Journal of Nonlinear and Convex Analysis Volume 16, Number 9, 2015, 1905–1924

THE LERAY-SCHAUDER CONDITION IN THE COINCIDENCE PROBLEM FOR TWO MAPPINGS

JESÚS GARCIA-FALSET, CARLOS ALBERTO HERNÁNDEZ-LINARES AND OANA MLEŞNIŢE

Dedicated to Prof. Wataru Takahashi on the occasion of his 70th birthday

ABSTRACT. The purpose of this paper is to study the existence of a coincidence point for two nonlinear mappings defined on a Banach space and taking values on another one using the Leray-Schauder condition. Later on, we apply these results to obtain the existence of solution to some classes of differential equations.

1. INTRODUCTION

From a mathematical point of view, many problems arising from diverse areas of natural science involve the existence of solutions of nonlinear equations with the form

$$(1.1) t(u) = s(u), \ u \in M,$$

where M is a nonempty subset of a Banach space X, and $s, t: M \to Y$ are nonlinear mappings taking values on another Banach space Y. The problem of finding a solution for Equation (1.1) is known as a *coincidence problem*. Coincidence theory is a very powerful technique especially in problems about of existence of solutions in nonlinear equations. For instance, in [7, 8, 15, 12, 13, 14, 17] several of such results are applied to solve boundary value problems.

The coincidence problem can be considered as a generalization of the fixed point problem since if $s : M \subseteq X \to X$ is a mapping, to study the existence of a fixed point for s is the same that to find a solution of the coincidence problem where t is the identity mapping on M. In this sense, R. Machuca [16] proved a coincidence theorem which is a generalization of the well known Banach contraction principle. Generalizations of this result can be found, for instance in [12, 13, 18]. On the other hand, Gaines and Mawhin introduced coincidence degree theory in the 70s in analyzing functional and differential equations [10]. The main goal in the coincidence degree theory is to search for the existence of solutions of Equation (1.1) in some bounded and open set M in some Banach space X for t being a linear operator and s a nonlinear operator using Leray-Schauder degree theory (see [22] to find some sharpening results).

²⁰¹⁰ Mathematics Subject Classification. 47H10, 34G20, 35A01, 47B44.

Key words and phrases. Coincidence problem, Leray-Schauder condition, measure of noncompactness, condensing map, k-set contractive map, accretive operator.

The first author was partially supported by a Grant MTM2012-34847-C02-02. The second author was supported by CONACyT (Mexico). The third author was supported by the Sectorial Operational Programme for Human Resources Development 2007-2013, co-financed by European Social Fund. POS-DRU/107/1.5/S/76841.

In this paper, we intend to obtain several versions, without invoking degree theory, of the coincidence problem where s and t can both be nonlinear. In Section 3.1, we are concerned with the solvability of the following differential equation:

(1.2)
$$\begin{cases} u'(t) - g(t, u(t), u'(t)) = f(t), & t \in (0, 1) \text{ a.e.} \\ u(0) = \xi, \end{cases}$$

where $f \in L^1([0,1]; \mathbb{R}^n)$ is a fixed function and $g : [0,1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory function.

Finally, we will use this kind of coincidence results to obtain the existence of solutions for a Dirichlet problem of the form:

(1.3)
$$\begin{cases} \Delta \rho(u(x)) = f(x, u(x)) & \text{in } \Omega\\ \rho(u(x)) = 0 & \text{on } \partial \Omega \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^n , Δ is the standard Laplace operator, $\rho \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\})$ and $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function.

2. Preliminaries

In this section, we shall introduce notations, definitions and preliminary facts which are used throughout this article.

Let X be a real normed space. As usual, given a nonempty subset $A \subseteq X$, denote the closure of A by \overline{A} , the boundary of A by ∂A , the convex hull of A by co(A), the diameter of A by diam(A), and the family of bounded subsets of A by $\mathcal{B}(A)$.

Definition 2.1. Let X be a normed space. A measure of non-compactness is a function $\mu : \mathcal{B}(X) \to \mathbb{R}^+$ which satisfies:

- (1) $\mu(A) = 0 \Leftrightarrow \overline{A} \text{ is compact.}$
- (2) $\mu(A) = \mu(\overline{A}).$
- (3) $\mu(A \cup B) = \max\{\mu(A), \mu(B)\}$
- (4) $\mu(co(A)) = \mu(A).$

To avoid confusion when dealing with different spaces, we will in some cases add the name of a subspace as a subscript.

Point 3 in the above definition implies that $\mu(A) \leq \mu(B)$, whenever $A \subset B$.

The most important examples of measures of noncompactness are the *Kuratowski* measure of noncompactness (or set measure of noncompactness):

Given a bounded subset A of X,

$$\alpha(A) = \inf \left\{ r > 0 : A \subset \bigcup_{i=1}^{n} D_i, \operatorname{diam}(D_i) \le r \right\}.$$

And the *Hausdorff* measure of noncompactness (or ball measure of noncompactness):

Given a bounded subset A of X,

$$\chi(A) = \inf \{r > 0 : A \subset \bigcup_{i=1}^{n} B(x_i, r), x_i \in X\}.$$

A detailed account of theory and applications of measures of noncompactness may be found in the monographs [1, 4]

Definition 2.2. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be two normed spaces endowed with the measures of noncompactness μ_X and μ_Y respectively. If C is a nonempty subset of X and $T: C \to Y$ is a mapping,

- (a) Given k > 0, the mapping T is called (μ_X, μ_Y) -k-set contractive if $\mu_Y(T(A)) \le k\mu_X(A)$ for all $A \in \mathcal{B}(C)$.
- (b) The mapping T is called (μ_X, μ_Y) -condensing if $\mu_Y(T(A)) < \mu_X(A)$ for all bounded subset A of C with $\mu_X(A) > 0$.
- (c) The mapping T is called expansive if the inequality $||T(x) T(y)||_Y \ge ||x y||_X$ holds for every $x, y \in C$.
- (d) The mapping T is called nonexpansive if the inequality $||T(x) T(y)||_Y \le ||x y||_X$ holds for every $x, y \in C$.
- (e) The mapping T is said to be bounded if there exists k > 0 such that $||T(x)||_Y \le k$ for all $x \in C$.

The following well known theorem was proved in 1967 by Sadovskii [21], it is a generalization of Darbo's fixed point theorem [9]. We refer to [3] where the reader will find many applications of these theorems.

Theorem 2.3. Suppose that C is a closed convex bounded subset of a Banach space X and $T: C \to C$ a continuous and condensing mapping, then T has a fixed point.

When the domain C, in Sadovskii's theorem, is unbounded the following result is also well known.

Theorem 2.4. Suppose that C is a closed convex and unbounded subset of a Banach space X and $T: C \to C$ a continuous and condensing mapping. If there exist R > 0and $z \in C$ such that for all $u \in C \cap S_R(z)$

$$T(u) - z \neq \lambda(u - z), \quad \forall \lambda > 1,$$

then T has a fixed point.

We recall the following theorem proved by Petryshyn in [19] (also see [20]).

Theorem 2.5. Suppose that U is an open bounded subset of a Banach space X and $T: \overline{U} \to X$ a continuous and condensing mapping. If there exists $z \in U$ such that for all $u \in \partial U$

 $u \neq \lambda T(u) + (1 - \lambda)z, \quad \forall \lambda \in (0, 1),$

then T has a fixed point.

Let $T : X \to Y$ be a mapping which transforms bounded subsets of X into bounded subsets of Y. For a such mapping, we define

$$l(T) := \sup\{r > 0 : r\mu_X(A) \le \mu_Y(T(A)), A \in \mathcal{B}(X)\}.$$

In the following we are going to use the Kuratowski measure of noncompactness. Assuming that $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are normed spaces and if a mapping $T: C \to Y$ is (α_X, α_Y) -condensing we will say simply that T is α -condensing.

If $T: X \to Y$ is an invertible and bounded linear map and $N: \overline{\Omega} \to Y$ is a k-set contractive map with k < l(T) such that for all $x \in \partial \Omega$ we have $T(x) \neq N(x)$,

one can associate with the pair (T, N) a topological degree, the so-called Sadovskii-Nussbaum degree (see [10] we also refer to the reader to [22]). This degree allows us to show the following.

