), Fiz(T) N MEP(©,¢), Fiz(T) N EP(©), and Fiz(T) N
VI(C,A), respectively.

ACKNOWLEDGMENTS

The author would like to thank the anonymous referees for their valuable com-
ments and suggestions, which improved the presentation of this manuscript.

REFERENCES

[1] G. L. Acedo and H. K. Xu, Iterative methods for strictly pseudo-contractions in Hilbert space,
Nonlinear Anal. 67 (2007), 2258-2271.

[2] F. E. Browder, Fized point theorems for noncompact mappings, Proc. Natl. Acad. Sci. USA
53 (1965), 1272-1276.

[3] F. E. Browder and W. V. Petryshn, Construction of fized points of nonlinear mappings Hilbert
space, J. Math. Anal. Appl. 20 (1967), 197-228.

[4] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems,
Math. Student 63 (1994), 123-145.

[5] L.-C, Ceng, Q. H. Ansari and J.-C. Yao, Some iterative methods for finding fized points and
for solving constrained convex minimization problems, Nonlinear Anal. 74 (2011), 5286-5302.

[6] L.-C. Ceng, S.-M. Guu and J.-C. Yao, Hybrid iterative method for finding common solution
of generalized mized equilbrium and fixed point problems, Fixed Point Theory Appl. 2012,
2012:92 doi:10.1186/1687-1812-2012-92.

[7] L.-C. Ceng and J.-C. Yao, A hybrid iterative scheme for mized equilibrium problems and fized
point problems, J. Comput. Appl. Math. 214 (2008), 186—201.

[8] Y. J. Cho, S. M. Kang and X. Qin, Some results on k-strictly pseudo-contractive mappings in
Hilbert spaces, Nonlinear Anal. 70 (2009), 1956-1964.

[9] P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear
Convex Anal. 6 (2005), 117-136.



(10]
(11]
(12]
(13]
(14]
(15]
[16]

(17]

18]
(19]
20]
(21]
22]

23]

24]
(25]
[26]

27]

28]

29]
30]

(31]

32]

33]

ITERATIVE METHODS FOR GENERALIZED MIXED EQUILIBRIUM PROBLEMS 1897

S. D. Flam and A. S. Antipin, Equilibrium programming using prozimal-like algorithm, Math.
Program. 78 (1997), 29-41.

K. Goebel and W. A. Kirk, Topics in Metric Fized Point Theory, in: Cambridge Stud. Adv.
Math., vol 28, Cambridge Univ. Press, 1990.

J. S. Jung, Strong convergence of iterative methods for k-strictly pseudo-contractive mappings
in Hilbert spaces, Applied Math. Comput. 215 (2010), 3746-3753.

J. S. Jung, Some results on a general iterative method for k-strictly pseudo-contractive map-
pings, Fixed Point Theory Appl. 2011 (2011) 24 doi:10.1186/1687-1812-2011-24.

J. S. Jung, A general composite iterative method for generalized mized equlibrium problems,
variational problems and optimization problems, J. Inequal. Appl. 2011 (2011) 2011:51, 1-23.
J. S. Jung, Some algorithms for finding fized points and solutions of variational inequalities,
Abstr. Appl. Anal. 2012 (2012) Article ID 153456, 16 pages, doi:10.1155/2012/153456.

J. S. Jung, Iterative methods for pseudocontractive mappings in Banach spaces, Abstr. Appl.
Anal. 2013 (2013) Article ID 643602 7 pages, http://dx.doi.org/10.1155/2013.

P. Katchang, T. Jitpeera and P. Kumam, Strong convergence theorems for solving generalized
mized equilibrium problems and general system of variational inequalities by the hybrid method,
Nonlinear Anal. Hybrid Systems 4 (2010), 838-852.

Y. Liu, A general iterative method for equilibrium problems and strict pseudo-contractions in
Hilbert spaces, Nonlinear Anal. 71 (2009), 4852-4861.

G. Marino and H. X. Xu, A general iterative method for nonexpansive mappings in Hilbert
spaces, J. Math. Anal. Appl. 318 (2006), 43-52.

G. J. Minty, On the generalization of a direct method of the calculus of variations, Bull. Amer.
Math. Soc. 73 (1967), 315-321.

C. H. Morales, Strong convergence of path for continuous pseudo-contractive mappings, Proc.
Amer. Math. Soc. 135 (2007), 2831-2838.

C. H. Morales and J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach
spaces, Proc. Amer. math. Soc. 128 (2000), 3411-3419.

J.-W. Peng and J.-C. Yao, A new hybrid-extragradient method for generalized mized equilibrium
problems, fixed point problems and variational inequality problems, Taiwan. J. Math. 12 (2008),
1401-1432.

S. Plubtieng and R. Punpaeng, A general iterative method for equilibrium problems and fized
point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), 445-468.

T. Suzuki, Strong convergence of Krasnoselskii and Mann’s type sequences for one parameter
nonexpansive semigroups without Bochner integral, J. Math. Anal. Appl. 305 (2005), 227-239.
S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems
and fized point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506-515.

S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium
problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 1025—
1033.

M. Tian, A general iterative algorithm for nonexpansive mappings in Hilbert spaces, Nonlinear
Anal. 73 (2010), 689-694.

M. Tian, A general iterative method based on the hybrid steepest descent scheme for non-
expansive mappings in Hilbert spaces, In 2010 International Conefrence on Computational
Intelligence and Soft ware Engineering, CiSE 2010, art. no. 5677064, 2010.

H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), 240—
256.

1. Yamada, The hybrid steepest descent method for the variational inequality problems over the
intersection of fized points sets of nonexpansive mappings, in: Inherently Parallel Algorithms
in Feasibility and Optimization and Their Applications, D. Butnariu, Y. Censor, S. Reich
(eds), Elservier, New York, 2001, pp. 473-504.

Y. H. Yao, M. Aslam Noor, S. Zainab and Y.-C. Liou, Mized equilibrium problems and opti-
mization problems, J. Math. Anal. Appl. 354 (2009), 319-329.

Y. Yao, S. M. Kang and Y-C. Liu, Algorithms for approrimating minimization problems in
Hilbert spaces, J. Comput. Appl. Math. 235 (2011), 3515-3526.



1898 JONG SOO JUNG

[34] S. Zhang, Generalized mized equilibrium problems in Banach spaces, Appl. Math. Mech. (Eng-
lish Ed.) 30 (2009), 1105-1112.

[35] H. Zhou, Convergence theorems of fized points for k-strict pseudo-contractions in Hilbert
spaces, Nonlinear Anal. 69 (2008), 456-462.

Manuscript received May 12, 2014
revised September 19, 2015

JoNG Soo JuNG
Department of Mathematics, Dong-A University, Busan 604-714, Korea
E-mail address: jungjs@dau.ac.kr, jungjs@mail.donga.ac.kr



