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ABSTRACT. The purpose of this paper is to study the existence of a coincidence
point for two nonlinear mappings defined on a Banach space and taking values on
another one using the Leray-Schauder condition. Later on, we apply these results
to obtain the existence of solution to some classes of differential equations.

1. INTRODUCTION

From a mathematical point of view, many problems arising from diverse areas
of natural science involve the existence of solutions of nonlinear equations with the
form

(1.1) t(u) = s(u), ue M,

where M is a nonempty subset of a Banach space X, and s,t: M — Y are nonlin-
ear mappings taking values on another Banach space Y. The problem of finding a
solution for Equation (1.1) is known as a coincidence problem. Coincidence theory
is a very powerful technique especially in problems about of existence of solutions in
nonlinear equations. For instance, in [7, 8, 15, 12, 13, 14, 17] several of such results
are applied to solve boundary value problems.

The coincidence problem can be considered as a generalization of the fixed point
problem since if s : M C X — X is a mapping, to study the existence of a
fixed point for s is the same that to find a solution of the coincidence problem
where t is the identity mapping on M. In this sense, R. Machuca [16] proved a
coincidence theorem which is a generalization of the well known Banach contraction
principle. Generalizations of this result can be found, for instance in [12, 13, 18].
On the other hand, Gaines and Mawhin introduced coincidence degree theory in
the 70s in analyzing functional and differential equations [10]. The main goal in
the coincidence degree theory is to search for the existence of solutions of Equation
(1.1) in some bounded and open set M in some Banach space X for ¢ being a linear
operator and s a nonlinear operator using Leray-Schauder degree theory (see [22]
to find some sharpening results).
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In this paper, we intend to obtain several versions, without invoking degree the-
ory, of the coincidence problem where s and ¢ can both be nonlinear. In Section
3.1, we are concerned with the solvability of the following differential equation:

(12) { u'(t) — g(t,u(t), ' (t)) = f(t), t€(0,1)a.e.
' u(0) =&,
where f € L'([0,1];R") is a fixed function and g : [0,1] x R® x R* — R" is a
Carathéodory function.
Finally, we will use this kind of coincidence results to obtain the existence of
solutions for a Dirichlet problem of the form:

p(u(z)) =0 on 012,

where ) is a bounded domain in R", A is the standard Laplace operator, p €
CR)NCHR\ {0}) and f: Q2 x R — R is a Carathéodory function.

(1.3) { Ap(u(x)) = f(a,u(x)) inQ

2. PRELIMINARIES

In this section, we shall introduce notations, definitions and preliminary facts
which are used throughout this article.

Let X be a real normed space. As usual, given a nonempty subset A C X, denote
the closure of A by A, the boundary of A by A, the convex hull of A by co(A), the
diameter of A by diam(A), and the family of bounded subsets of A by B(A).

Definition 2.1. Let X be a normed space. A measure of non-compactness is a
function p: B(X) — RT which satisfies:

(1) u(A) =0« A is compact.

(2) u(A) = pu(A).

(3) n(AU B) = max{u(A), u(B)}

(4) p(co(A)) = u(A).

To avoid confusion when dealing with different spaces, we will in some cases add
the name of a subspace as a subscript.

Point 3 in the above definition implies that p(A) < p(B), whenever A C B.

The most important examples of measures of noncompactness are the Kuratowski
measure of noncompactness (or set measure of noncompactness):

Given a bounded subset A of X,

a(A)=inf{r >0: A C UL D;, diam(D;) <r}.

And the Hausdorff measure of noncompactness (or ball measure of noncompact-
ness):
Given a bounded subset A of X,
X(A) =inf{r >0: A C U B(xj,r),z; € X}.