Theorem 2.6. Let X and Y be two Banach spaces and let $T : X \to Y$ be an invertible, bounded linear map and $\Omega \subseteq X$ bounded open and symmetric about $0 \in \Omega$. Let $N : \overline{\Omega} \to Y$ be a k-set contractive map with k < l(T). Then given $y \in Y$ such that $T(x) \neq \lambda N(x) + \lambda y$, for all $x \in \partial \Omega$ and $\lambda \in (0, 1)$, there exists $x \in \overline{\Omega}$ such that T(x) = N(x) + y.

Let X and Y be two normed spaces and $A : X \to 2^Y$ a multivalued mapping. Recall some useful notation, namely: the (effective) domain of A is $D(A) := \{x \in X : A(x) \neq \emptyset\}$, the range of A is $R(A) := \{u \in A(x) : x \in D(A)\}$ and its graph is the subset of $X \times Y$ defined as $G(A) := \{(x, u) \in X \times Y : x \in D(A), u \in A(x)\}$.

We note that one may identify each subset $G \subseteq X \times Y$ with a multivalued mapping $A : X \to 2^Y$ by defining $A(x) := \{u \in Y : (x, u) \in G\}$. The inverse $A^{-1} : R(A) \to 2^X$ is then defined by $A^{-1}(u) := \{x \in X : u \in A(x)\}$ and it is clear that $G(A^{-1}) = \{(u, x) \in X \times Y : (x, u) \in G(A)\}$.

Given an operator $A: D(A) \to 2^X$, we define

 $J_{\lambda} := (I + \lambda A)^{-1} : R(I + \lambda A) \to 2^{D(A)}$, here *I* means the identity operator. As usual, we call to J_{λ} a resolvent of *A*.

Definition 2.7. An operator $A \subset X \times X$ is said to be accretive if and only if $||x-y|| \leq ||x-y+\lambda(u-v)||$ for all $x, y \in D(A)$, for each $u \in Ax$ and $v \in Ay$, and for all $\lambda > 0$. If moreover, R(A+I) = X, we say that A is m-accretive.

Proposition 2.8. The operator $A \subset X \times X$ is accretive if and only if for each $\lambda > 0$, the resolvent $J_{\lambda} : R(I + \lambda A) \to D(A)$ is a single-valued nonexpansive mapping.

A detailed account of theory and applications of accretive operators may be found, for instance, in the monograph [5].

3. A LERAY-SCHAUDER CONDITION TO THE COINCIDENCE PROBLEM

3.1. Single-valued case. The first purpose here is to establish several coincidence results by using Theorem 2.4.

Theorem 3.1. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Consider C a convex closed subset of X such that the mappings $t : C \to Y$ and $s : C \to Y$ satisfy:

- (1) $\overline{t(C)}$ is a convex subset of Y and $t^{-1}: t(C) \to C$ is uniformly continuous on bounded subsets of t(C),
- (2) s is a continuous k-set contractive mapping,
- (3) $s(C) \subset t(C)$,
- (4) k < l(t),
- (5) There are R > 0 and $x_0 \in C$ such that for every $x \in C$ with $||x x_0|| \ge R$ we have

(3.1)
$$s(x) - t(x_0) \neq \lambda(t(x) - t(x_0)) \quad \forall \lambda > 1.$$

Then there is $z \in C$ such that s(z) = t(z).

Proof. It is not difficult to check that $t^{-1}: t(C) \to C$ is $\frac{1}{l(t)}$ -set contractive. However, if we do not assume the continuity of t, then t(C) may be unclosed (for instance see [12]). Thus, we have to consider $\overline{t^{-1}}: \overline{t(C)} \to C$ given by

$$\overline{t^{-1}}(y) = \begin{cases} t^{-1}(y) &, \text{ si } y \in t(C) \\ \lim_n t^{-1}(x_n) &, x_n \in t(C), x_n \to y \in \partial(t(C)). \end{cases}$$

We claim that $\overline{t^{-1}}$ is also $\frac{1}{l(t)}$ -set contractive. Let A be a bounded subset of $\overline{t(C)}$. Since $A = (A \cap t(C)) \cup (A \cap \partial(t(C)))$, and $t^{-1} : t(C) \to C$ is $\frac{1}{l(t)}$ -set contractive, it is enough to assume that $A \subset \partial(t(C))$.

Take $r = \alpha_Y(A)$ and $\varepsilon > 0$, there exist A_1, A_2, \ldots, A_n such that $A \subset \bigcup_{i=1}^n A_i \subset \partial(t(C))$ and $\operatorname{diam}_{\|\cdot\|_Y}(A_i) \leq r + \frac{\varepsilon}{3}$.

(3.2)
$$\alpha_X(\overline{t^{-1}}(A)) \le \max\{\alpha_X(\overline{t^{-1}}(A_i)) : i = 1, \dots, n\}.$$

Let

$$B_i := \bigcup_{y \in A_i} \left\{ x \in t(C) : \|x - y\|_Y \le \frac{\varepsilon}{3} \right\}.$$

Note that $A_i \subset \overline{B_i}$. Then

(3.3)
$$\alpha_X(\overline{t^{-1}}(A_i)) \le \alpha_X(\overline{t^{-1}}(\overline{B_i})) = \alpha_X(\overline{t^{-1}}(B_i))$$
$$= \alpha_X(t^{-1}(B_i)) \le \frac{1}{l(t)}\alpha_Y(B_i).$$

For $u, v \in B_i$ there exist $x_u, x_v \in A_i$ such that $\max\{\|u - x_u\|_Y, \|v - x_v\|_Y\} \leq \frac{\varepsilon}{3}$, then

$$\begin{aligned} \|u - v\|_{Y} &\leq \|u - x_{u}\|_{Y} + \|x_{u} - x_{v}\|_{Y} + \|x_{v} - v\|_{Y} \\ &\leq \frac{\varepsilon}{3} + \operatorname{diam}_{\|\cdot\|_{Y}}(A_{i}) + \frac{\varepsilon}{3} \\ &\leq \frac{2\varepsilon}{3} + r + \frac{\varepsilon}{3} \\ &= r + \varepsilon. \end{aligned}$$

So diam $(B_i) \leq r + \varepsilon$, therefore $\alpha_Y(B_i) \leq r + \varepsilon$. Using (3.2), (3.3) and since ε is an arbitrary positive number we have

$$\alpha_X(\overline{t^{-1}}(A)) \le \frac{1}{l(t)}\alpha_Y(A)$$

as we claimed.

Since by assumption (3), $s(C) \subseteq t(C)$, we may consider the mapping $h: \overline{t(C)} \to t(C)$ given by $h(x) = s(\overline{t^{-1}}(x))$, clearly h is a continuous mapping and for every bounded subset B of $\overline{t(C)}$ we have

$$\alpha_Y(h(B)) = \alpha_Y(s \circ \overline{t^{-1}}(B)) \le k\alpha_X(\overline{t^{-1}}(B)) \le \frac{k}{l(t)}\alpha_Y(B),$$

in consequence h is a condensing mapping because $\frac{k}{l(t)} < 1$.

Next step will be to check that h satisfies a Leray-Schauder condition with $y_0 := t(x_0)$. Otherwise, without loss of generality, we may assume that for every $n \in \mathbb{N}$,

there exists $y_n \in t(C)$ (i.e., there exits $x_n \in C$ such that $y_n = t(x_n)$) and $\lambda_n > 1$ such that

$$(3.4) ||y_n - y_0||_Y \ge n$$

and

(3.5)
$$h(t(x_n)) - y_0 = \lambda_n(t(x_n) - y_0).$$

From (3.1) and (3.5) we deduce that

$$\|x_n - x_0\|_X < R,$$

which means that $\{x_n\}$ is a bounded sequence.

Since s is α -condensing then $\{s(x_n)\}$ is a bounded sequence. From (3.5) then

$$t(x_n) = \frac{1}{\lambda_n}(s(x_n) - y_0) + y_0,$$

this implies that $\{t(x_n)\}$ is also bounded which is in contradiction with (3.4).

