2 Pug

§ ' »
Journal of Nonlinear and Convex Analysis ) 2 Mdm P"H'Shas
Volume 16, Number 9, 2015, 1899-1904 Aol /SSN 1880-5221 ONLINE JOURNAL

© Copyright 2015

THE CONTINUITY OF Q;-HOMOGENEOUS SUPERADDITIVE
CORRESPONDENCES

MASOUMEH AGHAJANI AND KOUROSH NOUROUZI

Dedicated to Prof. Wataru Takahashi on the occasion of his 70th birth day

ABSTRACT. In this paper we first show that the images of compact and con-
vex sets are bounded under lower semicontinuous Q4+-homogeneous superadditive
correspondences and then investigate the continuity of QQ4-homogeneous super-
additive correspondences and the existence of their linear selections. It is also
shown that every superadditive correspondence from a cone with finite basis into
a finite dimensional space admits a family of continuous linear selections.

1. INTRODUCTION

Let X be a real vector space. A subset C of X is called a cone if tx € C for each
xz € C'and t > 0. Moreover, a cone C' of X is called a convex cone if it is convex.
If E is a linearly independent (finite) subset of X such that

C:{;Aixi:)\iEO,xieE,nEN},

then F is said to be a (finite) cone-basis (briefly, basis) of C'.

By a correspondence ¢ from a set X into set Y, denoted ¢ : X — Y, we mean a
set-valued function ¢ : X — 2¥ \ {(}.

Superadditive correspondences defined on semigroups were investigated in [11]
and, in particular, the Banach-Steinhaus theorem of uniform boundedness was ex-
tended to the class of lower semicontinuous and QQ-homogeneous correspondences
in cones. In [9], it is shown that every superadditive correspondence from a cone
with a basis of a real topological vector space into the family of all convex, compact
subsets of a locally convex space admits an additive selection. Also, some results on
the existence of selections and the continuity of linear correspondences have given
in [2]. For more information the reader is also referred to [1, 7, 10].

In the present note we first investigate boundedness of the images of compact
and convex sets under lower semicontinuous Q;-homogeneous superadditive corre-
spondences and then give a more general form of Lemma 1 in [9], when the range of
a superadditive correspondence is a finite dimensional space. We also show that ev-
ery lower semicontinuous and Q4-homogeneous superadditive correspondence from
a cone with a basis of a real topological vector space into the family of all convex,
compact subsets of a locally convex space admits a linear selection. Finally, for
every superadditive correspondence defined between two cones with finite basis we
find a family of linear continuous selections.
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We commence some notations and basic concepts. Throughout the paper, we
assume that X and Y are real Hausdorff topological vector spaces and C'is a convex
cone in X, unless otherwise stated. By notations ¢ : C' — b(Y), ¢ : C — ¢(Y) and
¥ : C' — cc(Y) we mean the correspondences ¢ : C - Y, o :C —-Yand¢:C - Y
with bounded, compact and convex, compact values, respectively.

Definition 1.1. A correspondence ¢ : C' — Y is additive if p(x+y) = o(z) + ¢(y),
for every x,y € C and is superadditive if p(x+y) 2 p(z)+¢(y), for every z,y € C.

Definition 1.2. A correspondence ¢ : C' — Y is Q4-homogeneous if ¢(rz) = ro(z)
for each x € C and r € Q4. If p(tx) = typ(z) for each x € C and ¢ > 0, it is called
positively homogeneous.

Every additive and positively homogeneous correspondence ¢ : C' — Y is called
linear. Also, every correspondence ¢ : C' — Y with

so(rr + y) S #2) + o)
2 2
for each z,y € C is called midpoint convex.

Recall that a correspondence ¢ : C' — ¢(Y) is continuous at z if it is upper and
lower semicontinuous at x. If it is continuous at every point = then it is called
continuous on C' (see e.g. [3]).

Let (X, d) be a metric space and ¢(X) be the set of all nonempty compact subsets
of X. Then the formula

h(A, B) = max { supd(a, B), supd(4, b)} (A, B € (X)),

defines a metric, called Hausdorff metric, on ¢(X).

2. MAIN RESULTS
We start with the following theorem:

Theorem 2.1. Let {pq }acs be a family of lower semicontinuous and Q4 -homogeneous
superadditive correspondences o : C — Y. If K is a conver and compact subset of
C and |Jyeg 0a(x) is bounded for every x € K, then |J,c; pa(K) is bounded.