A detailed account of theory and applications of measures of noncompactness
may be found in the monographs [1, 4]
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Definition 2.2. Let (X, |- ||x) and (Y,|| - |ly) be two normed spaces endowed with
the measures of noncompactness pux and py respectively. If C' is a nonempty subset
of X and T : C' =Y is a mapping,

(a) Given k > 0, the mapping T is called (px,py)-k-set contractive if
iy (T(A)) < hyix (A) for all A € B(C),

(b) The mapping T is called (pux, py)-condensing if py (T'(A)) < pux(A) for all
bounded subset A of C' with ux(A) > 0.

(¢c) The mapping T is called expansive if the inequality ||T'(x) — T(y)|ly >
lx — yl|lx holds for every z,y € C.

(d) The mapping T is called nonexpansive if the inequality |T(x) — T'(y)|ly <
lx — yllx holds for every z,y € C.

(e) The mapping T is said to be bounded if there exists k > 0 such that
T (x)|ly <k forallxz e C.

The following well known theorem was proved in 1967 by Sadovskii [21], it is a
generalization of Darbo’s fixed point theorem [9]. We refer to [3] where the reader
will find many applications of these theorems.

Theorem 2.3. Suppose that C is a closed convex bounded subset of a Banach space
X andT : C — C a continuous and condensing mapping, then T has a fixed point.

When the domain C, in Sadovskii’s theorem, is unbounded the following result
is also well known.

Theorem 2.4. Suppose that C is a closed convex and unbounded subset of a Banach
space X and T : C — C a continuous and condensing mapping. If there exist R > 0
and z € C such that for all u € C N Sgr(z)

T(u) —z # Mu— z2), VA > 1,
then T has a fized point.
We recall the following theorem proved by Petryshyn in [19] (also see [20]).

Theorem 2.5. Suppose that U is an open bounded subset of a Banach space X and
T:U — X a continuous and condensing mapping. If there exists z € U such that
for all u € OU

u# NT(u) + (1 — Nz, VA € (0,1),
then T has a fized point.

Let T : X — Y be a mapping which transforms bounded subsets of X into
bounded subsets of Y. For a such mapping, we define

U(T) = sup{r > 0: rpux (4) < py (T(A)), A € B(X)).

In the following we are going to use the Kuratowski measure of noncompactness.
Assuming that (X, || - ||x) and (Y,]|| - |[y) are normed spaces and if a mapping
T:C —Y is (ax,ay)-condensing we will say simply that 7" is a-condensing.

If T: X — Y is an invertible and bounded linear map and N : Q@ — Y is a k-set
contractive map with k& < I(T) such that for all x € 9Q we have T'(x) # N(z),
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one can associate with the pair (T, N) a topological degree, the so-called Sadovskii-
Nussbaum degree (see [10] we also refer to the reader to [22]). This degree allows
us to show the following.

Theorem 2.6. Let X and Y be two Banach spaces and let T : X — Y be an
invertible, bounded linear map and Q@ C X bounded open and symetric about 0 € Q.
Let N : Q — Y be a k-set contractive map with k < I(T). Then given y € Y such
that T(x) # AN (x) + Ny, for all z € 9 and \ € (0, 1), there exists v € Q such that
T(x) = N(z)+y.

Let X and Y be two normed spaces and A : X — 2¥ a multivalued mapping.
Recall some useful notation, namely: the (effective) domain of A is D(A) := {x €
X : A(z) # 0}, the range of A is R(A) :={u € A(z): = € D(A)} and its graph is
the subset of X x Y defined as G(A) := {(z,u) € X XY : z € D(A), u € A(x)}.

We note that one may identify each subset G C X x Y with a multivalued
mapping A : X — 2Y by defining A(z) := {u € Y : (x,u) € G}. The inverse
A1 R(A) — 2% is then defined by A™'(u) := {x € X : u € A(z)} and it is clear
that G(A™!) = {(u,2) € X x Y : (z,u) € G(A)}.

Given an operator A : D(A) — 2%, we define

Jy = (I + XA~ R(I + AA) — 2P(A) here I means the identity operator. As
usual, we call to Jy a resolvent of A.