Finally, applying Theorem 2.4, there exists $z_0 \in \overline{t(C)}$ such that $h(z_0) = z_0$. Since $s(C) \subseteq t(C)$, there is $z \in C$ such that $z_0 = t(z)$, which means that t(z) = s(z). \Box

Corollary 3.2. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and let $t : X \to Y$ be a continuous invertible linear map and C a convex closed subset of X. Let $s : C \to Y$ be a continuous k-set contraction with k < l(t) and satisfying that $s(C) \subset t(C)$. If there are R > 0 and $x_0 \in C$ such that

$$x \in C, \|x - x_0\|_X \ge R \Rightarrow s(x) - t(x_0) \neq \lambda(t(x) - t(x_0)) \qquad \forall \lambda > 1,$$

then there is $z \in C$ such that s(z) = t(z).

Proof. Notice that t(C) is a convex subset of Y since C is convex and t is a linear mapping. Moreover, the open mapping theorem says that $t^{-1}: Y \to X$ is a continuous linear mapping and then uniformly continuous. Now, in order to obtain the conclusion we may apply Theorem 3.1.

Next result may be considered as a sharpening of Theorem 2.5.

Theorem 3.3. Let X be a normed space and let Y be a Banach space. Assume that U is a bounded open subset of X, $t : \overline{U} \to Y$ an expansive mapping such that t(U) is an open bounded subset of Y with $\partial(t(U)) \subset t(\partial U)$ and $s : \overline{U} \to Y$ is a continuous condensing mapping. If there exists $x_0 \in U$ such that for all $x \in \partial U$

(3.6)
$$t(x) \neq \lambda s(x) + (1 - \lambda)t(x_0) \qquad \forall \lambda \in (0, 1)$$

then there exists $z_0 \in Y$ such that $t(z_0) = s(z_0)$.

Proof. Since t is expansive then it is injective. Since t is an injection, we deduce that $t(\partial U) \subset \partial(t(U))$. That means, with our assumptions, $t(\partial U) = \partial(t(U))$. Then

$$t(\overline{U}) = t(U) \cup t(\partial U) = t(U) \cup \partial(t(U)) = t(U).$$

Define $h = s \circ t^{-1} : \overline{t(U)} \to Y$. Since t^{-1} and s are continuous then h is a continuous mapping.

We claim that h is α -condensing. Let A be a bounded subset of Y. Take $B = t^{-1}(A)$, since t^{-1} is nonexpansive then

$$\operatorname{diam}_{\|\cdot\|_X}(B) = \operatorname{diam}_{\|\cdot\|_X}(t^{-1}(A)) \le \operatorname{diam}_{\|\cdot\|_Y}(A).$$

This means that B is bounded.

Notice that if $\alpha_Y(A) = 0$, then $\alpha_X(B) = 0$. Hence if we assume that $\alpha_Y(A) > 0$:

$$\alpha_Y(h(A)) = \alpha_Y(s(B)) < \alpha_X(B) = \alpha_X(t^{-1}(A)) \le \alpha_Y(A),$$

otherwise $0 = \alpha_Y(h(A)) < \alpha_Y(A)$. Therefore h is α -condensing as we claimed.

Now, we are going to show that

$$y \neq \lambda h(y) + (1 - \lambda)t(x_0), \quad \forall \lambda \in (0, 1),$$

whenever $y \in \partial(t(U))$.

Otherwise, there would be $y \in \partial(t(U)) = t(\partial U)$ and a number $\lambda \in (0, 1)$ such that

$$y = \lambda h(y) + (1 - \lambda)t(x_0)$$

Then there exists $x \in \partial U$ such that t(x) = y, so

$$t(x) = \lambda(s \circ t^{-1})(t(x)) + (1 - \lambda)t(x_0)$$

this implies

$$t(x) = \lambda s(x) + (1 - \lambda)t(x_0),$$

which contradicts (3.6).

Finally, since t(U) is open, Theorem 2.5 guarantees the existence of a fixed point $y_0 \in t(\overline{U})$ for h, then there exists $z_0 \in \overline{U}$ such that $y_0 = t(z_0)$ and so $s(z_0) = t(z_0)$.

Remark 3.4. If in the above theorem we add that X is a Banach space and that t is continuous, then $t(\overline{U})$ is a closed subset of Y (for instance see [12]). Therefore the assumption $\partial(t(U)) \subset t(\partial U)$ is directly satisfied.

The following corollary allows us to give a completion of Theorem 2.6.

Corollary 3.5. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and let $t : X \to Y$ be an expansive continuous invertible affine map and U a bounded open subset of X.Let $s : \overline{U} \to Y$ be a continuous condensing mapping. If there is $x_0 \in U$ such that for all $x \in \partial U$,

$$t(x) \neq \lambda s(x) + (1 - \lambda)t(x_0) \qquad \forall \lambda \in (0, 1),$$

then there is $z \in \overline{U}$ such that s(z) = t(z).

Proof. The open mapping theorem guarantees that t(U) is an open subset of Y and that $t^{-1}: Y \to X$ is a continuous affine mapping and then uniformly continuous. Now, in order to obtain the conclusion we may apply Theorem 3.3.

Example 3.6. We would like to know if the the system of equations given by

(3.7)
$$\begin{cases} x^2 = \sqrt{x+y} \\ y^2 = 3\sin(2x+y) \end{cases}$$

has at least a non trivial solution.

Consider $X = (\mathbb{R}^2, \frac{1}{3} \| \cdot \|_{\infty}), Y = (\mathbb{R}^2, \| \cdot \|_{\infty}), U = (1/2, 2) \times (1/2, 2) \subset X$, the mapping $t : \overline{U} \to Y$ given by

$$t(x,y) = (x^2, \frac{1}{3}y^2)$$

and the mapping $s: X \to Y$ given by

$$s(x,y) = (\sqrt{x+y}, \sin(2x+y)).$$

Note that s is continuous and it is compact since we are working in finite dimensional spaces. It can be shown that

$$||t(x_1, y_1) - t(x_2, y_2)||_{\infty} \ge \frac{1}{3} ||(x_1, y_1) - (x_2, y_2)||_{\infty},$$

that is, t is expansive. Moreover, $t(\partial U) = \partial(t(U))$ and t(U) is an open set.

We need to check that (3.6) is satisfied in Theorem 3.3.

Observe that

$$\partial U = \sigma_1 \cup \sigma_2 \cup \sigma_3 \cup \sigma_4,$$

where

$$\sigma_1 = \{ (1/2, t) : t \in [1/2, 2] \},\$$

$$\sigma_2 = \{ (t, 2) : t \in [1/2, 2] \},\$$

$$\sigma_3 = \{ (2, t) : t \in [1/2, 2] \},\$$

$$\sigma_4 = \{ (t, 1/2) : t \in [1/2, 2] \}.$$

We will check that (3.6) is satisfied with the point (1,1) for every $(x,y) \in \partial U$, i.e., for all $(x,y) \in \partial U$ we will see that

(3.8)
$$(x^2, \frac{1}{3}y^2) \neq \left(\lambda\sqrt{x+y} + (1-\lambda), \lambda\sin(2x+y) + \frac{1}{3}(1-\lambda)\right)$$

for all $\lambda \in (0, 1)$.

For $t \in [1/2, 2]$ and for $\lambda \in (0, 1)$ we observe that

(3.9)
$$\lambda \sqrt{\frac{1}{2} + t} + (1 - \lambda) \ge \lambda + (1 - \lambda) = 1 > \frac{1}{4},$$

(3.10)
$$\lambda \sin(2t+2) + \frac{1}{3}(1-\lambda) \leq \lambda + \frac{1}{3}(1-\lambda) = \frac{2}{3}\lambda + \frac{1}{3} < \frac{2}{3} + \frac{1}{3} = 1 < \frac{4}{3},$$

(3.11)
$$\lambda\sqrt{2+t} + (1-\lambda) < 2\lambda + (1-\lambda) = \lambda + 1 < 2 < 4.$$

then (3.9) shows that (3.8) holds on σ_1 , (3.11) shows that (3.8) holds on σ_2 and (3.11) shows that (3.8) holds on σ_3 .