Proof. Let W be an open neighborhood of zero in Y. There exists an open balanced
neighborhood U of zero such that U + U C W. If

pa'(U) = {2 : pa(z) C U}
and
E :=Napa H(0),
then for every = € K there exists n € N such that
va(nl2) CUCTU, (acl).

Therefore n~ 'z € E, that is, K C U2 nE. Since K = U2 ; K NnE is of the second
category, there exist n € N, z¢ € intx (K NnE) and a balanced open neighborhood
V of zero such that

(xo+V)NK C KNnE CnkE.
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That is, (xg + V)N K C nE. On the other hand for each k € K there exists A > 0
such that k € zg + AV. Since K is compact, there exist positive numbers Ay, ..., A\,
such that

K C ($0+/\1V)U"-U(xo+)\nV).

If  is a rational number such that v > max{\1,..., Ay, 1} , we have K C 2o +~V.

For any z € K,

1 1
z:—x—l—(l——)xoeK,
Y Y

and so
z€ (xo+V)NK CnkE.

Hence 2,79 € nE and consequently ¢, (n~'2) C U and @ (n~1xg) C U for each a.
Since z + (7 — 1)zg = 7z,

va(®) C @alr) + (v — Dpal®o) — (v — 1)wal(z0)

C Y9alz) = (v = Dga(z0)
C U+ (y = 1)nU
C ynU + ynU
c ynW,
for each «. Thus |J,, ¢a(K) C ynW, that is |, ¢a(K) is bounded. O

The image of every compact set under an upper semicontinuous correspondence
¢ : C — ¢(Y) is compact (see [3]). Theorem 2.1 says that the image of a convex
and compact set under a lower semicontinuous and QQ-homogeneous superadditive
correspondence ¢ : C'— Y is bounded if ¢(x) is bounded for each x in that convex
and compact set.

Let D be an open convex subset of X and K be a convex cone with zero in Y.
A correspondence ¢ : D — Y is called K-midpoint convex if

w(x)—;so(y) c @(wTer> LK

for each z,y € D and K-midpoint concave if

@(w + y) c @)+ o)
2 2
for each x,y € D. In the following, we bring two lemmas from [5].

+ K

Lemma 2.2. If a correspondence ¢ : D — b(Y') is midpoint K -convex and K -lower
semicontinuous at some point of D, then it is K-lower semicontinuous at every
point of D.

Lemma 2.3. If a correspondence ¢ : D — b(Y') is midpoint K -convex and K -lower
semicontinuous at some point of D, then it is K-upper semicontinuous at this point.

Hereafter we assume that C' is also with a finite cone-basis, unless otherwise
stated. We shall denote by L the subspace of X spanned by the finite cone-basis of
C.
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Theorem 2.4 ([3]). Let C' be a topological space, Y be a metric space and that
p:C — c(Y). Let c(Y) be endowed with Hausdorff metric topology. Then the
function f : C — c(Y) defined by f(x) = @(x) for each x € C, is continuous in
Hausdorff metric topology if and only if ¢ is continuous.

The next lemma gives a general form of Lemma 1 presented in [9].

Lemma 2.5. Let Y be a real finite dimensional topological vector space and E =
{e1,...,en} be a finite basis of the convexr cone C. If p : C — cc(Y) is a Q-
homogeneous superadditive correspondence that is lower semicontinuous at some
point, then it is positively homogeneous and continuous on intyC.

Proof. Since every Q,-homogeneous superadditive correspondence is midpoint con-
vex, Lemmas 2.2 and 2.3, imply the continuity of ¢ on int;C.

Now we show that ¢ is positively homogeneous. Since ¢ is compact-valued so
p(tr) = te(x) forz =0and t > 0. Let 0 # x € int C, t > 0 and (¢,), be a sequence
in Q4 such that ¢, — t. By the continuity of ¢ we have p(t,z) — ¢(tx), in the
Hausdorff metric topology on cc(Y). On the other hand ¢ (t,z) = the(x) — tp(z).
Therefore tp(z) = p(tx) for each 0 # x € int,C and ¢ > 0. If = is an arbitrary
nonzero element of C' and ¢ > 0, then the correspondence ¢ : {Az : A > 0} = (x) —
cc(Y) is positively homogeneous on intys(x), where M = (x) — (z). Therefore ¢ is
positively homogeneous on C'. 0

The next example shows that Lemma 2.5 does not guarantee the continuity of ¢
on the whole C.

Example 2.6. Define ¢ : [0, +00) x [0, 400) — R? by

_{ (0,0} x>0,y =0;
play) = { {(t,00:0<t <z} z>0,y>0.
Obviously ¢ is a lower semicontinuous and positively homogeneous superadditive
correspondence. But it is not continuous on the C' = [0, 00) X [0, 00).