Definition 2.7. An operator A C X x X is said to be accretive if and only if
|z =yl < |lz —y+ ANu—0)| for all z,y € D(A), for each u € Ax and v € Ay, and
for all A > 0. If moreover, R(A+ 1) = X, we say that A is m-accretive.

Proposition 2.8. The operator A C X x X is accretive if and only if for each A > 0,
the resolvent Jy : R(I + AA) — D(A) is a single-valued nonexpansive mapping.

A detailed account of theory and applications of accretive operators may be found,
for instance, in the monograph [5].

3. A LERAY-SCHAUDER CONDITION TO THE COINCIDENCE PROBLEM

3.1. Single-valued case. The first purpose here is to establish several coincidence
results by using Theorem 2.4.

Theorem 3.1. Let (X, - ||x) and (Y, | - |ly) be Banach spaces. Consider C a
convez closed subset of X such that the mappingst: C —Y and s: C =Y satisfy:

(1) t(C) is a convex subset of Y and t=' : t(C) — C is uniformly continuous
on bounded subsets of t(C),
s s a continuous k-set contractive mapping,

(2)

(3) s(C) C t(C),

(4) k<),

(5) There are R > 0 and zg € C' such that for every x € C with ||z — zo|| > R
we have

(3.1) s(x) — t(xo) # Nt(z) — t(zo)) VA > 1.
Then there is z € C such that s(z) = t(z).
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Proof. It is not difficult to check that ¢t~ : ¢(C) — C'is ﬁ-set contractive. However,
if we do not assume the continuity of ¢, then ¢(C') may be unclosed (for instance see
[12]). Thus, we have to consider t~1 : t(C)) — C given by

— [ty ,siy € t(C)
t=Hy) = { hmnyfl(xn) : xi € t(C), zp = y € O(H(C)).

We claim that t=1 is also ﬁ—set contractive. Let A be a bounded subset of ¢(C').
Since A = (ANt(C))U(ANAIEC))), and t71: t(C) — C is l(%)—set contractive, it
is enough to assume that A C 9(¢(C)).

Take r = ay(A) and € > 0, there exist A;, Ag,..., Ay, such that A C U, A; C
o(t(C)) and diamy., (4;) <7+ 5.

(3.2) ax(t~1(A)) < max{ax(t~1(A)):i=1,...,n}.

Let
Bi= | {zet(C): |z—yly <}

yeA;
Note that A; C B;. Then

ax(t=H(A;)) < ax(t1(By)) = ax(t7(By))
(3.3) =ax(t1(B)) < 1) ay (By).

For u,v € B; there exist xy,z, € A; such that max{||u — x|y, |Jv — 2|y} < &,
then
lu—=2lly < lu—=aully + llzu = zolly + |20 — vlly

3
<26+ +5
R
-3 3
=r—+e.

So diam(B;) < r + ¢, therefore ay (B;) <r +e.
Using (3.2), (3.3) and since ¢ is an arbitrary positive number we have

ax(FT(A) < lé)aym)
as we claimed.

Since by assumption (3), s(C) C #(C), we may consider the mapping h : t(C) —
t(C) given by h(z) = s(t~1(z)), clearly h is a continuous mapping and for every
bounded subset B of ¢(C') we have

— — k

oy (h(B)) = ay (3o T1(B)) < hax(F1(B)) < jrsov(B),

in consequence h is a condensing mapping because % < 1.
Next step will be to check that h satisfies a Leray-Schauder condition with yg :=
t(xo). Otherwise, without loss of generality, we may assume that for every n € N,
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there exists y, € t(C) (i.e., there exits x,, € C such that y, = t(xy,)) and A\, > 1
such that

(3.4) lyn — wolly > n
and
(3.5) h(t(zn)) — yo = An(t(n) — Yo)-

From (3.1) and (3.5) we deduce that
|lzn, — zol|x < R,

which means that {z,} is a bounded sequence.
Since s is a-condensing then {s(z,)} is a bounded sequence. From (3.5) then

tn) = 5 (5(zn) — v0) + 0,

n

this implies that {t(z,)} is also bounded which is in contradiction with (3.4).