For $t \in [12/10, 2]$ and for $\lambda \in (0, 1)$

(3.12)
$$\frac{\lambda}{t^2}\sqrt{t+\frac{1}{2}} + \frac{1-\lambda}{t^2} \le \lambda \sqrt{\left(\frac{10}{12}\right)^3 + \left(\frac{1}{2}\right)\left(\frac{10}{12}\right)^4 + \frac{1-\lambda}{t^2}} < \lambda + (1-\lambda) < 1.$$

1913

For
$$t \in [1/2, 12/10]$$
 and for $\lambda \in (0, 1)$
 $\lambda \sin\left(2t + \frac{1}{2}\right) + \frac{1-\lambda}{3} \ge \lambda \sin\left(2\left(\frac{12}{10}\right) + \frac{1}{2}\right) + \frac{1-\lambda}{3}$
 $= \lambda \sin\left(\frac{29}{10}\right) + \frac{1-\lambda}{3} > \frac{\lambda}{5} + \frac{1-\lambda}{3}$
(3.13) $= \frac{1}{3} - \lambda\left(\frac{2}{15}\right) > \frac{1}{3} - \frac{2}{15} = \frac{3}{15} > \frac{1}{12}.$

From (3.12) and (3.13) we deduce that (3.8) holds on σ_4 .

Therefore, by Theorem 3.3 there exists $(x, y) \in \overline{U}$ such that t(x, y) = s(x, y) and this point is a solution of the system.

3.1.1. Existence of strong solution to a differential equation. Consider the Banach space $(\mathbb{R}^n, \|\cdot\|_n)$ and let $L^1(0, 1; \mathbb{R}^n)$ be the Banach space of Bochner integrable functions $x : [0, 1] \to \mathbb{R}^n$ endowed with the norm

$$||x||_1 = \int_0^1 ||x(t)||_n dt.$$

It is well known that if $x : [0, 1] \to \mathbb{R}^n$ is absolutely continuous, then it is almost everywhere differentiable on [0, 1], its derivative $x' \in L^1(0, 1; \mathbb{R}^n)$ and

$$x(t) = x(0) + \int_0^t x'(s)ds$$

In this section we are concerned to find an absolutely continuous function $u : [0,1] \to \mathbb{R}^n$ such that its derivative $u' \in L^1(0,1;\mathbb{R}^n)$ satisfies almost for every point in (0,1) the following differential equation

(3.14)
$$\begin{cases} u'(t) - g(t, u(t), u'(t)) = f(t), & t \in (0, 1) \text{ a.e.} \\ u(0) = \xi \in \mathbb{R}^n, \end{cases}$$

where $f \in L^1(0,1;\mathbb{R}^n)$ is a fixed function and $g : [0,1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory function. A such function u is called strong solution of Eq.(3.14).

First, let us notice that (3.14) is equivalent to the differential equation

(3.15)
$$\begin{cases} u'(t) - g(t, u(t) + \xi, u'(t)) = f(t), & t \in (0, 1) \text{ a.e.} \\ u(0) = 0, \end{cases}$$

Thus, our goal will be to study the existence of a strong solution of (3.15).

Let us introduce the Sobolev space $W^{1,1}(0,1;\mathbb{R}^n)$ as the space of all absolutely continuous functions. Then we can write this space as:

$$W^{1,1}(0,1;\mathbb{R}^n) := \left\{ u \in L^1(0,1;\mathbb{R}^n) : u' \in L^1(0,1;\mathbb{R}^n) \right\},\$$

The space $W^{1,1}(0,1;\mathbb{R}^n)$ can be endowed with the norm

$$||u||_{1,1} := \max\{||u||_1, ||u'||_1\}$$

where $\|\cdot\|_1$ is the usual norm in $L^1(0,1;\mathbb{R}^n)$. $(W^{1,1}(0,1;\mathbb{R}^n),\|\cdot\|_{1,1})$ is a Banach space.

Now we can consider the following subspace $X := \{u \in W^{1,1}(0,1;\mathbb{R}^n) : u(0) = 0\}$. This is a closed subspace of $(W^{1,1}(0,1;\mathbb{R}^n), \|\cdot\|_{1,1})$ and thus it is also a Banach space.

Lemma 3.7. Let u be an element in X. Then $||u||_{1,1} = ||u'||_1$.

Proof. It is well know that if $u \in X$ then $u(t) = u(t) - u(0) = \int_0^t u'(\tau) d\tau$ in [0, 1]. Therefore

$$||u(t)||_n \le \int_0^t ||u'(\tau)||_n d\tau,$$

this means that $||u||_1 \le ||u'||_1$ and consequently $||u||_{1,1} = ||u'||_1$.

Lemma 3.8. Let f be a fixed element of $L^1(0,1;\mathbb{R}^n)$. The mapping $T: X \to L^1(0,1;\mathbb{R}^n)$ defined by T(u)(t) = u'(t) - f(t) is an expansive bijection.

Proof. T is an expansive mapping. Indeed, by Lemma 3.7, we know that if $u, v \in X$, then $||u - v||_{1,1} = ||u' - v'||_1$, then,

$$||Tu - Tv||_1 = ||u' - v'||_1 = ||u - v||_{1,1}.$$

Now, let us see that T is onto. Indeed, given $u \in L^1(0,1;\mathbb{R}^n)$ it is enough to consider

$$w(t) := \int_0^t (u(\tau) + f(\tau)) d\tau$$

since in this case, $w \in X$ and T(w) = u.

Let $\mathcal{M}(0, 1; \mathbb{R}^n)$ be the set of all measurable functions $\varphi : [0, 1] \to \mathbb{R}^n$. If $f : [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory function, then f defines a mapping $N_f : \mathcal{M}(0, 1; \mathbb{R}^n) \to \mathcal{M}(0, 1; \mathbb{R}^n)$ by $N_f(\varphi)(t) := f(t, \varphi(t))$. This mapping is called the superposition (or Nemytskii) operator generated by f. The next three lemmas are of foremost importance for our subsequent analysis.

Lemma 3.9. Let $f : [0,1] \times \mathbb{R}^n \to \mathbb{R}^n$ be a Carathéodory function, if there exist a constant $b \ge 0$ and a function $a(\cdot) \in L^1_+(0,1;\mathbb{R})$ such that

$$||f(t,x)||_n \le a(t) + b||x||_n,$$

then N_f maps continuously $L^1(0,1;\mathbb{R}^n)$ into itself.

In order to do a proof of the above lemma we can follow a similar argument as in [2, Theorems 3.1 and 3.7]).

If we argue as in [2, Lemma 9.5] we obtain:

Lemma 3.10. Let $g : [0,1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be a Carathéodory function, if there exist a constant $b \ge 0$ and a function $a(\cdot) \in L^1_+(0,1;\mathbb{R})$ such that

$$||g(t, x, y)||_n \le a(t) + b(||x||_n + ||y||_n),$$

then the map $N_q: W^{1,1}(0,1;\mathbb{R}^n) \to L^1(0,1;\mathbb{R}^n)$ defined by

$$N_q(\varphi)(t) = g(t, \varphi(t), \varphi'(t))$$

is continuous.

Lemma 3.11. Let $g: [0,1] \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be a Carathéodory function such that there exist $a \in L^1_+(0,1,\mathbb{R})$, b, k > 0 satisfying that

(1)
$$||g(t,x,0)||_n \le a(t) + b||x||_n$$
,

(2)
$$||g(t,x,y_1) - g(t,x,y_2)||_n \le k ||y_1 - y_2||_n$$

Then, the operator $N_q: X \to L^1(0,1;\mathbb{R}^n)$ is 2k-set contractive.

Proof. From assumptions (1) and (2) we obtain that

$$||g(t, x, y)||_n \le a(t) + b||x||_n + k||y||_n,$$

for $(t, x, y) \in [0, 1] \times \mathbb{R}^n \times \mathbb{R}^n$. Hence, using Lemma 3.10, we infer that $N_g : X \to L^1(0, 1; \mathbb{R}^n)$ is a continuous mapping.