In the next result we show that the additive selections can even be linear.

According to Theorem 4 in [9], superadditive correspondence ¢ : C' — cc(Y') has
an additive selection a if all assumptions of Theorem 2.7 are fulfilled. By Theorem
4.3 in [6], a is continuous on int;,C and thus it is linear continuous on int;,C. Now
Theorem 2.7, gives the existence of a selection that is linear on the whole of C.

Theorem 2.7. Let C be a convex cone with basis and Y be a real Hausdorff locally
convez topological vector space. Then a Q4-homogeneous superadditive correspon-
dence ¢ : C' — cc(Y) admits a linear selection provided that ¢ is lower semicontin-
uous on intyC.

Proof. First we show that if C' is a convex cone with finite basis, then the lower
semicontinuous superadditive correspondence ¢ : C' — cc(Y) admits a linear selec-
tion. By Theorem 3 in [9], ¢ admits an additive selection a : C'— Y. By Theorem
4.3 in [6], a is continuous on int;C, and hence it is linear on int;,C. If z € C, then
by Lemma 5.28 in [3], %(m +y) € intrC for each y € int,C and so

L) ) (g2t

5 T 2

) = %(a(ax) + a(ay)).
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Since a(ay) = aa(y) for each y € intC, so a is a bounded linear selection of
. Now, let C' be a convex cone with arbitrary basis. By Theorem 4 in [9], ¢
admits an additive selection a : C' — Y. Let x € C be fixed. There are vectors
e1,...,e, and non-negative scalars A{,..., A, such that z = Z?:l Aiei. Therefore
superadditive correspondence ¢g : Cy — cc(Y) with po(2) = ¢(z) for z € Cp, is a
lower semicontinuous superadditive correspondence on intr,Cp, where Cy and Ly

are the convex cone and the linear space generated by {ej,...,e,}, respectively.
Similar to the previous case ag : Cp — Y defined by ap(z) = a(z) for z € Cj is
linear so a(ax) = aa(z) for each a > 0. That is, a is a linear selection. O

Theorem 2.8 ([2]). Let Y be a real normed space. If ¢ : C — cc(Y) is linear, then
@ is automatically continuous.

Theorem 2.9. Let Y be a finite dimensional space and ¢ : C — cc(Y') be a super-
additive correspondence. Then there exists a family of continuous linear functions
contained in .

Proof. Let E = {e1,ea,...,e,} and E = {é1,6éa,...,é,} be basis for C and Y,
respectively. From Theorem 1 in [9], there exists a minimal Q4-homogeneous su-
peradditive correspondence ¢ : C' — cc(Y) contained in . For each i = 1,...,m
consider the correspondence ¢; : C' — cc(R) as

Gi(x) = {mi((A, -5 Am)) = Arér + -+ A € @(2) }

where 7; is the i*" projection mapping. For each i = 1,...,m, ¢; is positively
homogeneous and continuous on int;C according to Lemma 2.5. By Theorem 17.28
in [3], ¢ is continuous on int;,C. By Theorem 2.8, ¢ contains a continuous linear
correspondence ¢ : C' — cc(Y) with ¢(z) = Y1 | Nid(e;) for every . = > 1" | Nie;
in C. Definel:C—C >R and [: C —C — R™ by

En o) — 1
l<2- 1)\161) = (/\1,)\2, ,)\n)
and

m
l(Z%éz‘) = (71,7255 9m) s
=1

respectively. The functions [ and [ are linear isomorphisms on C' — C' and c-C ,
respectively. Set M; = l(¢(e;)) for i = 1,...,n and My = My x My X -+ X My,
Then, M, is a convex and compact valued multimatrix. Let z = ) 7 | A\je; and

z € P(x) = Z Aig(ei).
=1

There are y;'s in ¢(e;) such that z = 370, Ny If y; = 37710, 95:é5, then 2 =
Yo A Z;”:l vji€;. Putting A = [vj;]mxn we have A € M, and

Ib(.%') C {ZZ)\i’)/jiéj A= [’sz‘]mxn S M¢}.

j=1i=1
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On other hand,

m n

P(z) 2 {Zz/\ﬂjiéj D A= [jilmxn € M¢}.

j=1i=1

Therefore we get

Y(z) = {Z > Aiiss A = [jilmxn € M¢} = {lAl(z)} aen, -

j=1i=1
Since every matrix A can be considered as a continuous linear mapping, and ¢(z) D
¥ (x), the proof is complete. O
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