Finally, applying Theorem 2.4, there exists zg € ¢(C') such that h(zp) = zp. Since
s(C) C ¢(C), there is z € C such that zp = t(z), which means that ¢(z) = s(z). O

Corollary 3.2. Let (X, || ||x) and (Y,||-|ly) be Banach spaces and lett: X —Y be
a continuous invertible linear map and C' a convez closed subset of X . Let s : C' =Y
be a continuous k-set contraction with k < I(t) and satisfying that s(C') C ¢t(C). If
there are R > 0 and xg € C' such that

z € C,|lx —xollx > R = s(x) —t(xo) # Nt(x) — t(z0)) VA > 1,
then there is z € C' such that s(z) = t(z).

Proof. Notice that t(C) is a convex subset of Y since C' is convex and ¢ is a linear
mapping. Moreover, the open mapping theorem says that t~! : Y — X is a contin-
uous linear mapping and then uniformly continuous. Now, in order to obtain the
conclusion we may apply Theorem 3.1. O

Next result may be considered as a sharpening of Theorem 2.5.

Theorem 3.3. Let X be a normed space and let Y be a Banach space. Assume
that U is a bounded open subset of X, t: U — Y an expansive mapping such that
t(U) is an open bounded subset of Y with (t(U)) C t(OU) and s : U — Y is a
continuous condensing mapping. If there exists xg € U such that for all x € OU

(3.6) t(x) # As(z) + (1 — N)t(xo) VA e (0,1)
then there exists zg € Y such that t(zo) = s(z0).

Proof. Since t is expansive then it is injective. Since ¢ is an injection, we deduce
that t(OU) C 0(t(U)). That means, with our assumptions, t(0U) = 9(¢(U)). Then

t(U) = t({U) Ut(dU) = t({U) U a(t(U)) = t(U).
t(U)

Define h = sot™1 : t(U) — Y. Since t~! and s are continuous then h is a continuous
mapping.
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We claim that h is a-condensing. Let A be a bounded subset of Y. Take B =
t~1(A), since ¢! is nonexpansive then
diam”.HX(B) = diam”.HX(t*l(A)) < diam”_”y(A).

This means that B is bounded.
Notice that if ay (A) = 0, then ax(B) = 0. Hence if we assume that oy (A4) > 0:

ay (h(4)) = ay(s(B)) < ax(B) = ax(t™'(4)) < ay(4),

otherwise 0 = ay (h(A)) < ay(A). Therefore h is a-condensing as we claimed.
Now, we are going to show that

Yy 7& )‘h(y) + (1 - )\)t(l‘g), VA e (07 1)7

whenever y € 9(t(U)).
Otherwise, there would be y € 9(t(U)) = t(0U) and a number A € (0,1) such
that

y =A(y) + (1 A) (o).
Then there exists z € OU such that t(z) =y,
(

t(x) = A(s ot ™) (t(x)) + (1 — A)t(zo)
this implies
t(x) = As(x) + (1 — Nt(xo),
which contradicts (3.6).
Finally, since t(U) is open, Theorem 2.5 guarantees the existence of a fixed point

yo € t(U) for h, then there exists zg € U such that yo = #(20) and so s(zy) =
t(Z(]). O

Remark 3.4. If in the above theorem we add that X is a Banach space and that t
is continuous, then t(U) is a closed subset of Y (for instance see [12]). Therefore
the assumption O(t(U)) C t(OU) is directly satisfied.

The following corollary allows us to give a completion of Theorem 2.6.