Let A be a bounded subset of X, and let $r = \alpha_X(A)$. Then for every $\varepsilon > 0$ there exist subsets A_1, \ldots, A_n of X such that $A = \bigcup_{i=1}^n A_i$ and $\dim_{\|\cdot\|_{1,1}}(A_i) < r + \varepsilon$. Since by [23, Theorem 1], we know that the injection of $W^{1,1}(0,1;\mathbb{R}^n)$ in $L^1(0,1,\mathbb{R}^n)$ is compact then A, A_1, \ldots, A_n are relatively compact in $L_1(0,1;\mathbb{R}^n)$.

Let $u_i \in A_i$ for i = 1, ..., n. Define the mapping $g_{u_i} : [0,1] \times \mathbb{R}^n \to \mathbb{R}^n$ given by $g_{u_i}(t,x) = g(t,x,u'_i(t))$. Since g is a Carathéodory function then the g_{u_i} 's are also. Moreover from assumption (1) and Lemma 3.9, the mapping $N_{u_i} : L^1(0,1;\mathbb{R}^n) \to L^1(0,1;\mathbb{R}^n)$ defined as $N_{u_i}v(t) = g_{u_i}(t,v(t))$ is well defined and it is also continuous. Then N_{u_i} are uniformly continuous on $\bigcup_{i=1}^n A_i$. So, there exists $\delta > 0$ such that for $\|v-w\|_1 < \delta$ with $v, w \in \bigcup_{i=1}^n A_i$ we have

$$\|N_{u_i}(v) - N_{u_i}(w)\|_1 := \int_0^1 \|g(t, v(t), u_i'(t)) - g(t, w(t), u_i'(t))\|_n dt < \varepsilon.$$

For each A_i there is a finite family of subsets $A_{i,j}$ such that $A_i = \bigcup_j A_{i,j}$ and $\operatorname{diam}_{\|\cdot\|_1}(A_{i,j}) < \delta$.

Therefore for any $v, w \in A_{i,j}$ we have

$$\begin{split} \|N_{g}(v) - N_{g}(w)\|_{1} &= \int_{0}^{1} \|g(t, v(t), v'(t)) - g(t, w(t), w'(t))\|_{n} dt \\ &\leq \int_{0}^{1} \|g(t, v(t), v'(t)) - g(t, v(t), u'_{i}(t))\|_{n} dt \\ &+ \int_{0}^{1} \|g(t, v(t), u'_{i}(t)) - g(t, w(t), u'_{i}(t))\|_{n} dt \\ &+ \int_{0}^{1} \|g(t, w(t), u'_{i}(t)) - g(t, w(t), w'(t))\|_{n} dt \\ &\leq k \int_{0}^{1} \|v'(t) - u'_{i}(t)\|_{n} dt + \varepsilon + k \int_{0}^{1} \|u'_{i}(t) - w'(t)\|_{n} dt \\ &\leq k \|v - u_{i}\|_{1,1} + \varepsilon + k \|w - u_{i}\|_{1,1} \\ &\leq 2kr + \varepsilon. \end{split}$$

That is

$$\alpha_{L^1}(N_g(A)) \le 2k\alpha_X(A).$$

Now, for studying the existence of a strong solution to (3.15), we define

$$T: X \to L^1(0, 1; \mathbb{R}^n)$$
 by $T(u) = u' - f$

and

$$S: X \to L^1(0, 1; \mathbb{R}^n)$$
 by $S(u) = N_{\tilde{g}}(u),$

where $\tilde{g}(t, x, y) = g(t, x + \xi, y)$.

Thus, to show that (3.15) has a solution is to see that the coincidence problem, T(u) = S(u) admits a solution.

Theorem 3.12. If $\max\{b+k, 2k\} < 1$, (3.15) has at least a solution in the Sobolev space $W^{1,1}(0, 1; \mathbb{R}^n)$.

Proof. In order to show that T, S fulfill the conditions of Corollary 3.5. First we shall show that there exists r > 0 such that if $||u||_{1,1} \ge r$ then $T(u) \ne \mu N_{\tilde{g}}(u)$ for all $\mu \in (0,1)$, since the rest of conditions are consequences of the above lemmas. Thus, let us take $u \in X$ satisfying that $T(u) = \lambda N_{\tilde{g}}(u)$ for some $\lambda \in (0,1)$. Hence

$$u'(t) - f(t) = \lambda g(t, u(t) + \xi, u'(t)), \quad t \in (0, 1)$$
 a.e.

from this equality we infer that

$$||u'(t)||_n \le \lambda \left(a(t) + b(||u(t)||_n + ||\xi||_n) + k||u'(t)||_n\right) + ||f(t)||_n$$
 a.e.

Therefore,

$$||u'||_1 \le \lambda ||a||_1 + \lambda b ||u||_1 + \lambda b |\xi| + \lambda k ||u'||_1 + ||f||_1.$$

Applying Lemma 3.7, we obtain that

$$(1 - \lambda(b+k)) \|u\|_{1,1} \le \lambda(\|a\|_1 + b|\xi|) + \|f\|_1.$$

Since by hypothesis b + k < 1 if we call $r := \frac{\|a\|_1 + |\xi| + \|f\|_1}{1 - (b+k)}$, it is easy to see that $\|u\|_{1,1} < r$. This inequality allows us to conclude that if $\|u\|_{1,1} \ge r$, then $Tu \ne \lambda N_{\tilde{g}}(u)$ for all $\lambda \in (0, 1)$.

Now, let $u_0(t) = \int_0^t f(\tau) d\tau$. We choose $x_0 = Tu_0 = 0$ and

 $U = \{ u \in X : \|u - u_0\|_{1,1} < r + \|u_0\| \}.$

If $u \in \partial(U)$ we have $||u - u_0||_{1,1} = r + ||u_0||$ which implies $||u||_{1,1} \ge r$ so for all $\lambda \in (0, 1)$

$$Tu \neq \lambda N_{\tilde{q}}(u) + (1-\lambda)x_0.$$

Applying Corollary 3.5 there exists $z_0 \in \overline{U}$ such that $Tz_0 = N_{\tilde{g}}z_0$, as we want to show.

A trivial consequence of Theorem 3.12 is the following one: The equation

(3.16)
$$\begin{cases} u'(t) - g(t, u(t)) = f(t), & t \in (0, 1) \text{ a.e.} \\ u(0) = \xi, \end{cases}$$

where $f \in L^1(0, 1; \mathbb{R}^n)$ is a fixed function and $g: [0, 1] \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory function such that there exist $a \in L^1_+(0, 1), 0 \leq b < 1$ satisfying that $||g(t, x)||_n \leq a(t) + b||x||_n$, has a strong solution.

Example 3.13.

(3.17)
$$\begin{cases} u'(t) - \frac{\cos(u(t))}{\sqrt{t}} - \frac{u(t) + \sin(u'(t))}{2\sqrt{t+2}} = f(t), & t \in (0,1) \\ u(0) = \xi, \end{cases}$$

has a strong solution since in this example we have that $g(t, x, y) = \frac{\cos(x)}{\sqrt{t}} + \frac{x + \sin(y)}{2\sqrt{t+2}}$ and therefore $|g(t, x, 0)| \leq \frac{1}{\sqrt{t}} + \frac{1}{2\sqrt{2}}|x|$ and $|g(t, x, y_1) - g(t, x, y_2)| \leq \frac{1}{2\sqrt{2}}|y_1 - y_2|$, which implies that g fulfills the conditions of Theorem 3.12.

3.2. Multivalued case.

Theorem 3.14. Let X be a normed space and let Y be Banach space. Consider a nonempty subset D of X. Suppose that $t: D \to 2^Y$ is a multivalued mapping and $s: D \to Y$ is a mapping which satisfy:

- (1) R(t) = Y and $t^{-1}: Y \to D$ is a univalued continuous and compact mapping.
- (2) s is continuous and it maps bounded subsets into bounded subsets,
- (3) There exists R > 0 such that

$$(3.18) ||x||_X \ge R, \ x \in D \quad \Rightarrow \quad \lambda s(x) \notin t(x) \quad \forall \lambda \in (0,1).$$

Then there exists $x_0 \in D$ with $s(x_0) \in t(x_0)$.

Proof. The mapping $h: Y \to Y$ given by $h(y) = s \circ t^{-1}(y)$ is continuous and compact. Therefore h is a continuous condensing mapping.