Corollary 3.5. Let (X, | - ||x) and (Y,| - |ly) be Banach spaces and lett: X —Y
be an expansive continuous invertible affine map and U a bounded open subset of

X.Let s: U =Y be a continuous condensing mapping. If there is xg € U such that
for all x € OU,

t(x) # As(x) + (1 — N)t(zo) VA€ (0,1),
then there is z € U such that s(z) = t(z).
Proof. The open mapping theorem guarantees that ¢(U) is an open subset of ¥ and

that t~' : Y — X is a continuous affine mapping and then uniformly continuous.
Now, in order to obtain the conclusion we may apply Theorem 3.3. O

Example 3.6. We would like to know if the the system of equations given by

(3.7) { To=VEEY

y? = 3sin(2x +y)

has at least a non trivial solution.
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Consider X = (R% 1] [|s0), Y = (R, || - [|c), U = (1/2,2) x (1/2,2) C X, the
mapping ¢ : U — Y given by
1
t(l’,y) - (127 §y2)

and the mapping s : X — Y given by

s(z,y) = (Vxr +y,sin(2x + y)).

Note that s is continuous and it is compact since we are working in finite dimen-
sional spaces. It can be shown that

1
[t(z1,91) = tz2,92) 00 = 2l (@1, 91) = (2, 92) lloo,

that is, ¢ is expansive. Moreover, t(0U) = 9(¢t(U)) and ¢(U) is an open set.
We need to check that (3.6) is satisfied in Theorem 3.3.
Observe that

OU = o1 UooUoz U oy,

where

(1/2,1) - t € [1/2,2]},
(t,2) 1t € [1/2,2]},
(2,t) 1 t € [1/2,2]},
(t,1/2) -t € [1/2,2]}.

We will check that (3.6) is satisfied with the point (1,1) for every (z,y) € 9U,
i.e., for all (z,y) € OU we will see that

(3.8) (22, % 2y # <)\\/x+ + (1= X), )\sin(2x+y)+%(1 —)\))

for all A € (0,1).
For ¢t € [1/2,2] and for A € (0,1) we observe that

{
{
{
{

1 1
(3.9) )\\/§+t+(1—>\) > )‘+(1_/\):1>Z’
. 1 1 2 1
(3.10) Asm(2t+2)+§(1—/\) < )\+§(1—>\):§)\+§
< 2+}_1<§
33 3

(3.11) MW24+t4+(1-X) < 22+(1-N)=X1+1<2<4

(
then (3.9) shows that (3.8) holds on oy, (3.11) shows that (3.8) holds on o2 and
(3.11) shows that (3.8) holds on o3.
For ¢ € [12/10,2] and for A € (0,1)

L AT e W LA NS A WA R S
t2 2 2~ 12 2 12 t2

(3.12) <A+ (1=N <1
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For ¢t € [1/2,12/10] and for A € (0,1)

1 1—A 12 1 1—A
1 — - > 1 - — -
A sin <2t+2> + 3 Asin <2<10> +2> + 3

—asin (2) 4122 A 124
- 10 3 5 3

1 2 1 2 3 1
1 W I A
(3:13) 3 A<15>>3 5 15 12
From (3.12) and (3.13) we deduce that (3.8) holds on oy.

Therefore, by Theorem 3.3 there exists (x,y) € U such that t(z,y) = s(x,y) and
this point is a solution of the system.

3.1.1. Ezistence of strong solution to a differential equation. Consider the Banach
space (R, || - ||») and let L'(0,1;R"™) be the Banach space of Bochner integrable
functions z : [0, 1] — R™ endowed with the norm

1
el = /0 ().

It is well known that if z : [0, 1] — R"™ is absolutely continuous, then it is almost
everywhere differentiable on [0, 1], its derivative 2’ € L'(0, 1; R") and

z(t) = z(0) —|—/0 z'(s)ds.

In this section we are concerned to find an absolutely continuous function w :
[0, 1] — R™ such that its derivative v’ € L'(0,1; R") satisfies almost for every point
in (0,1) the following differential equation

(3.14) { (1) = gt ult), W' () = f(t), t€(0,1)ae.

u(0) = ¢ € R,

where f € L'(0,1;R") is a fixed function and g : [0,1] x R*® x R® — R" is a

Carathéodory function. A such function u is called strong solution of Eq.(3.14).
First, let us notice that (3.14) is equivalent to the differential equation

(3.15) { W' (t) = g(t,u(t) +&u'(t) = f(t), t€(0,1)ae.

u(0) =0,

Thus, our goal will be to study the existence of a strong solution of (3.15).
Let us introduce the Sobolev space W11(0,1;R") as the space of all absolutely
continuous functions. Then we can write this space as:

W0, ;R™) := {u € L'(0, ;R") : v’ € L'(0, ;R™)},
The space WH1(0, 1; R™) can be endowed with the norm
11 = max{{lully, u"ll1},

where || - ||1 is the usual norm in L(0,1;R™). (WH1(0,1;R™), || - ||1.1) is a Banach
space.
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Now we can consider the following subspace X := {u € WH1(0,1;R"?) : u(0) =
0}. This is a closed subspace of (W11(0,1;R™), || - ||1,1) and thus it is also a Banach
space.

Lemma 3.7. Let u be an element in X. Then |ull11 = |||

Proof. 1t is well know that if v € X then u(t) = u(t) — u(0) = gu,(T)dT in [0,1].
Therefore

t
lu(t)ln < /0 e (7) il
this means that ||ull; < ||«/||; and consequently |ull11 = ||u/[1. O

Lemma 3.8. Let f be a fived element of L'(0,1;R™). The mapping T : X —
LY(0,1;R") defined by T(u)(t) = u'(t) — f(t) is an expansive bijection.

Proof. T is an expansive mapping. Indeed, by Lemma 3.7, we know that if u,v € X,
then |lu — v|j11 = [|u’ — V/||1, then,

17w = Tolly = [Ju" = 'y = [ju—v

1,1-

Now, let us see that T' is onto. Indeed, given u € L'(0,1;R") it is enough to
consider

w(t) = /0 (u(r) + f(r))dr,

since in this case, w € X and T(w) = wu. O

Let M (0, 1; R™) be the set of all measurable functions ¢ : [0, 1] — R". If f : [0, 1] x
R"™ — R" is a Carathéodory function, then f defines a mapping Ny : M(0,1;R") —
M(0,1;R™) by N¢(@)(t) := f(t,¢(t)). This mapping is called the superposition
(or Nemytskii) operator generated by f. The next three lemmas are of foremost
importance for our subsequent analysis.

Lemma 3.9. Let f :[0,1] x R®™ — R"™ be a Carathéodory function, if there exist a
constant b > 0 and a function a(-) € L1 (0,1;R) such that

1 (&, 2)lln < alt) 4 bll]ln,
then Ny maps continuously L*(0,1;R™) into itself.

In order to do a proof of the above lemma we can follow a similar argument as
in [2, Theorems 3.1 and 3.7]).
If we argue as in [2, Lemma 9.5] we obtain:

Lemma 3.10. Let g : [0,1] x R" x R™ — R"™ be a Carathéodory function, if there
exist a constant b > 0 and a function a(-) € L} (0,1;R) such that

lg(t, 2, 9)lln < a(t) + b([|]ln + llylln),
then the map Ny : W0, 1;R"™) — LY(0,1;R™) defined by
Ny()(t) = g(t, (1), ¢ (1))
18 continuous.

Lemma 3.11. Let g : [0,1] x R" x R" — R"™ be a Carathéodory function such that
there exist a € L#(O, 1,R), b,k > 0 satisfying that
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(1) llg(t, 2, 0)[ln < a(t) + bl|z|n,
(2) llg(t 2, 91) — gt 2, 92)lln < Elly1 — v2lln-
Then, the operator Ny : X — L'(0,1;R™) is 2k-set contractive.

Proof. From assumptions (1) and (2) we obtain that

lg(t, 2, 9)lln < a(t) + bllzln + Ellylln,
for (t,z,y) € [0,1] x R x R™. Hence, using Lemma 3.10, we infer that N, : X —
LY(0,1;R™) is a continuous mapping.