We will see that h satisfies a Leray-Schauder condition with 0_Y . Otherwise, we can assume that for each $n \in \mathbb{N}$ there are $y_n \in Y$ with $||y_n|| \ge n$ and $\lambda_n > 1$ such that

$$h(y_n) = \lambda_n y_n.$$

Since R(t) = Y for each $n \in \mathbb{N}$ there exists $x_n \in D$ with $y_n \in t(x_n)$, from this and (3.19)

$$\frac{1}{\lambda_n}s(x_n) = y_n \in t(x_n).$$

Therefore $||x_n|| \leq R$, from (3.18). Using assumption (2) we have that $(s(x_n))$ is a bounded sequence, then (y_n) is a bounded sequence which is a contradiction.

Hence there exists M > 0 such that

$$\|y\|_Y \ge M \Rightarrow h(y) \ne \lambda y, \quad \forall \lambda > 1,$$

and from Theorem 2.4 we have that there exist $y_0 \in Y$ such that $h(y_0) = y_0$, but since R(t) = Y, there exists $x_0 \in D$ such that $t^{-1}(y_0) = x_0$. Then we obtain that $s(x_0) = y_0 \in t(x_0)$ as we want to prove.

Corollary 3.15. Let X be a Banach space and $A: D(A) \to 2^X$ an m-accretive operator such that $0 \in A(0)$ and $s: D(A) \to X$ a continuous mapping. Suppose that the following conditions are fulfilled:

- (1) J_{λ}^{A} is compact, (2) there exists R > 0 such that $||s(x)|| \le a + b||x||$ whenever $x \in D(A)$ with $||x|| \geq R.$

Then given $\rho > b$ there exists $x_0 \in D(A)$ such that $s(x_0) \in \rho x_0 + A(x_0)$.

Proof. Let $\lambda := \frac{1}{2}$. To show the result we are going to apply Theorem 3.14 to the mappings $t := I + \lambda A$ and λs . Thus we have to see that the coincidence problem $\lambda s(x) \in t(x)$ has a solution.

Since A is m-accretive, $t^{-1} = J_{\lambda}^{A} : X \to D(A)$ is single-valued and nonexpansive and by assumption (1) it is also compact. Moreover, it is not difficult to see that $\|y\| \ge \|x\|$ whenever $y \in x + \lambda A(x)$. Indeed, we know that there is $z \in A(x)$ such that $y = x + \lambda z$, hence since A is accretive and $0 \in A(0)$, we obtain

(3.20)
$$||x - 0|| \le ||x - 0 + \lambda(z - 0)|| = ||x + \lambda z|| = ||y||.$$

Assumption (2) guarantees that λs maps bounded set into bounded sets.

Finally, let us see that there exists $\beta > 0$ such that $\mu \lambda s(x) \notin (I + \lambda A)(x)$ whenever $||x|| \ge \beta$ and $x \in D(A)$. Indeed, if there exists $\mu \in (0, 1)$ such that

(3.21)
$$\mu\lambda s(x) \in (I + \lambda A)(x),$$

then by (3.20) and (3.21) we have that $\mu\lambda ||s(x)|| \ge ||x||$. In this case, assumption (2) yields

 $\|x\| \le \mu \lambda (a + b\|x\|),$

which is a contradiction when we take $\beta > R$ larger enough and $\rho > b$.

Next result works with mappings which are condensing but not necessarily k-set contractive, examples of such mappings can be found for instance in [3, 4].

Theorem 3.16. Let $(X, \|\cdot\|_X)$ be a normed space and let $(Y, \|\cdot\|_Y)$ be a Banach space. Assume that $t : X \to 2^Y$ is a multivalued mappings with R(t) = Y such that $t^{-1} : Y \to X$ is single-valued nonexpansive and $s : D(t) \to Y$ a continuous α -condensing mapping satisfying that there exists R > 0 and $y_0 \in Y$ such that

(3.22)
$$\|x - t^{-1}y_0\|_X \ge R \Rightarrow \mu s(x) + (1 - \mu)y_0 \notin t(x) \qquad \forall \mu \in (0, 1).$$

Then there exists $x_0 \in X$ such that $s(x_0) \in t(x_0)$.

Proof. Since $t^{-1}: Y \to X$ is nonexpansive, then t^{-1} is continuous. Consider the mapping $h := s \circ t^{-1}: Y \to Y$, it is continuous because it is composition of continuous functions. Reasoning as in the proof of Theorem 3.3 we can prove that h is condensing.

Finally, we show that h satisfies a Leray-Schauder condition with y_0 . If this was false, we could find $y_n \in Y$ and $\lambda_n > 1$, for each $n \in \mathbb{N}$, satisfying

$$||y_n - y_0|| \ge n$$
 and $h(y_n) - y_0 = \lambda_n (y_n - y_0).$

Taking $x_n = t^{-1}(y_n)$, the previous assumption along with the definition of h yields

$$s(x_n) - y_0 = \lambda_n (y_n - y_0),$$

 \mathbf{SO}

$$\frac{1}{\lambda_n}s(x_n) + \left(1 - \frac{1}{\lambda_n}\right)y_0 = y_n \in t(x_n).$$

Using (3.22) we conclude that $||x_n - t^{-1}y_0||_X < R$, which means that the sequence (x_n) is bounded. Then the sequence $(s(x_n))$ is bounded, because s is α -condensing. Therefore y_n is bounded, but this is a contradiction.

By Theorem 2.4 there exists $y \in Y$ such that h(y) = y. Choosing $x_0 = t^{-1}(y)$ we have that $s(x_0) = y \in t(x_0)$.

Example 3.17. Let $(H, \langle \cdot, \cdot \rangle)$ be a finite dimensional real Hilbert space and let D be a nonempty closed convex subset of H.

Given a mapping $f: D \to H$, the variational inequality defined by f and D is

(3.23)
$$VI(f,D): \begin{cases} \text{ find } x_0 \in D \text{ such that} \\ \langle f(x_0), y - x_0 \rangle \ge 0, \text{ for all } y \in D. \end{cases}$$

As an application of Theorem 3.16, we shall see that VI(f, D) admits a solution whenever f is a continuous mapping which satisfies that there exists $R \ge 0$ such that

$$||x||_H \ge R, \ x \in D \Rightarrow \langle f(x), x \rangle > 0$$

and $0 \in D$.

Let us introduce the indicator function of D: $I_D: H \to [0, +\infty]$ defined by

$$I_D(x) := \begin{cases} 0, \text{ if } x \in D, \\ +\infty, \text{ if } x \in H \setminus D. \end{cases}$$

It is well known (for instance see [5]) that I_D is a proper convex lower semi continuous function and its subdifferential $\partial I_D : H \to 2^H$ given by

$$\partial I_D(x) = \{\xi \in H : \langle \xi, y - x \rangle \le I_D(y) - I_D(x), \text{ for all } y \in H\},\$$

is clearly an *m*-accretive operator on *H* where its effective domain is $D(\partial I_D) = D$. Moreover, it is easy to see that

$$\partial I_D(x) = \{ y \in H : \langle y, z - x \rangle \le 0 \text{ for every } z \in D \}.$$

Thus, a solution of VI(f, D) will be a point $x_0 \in D$ such that $-f(x_0) \in \partial I_D(x_0)$.

In order to study the existence of solution for this problem , we call $t := I + \partial I_D$: $D \to 2^H$ and $s := -f + I : D \to H$.

Since ∂I_D is *m*-accretive then t^{-1} is a single-valued nonexpansive mapping and R(t) = H. The mapping *s* is α -condensing because *s* is compact, since it is continuous and *H* is finite dimensional.

Note that $0 \in D$ implies that $0 \in \partial I_D(0)$. So $t^{-1}(0) = 0$. We will choose $y_0 = 0$ and R given by (3.24) in Theorem 3.16.

If condition (3.22) does not hold the exist $x \in D$ with $||x||_H \ge R$ and $\mu \in (0,1)$ such that $\mu(-f(x) + x) \in x + \partial I_D(x)$, i.e. $-\mu f(x) + (\mu - 1)x \in \partial I_D(x)$. Which means that for all $v \in D$

$$\langle -\mu f(x) + (\mu - 1)x, v - x \rangle \le 0.$$

The convexity of D along with that 0 and x are elements of D implies $(1-\mu)x \in D$. Then

$$\langle -\mu f(x) + (\mu - 1)x, (1 - \mu)x - x \rangle \le 0,$$

 $\mu^2 \langle f(x), x \rangle - (\mu - 1)\mu \|x\|_H^2 \le 0,$
 $\langle f(x), x \rangle \le \frac{\mu - 1}{\mu} \|x\|_H^2 \le 0,$

which contradicts assumption (3.24).

The above facts allow us to say that t and s are under the hypotheses of Theorem 3.16, so we conclude that there exists $x_0 \in D$ such that $s(x_0) \in x_0 + \partial I_D(x_0)$ and this means that $-f(x_0) \in \partial I_D(x_0)$.

Next result shows that if s, t are under the conditions of Theorem 3.16 and we add that s is a bounded mapping then Leray-Schauder's condition is directly fulfilled.

Corollary 3.18. Let $(X, \|\cdot\|_X)$ be a normed space and let $(Y, \|\cdot\|_Y)$ be a Banach space. Assume that $t : X \to Y$ is an expansive surjection and $s : X \to Y$ a continuous, bounded and α -condensing mapping. Then there exists $x_0 \in X$ such that $s(x_0) = t(x_0)$.

Proof. In order to obtain the result, we only have to see that $t, s : X \to Y$, defined as in Theorem 3.16, satisfy condition (3.22) with $y_0 := 0_Y$.

To do this, we argue as follows:

Since $t: X \to Y$ is expansive, we have that

$$||t(x) - t(0_X)||_Y \ge ||x||_X$$
 for all $x \in X$,

thus, since t is onto, we infer

$$||t(x)||_Y \ge ||x - t^{-1}(0_Y)||_X - ||t^{-1}(0_Y)||_X - ||t(0_X)||_Y.$$

On the other hand, since s is a bounded mapping, there exists M > 0 such that $||s(x)||_Y \leq M$ for every $x \in X$.

If now we take $R := M + ||t^{-1}(0_Y)||_X + ||t(0_X)||_Y$. We may conclude that if $||x - t^{-1}(0_Y)||_X \ge R$, then

$$||t(x)||_{Y} \ge ||x - t^{-1}(0_{Y})||_{X} - ||t^{-1}(0_{Y})||_{X} - ||t(0_{X})||_{Y} \ge M,$$

which means that $s(x) - 0_Y \neq \lambda(t(x) - 0_Y)$ whenever $\lambda > 1$.

Corollary 3.19. Let $(X, \|\cdot\|_X)$ be a normed space and let $(Y, \|\cdot\|_Y)$ be a Banach space. Assume that $t : X \to Y$ is an expansive surjection and $s : X \to Y$ a continuous, α -condensing mapping satisfying that there exists R > 0 and $y_0 \in Y$ such that

(3.25)
$$\|x - t^{-1}y_0\|_X \ge R \Rightarrow \|s(x) - y_0\|_Y \le \|x - t^{-1}(y_0)\|_X.$$

Then there exists $x_0 \in X$ such that $s(x_0) = t(x_0)$.

Proof. We are going to prove that $t, s : X \to Y$, defined as in Theorem 3.16, satisfies condition (3.22). Indeed, since t^{-1} is a nonexpansive mapping, we have

$$||x - t^{-1}(y_0)||_X = ||t^{-1}(t(x)) - t^{-1}(y_0)||_X \le ||t(x) - y_0||_Y.$$

The above inequality along with (3.25) implies that if $||x - t^{-1}y_0|| \ge R$, then

$$||s(x) - y_0||_Y \le ||x - t^{-1}(y_0)||_X \le ||t(x) - y_0||_Y.$$

Consequently

$$s(x) - y_0 \neq \lambda(t(x) - y_0)$$
 whenever $\lambda > 1$

3.2.1. A nonlinear Dirichlet problem. Let Ω be a measurable subset on \mathbb{R}^n which for simplicity will be assumed to be bounded.

The Sobolev space $W^{m,p}(\Omega)$ is the Banach space of all functions in $L^p(\Omega)$ all of whose weak derivatives up to order m also belong to $L^p(\Omega)$. The norm in this space is given by

$$||u||_{m,p} = ||u||_p + \sum_{1 \le |\alpha| \le m} ||D^{\alpha}u||_p,$$

where $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \sum_{i=1}^n \alpha_i$, and $D^{\alpha} u = \frac{\partial^{\alpha_1 + \dots + \alpha_n}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} u$. $W_0^{m,p}(\Omega)$ is the closure of $\mathcal{C}_0^{\infty}(\Omega)$ in $W^{m,p}(\Omega)$.

In this section, We shall study the existence of solutions in $L^1(\Omega)$ for the equation

(3.26)
$$\begin{cases} \Delta \rho(u(x)) = f(x, u(x)) & x \in \Omega\\ \rho(u(x)) = 0 & x \in \partial \Omega \end{cases}$$

Let us now specify the conditions assuring the existence of a solution for Equation (3.26):

- (1) Ω is a bounded domain in \mathbb{R}^n with a smooth boundary $\partial \Omega$.
- (2) $\rho \in C(\mathbb{R}) \cap C^1(\mathbb{R} \setminus \{0\}), \ \rho(0) = 0.$
- (3) There exists C > 0 and $\gamma \in \mathbb{R}^+$ with $\gamma > 1$ such that

$$\rho'(r) \ge C|r|^{\gamma-1}$$
 for each $r \in \mathbb{R} \setminus \{0\}$.

(4) $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that $|f(s,x)| \leq a(s) + b|x|$, where $a \in L^1(\Omega)$ and $b \geq 0$. This condition guarantees that the superposition operator associated to f,

$$N_f(u)(s) = f(s, u(s)),$$

acts form $L^1(\Omega)$ into $L^1(\Omega)$ and is continuous. We refer to [2] for background material on superposition operators.

H. Brezis and W. Strauss in [6] showed that under the above conditions (1) and (2), the operator

(3.27)
$$\begin{cases} D(P) = \{ u \in L^{1}(\Omega) : \rho(u) \in W_{0}^{1,1}(\Omega), \ \Delta \rho(u) \in L^{1}(\Omega) \} \\ P(u) = \Delta \rho(u), \ u \in D(P) \end{cases}$$

is *m*-dissipative, which means that -P is *m*-accretive.

Definition 3.20. We say that $v \in L^1(\Omega)$ is a solution of Problem (3.26) whenever $v \in L^1(\Omega)$, $\rho(v) \in W_0^{1,1}(\Omega)$, $\Delta \rho(v) \in L^1(\Omega)$ and $\Delta \rho(v(x)) = f(x, v(x))$ a.e. $x \in \Omega$. That is, whenever $v \in D(P)$ is a solution of the coincidence problem $P(v) = N_f(v)$, where D(P) and P are defined in (3.27).

Theorem 3.21. If Conditions (1-4) are fulfilled, then Problem (3.26) has a solution.

Proof. Let us consider the following operator

$$D(Q) = \{ u \in W_0^{1,1}(\Omega), \ \Delta u \in L^1(\Omega) \}$$

$$Q(u) = \Delta u, \ u \in D(Q),$$

where Δu is understood in the sense of distributions. From [6, Theorem 8] we know that there exists D > 0 such that

$$(3.28) D||u||_{1,1} \le ||Qu||_1$$

for each $u \in D(Q)$. Moreover, [11, Remark 4.12] shows that there exists

$$Q^{-1}: L^1(\Omega) \to D(Q)$$

and it is continuous.

In [11, Theorem 4.11] was proved that the superposition operator

$$S: L^1(\Omega) \to L^1(\Omega)$$
 such that $S(u)(x) := \rho^{-1}(u(x))$.

is well defined and it is continuous.

As a consequence of the above facts we may introduce the operator:

$$T: L^1(\Omega) \to L^1(\Omega)$$
 defined by $T(u) = S(Q^{-1}(u))$.

Now, we will see that $T(u) \in D(P)$ for every $u \in L^1(\Omega)$. Indeed, we know that $T(u) \in L^1(\Omega)$. Moreover $\rho(T(u)) = Q^{-1}(u) \in D(Q)$. Consequently

$$\rho(T(u)) \in W_0^{1,1}(\Omega) \text{ and } \Delta \rho(T(u)) \in L^1(\Omega)\},$$

i.e. $T(u) \in D(P)$.

The above argument says that T is the inverse operator, in $L^1(\Omega)$, of P.

Next, let us see that T is a compact mapping.

Indeed, let A be a bounded subset of $L^1(\Omega)$. From (3.28), we have that $(Q^{-1}(A))$ is a bounded subset of $W^{1,1}(\Omega)$ and since the embedding $W^{1,1}(\Omega) \hookrightarrow L^1(\Omega)$ is compact, we have that $Q^{-1}(A)$ relatively compact in $L^1(\Omega)$, and thus, since S : $L^1(\Omega) \to L^1(\Omega)$ is a continuous mapping, T(A) must be a relatively compact subset of $L^1(\Omega)$.

On the other hand, Condition (4) implies that the superposition operator N_f : $L^1(\Omega) \to L^1(\Omega)$ is continuous and maps bounded subsets into bounded subsets and since $P(D(P)) = L^1(\Omega)$, we also have that $N_f(D(P)) \subseteq P(D(P))$.

In order to find a solution of Problem (3.26) it will be enough to apply Theorem 3.14. To this end, we shall show that there exists R > 0 such that if $u \in D(P)$ and there exists $\mu \in (0, 1)$ with

$$(3.29) P(u) = \mu N_f(u),$$

then $||u||_1 \le R$.

Suppose that u satisfies (3.29). Since $|f(s, x)| \le a(s) + b|x|$, we have that

(3.30)
$$\mu \|N_f(u)\|_1 \le \|a\|_1 + b\|u\|_1$$

On the other hand, we know that

$$\rho'(r) \ge C |r|^{\gamma-1}$$
 for each $r \in \mathbb{R} \setminus \{0\}$,

which implies that

$$|\rho(r)| \ge \frac{C}{\gamma} |r|^{\gamma}.$$

The above inequality means that $\frac{C}{\gamma}|u(s)|^{\gamma} \leq |\rho(u(s))|$ a.e. $s \in \Omega$. Thus, we infer that $u \in L^{\gamma}(\Omega)$. Since Ω is a bounded set, Hölder's inequality yields

$$\int_{\Omega} |u(s)| ds \leq \Big(\int_{\Omega} |u(s)|^{\gamma} ds \Big)^{\frac{1}{\gamma}} (\lambda(\Omega))^{\frac{\gamma-1}{\gamma}},$$

where $\lambda(\Omega)$ is Lebesgue measure of Ω . Hence, if we call $K := \frac{C}{\gamma} \lambda(\Omega)^{1-\gamma}$, we obtain that

$$K \|u\|_{1}^{\gamma} \leq \frac{C}{\gamma} \int_{\Omega} |u(s)|^{\gamma} ds \leq \|\rho(u)\|_{1}$$

Moreover, by (3.28), $D \| \rho(u) \|_1 \leq \| \Delta \rho(u) \|_1$. Therefore,

(3.31)

(3.30) along with (3.31) implies

$$DK \|u\|_{1}^{\gamma} \le \|a\|_{1} + b\|u\|_{1}.$$

 $DK \|u\|_1^{\gamma} \le \|\Delta\rho(u)\|_1.$

Consequently,

$$DK \le \frac{\|a\|_1 + b\|u\|_1}{\|u\|_1^{\gamma}}.$$

However, since $\gamma > 1$ it is clear that

$$\lim_{\|u\|_1 \to \infty} \frac{\|a\|_1 + b\|u\|_1}{\|u\|_1^{\gamma}} = 0.$$

Hence there exists R > 0 such that if $||u||_1 > R$ then

$$\frac{\|a\|_1 + b\|u\|_1}{\|u\|_1^{\gamma}} < \frac{DK}{2}.$$

The above inequality allows us to conclude that $||u||_1 \leq R$ whenever u is a solution of (3.29).

References

- R. R. Akhmerov, M. I. Kamenskii, A. S. Patapov, A. E. Rodkina and B. N. Sadovskii, *Measures of Noncompactness and Condensing Operators*, Operator Theory: Advances and Applications, vol. 55, Birkhäuser Verlag, Basel, 1992.
- [2] J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990.
- [3] J. Appel, Measures of noncompactness, condensing operators and fixed points: An applicationoriented survey, Fixed Point Theory, 6 (2005), 157–229.
- [4] J. M. Ayerbe-Toledano, T. Domínguez-Benavides and G. Lopez-Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Basel; Boston; Berlin: Birkhäuser Verlag, 1997.
- [5] V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach spaces, Springer, Monographs in Mathematics, 2010.
- [6] H. Brezis and W. Strauss; Semi-linear second-order elliptic equations in L¹, J. Math. Soc. Japan 35 (1973),131–165.
- [7] R. F. Brown, A Topological Introduction to Nonlinear Analysis, Birkhäuser Boston, 1993.
- [8] T. Chen, W. Liu and Z. Hu, A boundary value problem for fractional differential equation with p-Laplacian operator at resonance, Nonlinear Analysis 75 (2012), 3210–3217.

- [9] G. Darb, Punti uniti in transformazioni a codomio non compatto, Rend. Sem. Mat. Uni. Padova 24 (1955), 84–92.
- [10] R. E. Gaines and J. L. Mawhin, Alternative problems, coincidence degree, and nonlinear differential equations, Lecture Notes in Math. 568, Springer Verlag, Berlin 1977.
- [11] J. Garcia-Falset, Existence of fixed points for the sum of two operators, Math. Nachr. 283 (2010), 1736–1757.
- [12] J. Garcia-Falset and O. Mleşnite, Coincidence problems for generalized contractions, Preprint.
- [13] K. Goebel, A coincidence theorem, Bull. de L'Acad. Pol. des Sciences, 16 (1968), 733–735.
- [14] Ch. Guo, D. O'Regan and R. P. Agarwal, Existence of multiple periodic solutions for a class of first-order neutral differential equations, Appl. Anal. Discrete Math. 5 (2011), 147–158.
- [15] D. Ma, W. Ge and X. Chen, New results on periodic solutions for a p-Laplacian Liénard equation with a deviating argument, Houston J. Math. 32 (2006), 1227–1239.
- [16] R. Machuca, A coincidence theorem, Am. Math. Month. 74 (1967), 469.
- [17] Y. Mao and J. Lee, Two point boundary value problems for nonlinear differential equations, Rocky Mountain Journal of Mathematics 26 (1996), 1499–1514.
- [18] O. Mleşnite, Existence and Ulam-Hyers stability results for coincidence problems, J. Nonlinear Sci. Appl. 6 (2013), 108–116.
- [19] W. V. Petryshyn, Structure of the fixed points sets of k-set-contractions, Arch. Rational Mech. Anal. 40 (1971), 312–328.
- [20] W. V. Petryshyn and Z. S. Yu, Existence theorems for higher order nonlinear periodic boundary value problems, Nonlinear Analysis 6 (1982), 943–969.
- [21] B. N. Sadovskij; On a fixed point principle, Funkt. Anal. 4 (1967), 74–76.
- [22] A. Sirma and S. Şevgin, A note on coincidence degree theory, Abstract and Applied Analysis, 2012, 18 pages. doi: 10.1155/2012/370946.
- [23] J. Simon, Compact sets in the space $L^p(0,T;B)$, Annali di Matematica pura ed applicata **CXLVI** (1987), 65–96.

Manuscript received January 22, 2014 revised May 5, 2014

JESÚS GARCIA-FALSET

Departamento de Análisis Matemático, Universidad de Valencia, Dr. Moliner No. 50, 46100, Brujassot, Spain

E-mail address: Jesus.Garcia@uv.es

Carlos Alberto Hernández-Linares

Departamento de Análisis Matemático, Universidad de Valencia, Dr. Moliner No. 50, 46100, Brujassot, Spain

E-mail address: carlos.a.hernandez@uv.es

Oana Mleşniţe

Department of Mathematics, Babęs-Bolyai University Cluj-Napoca, Romania

E-mail address: oana.mlesnite@math.ubbcluj.ro