Let A be a bounded subset of X, and let r = ax(A). Then for every € > 0 there
exist subsets Aj,..., A, of X such that A = U ;A4; and diam”.HM(Ai) <r+e.
Since by [23, Theorem 1], we know that the injection of W'1(0,1; R?) in L(0, 1, R")
is compact then A, Ay,..., A, are relatively compact in L (0, 1;R"™).

Let u; € A; for i = 1,...,n. Define the mapping g,, : [0,1] x R" — R" given by
gu, (t,x) = g(t, z,u}(t)). Since g is a Carathéodory function then the g,,’s are also.
Moreover from assumption (1) and Lemma 3.9, the mapping N,, : L'(0,1;R") —
LY(0,1;R™) defined as Ny, v(t) = gy, (t,v(t)) is well defined and it is also continuous.
Then N, are uniformly continuous on U}_; A;. So, there exists § > 0 such that for
lv —w|i <0 with v,w € U, A; we have

1
[Ny, (v) = No, (w)||1 == /0 lg(t, v(t), u;(t) — g(t, w(t), ui(t))||lndt < .
For each A; there is a finite family of subsets A;; such that A; = U;A;; and

diamH'lh(Ai,j) < 0.
Therefore for any v, w € A; ; we have

INy(0) — Ny ()]s = /0 gt 0(), 0/ (8)) — g(t, w(t), w'(2)) | udl
< [l vle). /(1) — glt, o0, 0
0
1
4 /0 gt o(8), (1)) — gt w(t), ul(6))ndlt
1
+ /0 gt w(t), wi(t)) — gt w(t), w'(t))||ndt

1 1
<k / 10/ () — wl(8) |t + & + & / I (t) — ! () il
0 0
<Ellv—uilig+e+k||lw—ui1
< 2kr + €.

That is
a1 (Ny(A)) < 2kax (A).

Now, for studying the existence of a strong solution to (3.15), we define

T:X — LY0,1;R") by T(u)=u—f
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and
S:X — LY0,1;R™) by S(u)= Nj(u),

where g(t,z,y) = g(t,z + £, y).
Thus, to show that (3.15) has a solution is to see that the coincidence problem,
T'(u) = S(u) admits a solution.

Theorem 3.12. If max{b+k,2k} <1, (3.15) has at least a solution in the Sobolev
space WH1(0, 1; R™).

Proof. In order to show that T, S fulfill the conditions of Corollary 3.5. First we

shall show that there exists r > 0 such that if |ju||i,1 > 7 then T'(u) # uNgz(u) for

all 4 € (0,1), since the rest of conditions are consequences of the above lemmas.

Thus, let us take u € X satisfying that T'(u) = ANj(u) for some X € (0,1). Hence
W'(t) = f(t) = Aglt, u(t) + & u'(t), t€(0,1)ae.

from this equality we infer that

1/ ()]l < A (a(t) + 0([[w)ln + [1Elln) + Kl @)]ln) + [1fE)]n ae.
Therefore,
[/ lv < Alal[s + Abllulls + AbIE] + Nk[|w[l1 + [ f]1-
Applying Lemma 3.7, we obtain that

(L =A@+ E)lullia < Alalls + &) + 1 £

Since by hypothesis b + k < 1 if we call r := W

that ||ul1,; < r. This inequality allows us to conclude that if ||u|;; > 7, then
Tu # ANg(u) for all X € (0,1).
Now, let ug(t) = f(f f(r)dr. We choose z¢g = Tug = 0 and

U={ue X :|u—ugly <r+|uol}

, it is easy to see

If w € O(U) we have [ju — ugll11 = 7 + |luo|| which implies |lul[11 > 7 so for all
Ae(0,1)
Tu 75 )\Ng(u) + (1 - )\)1‘0.
Applying Corollary 3.5 there exists 29 € U such that Tzg = N3z, as we want to
show. 0

A trivial consequence of Theorem 3.12 is the following one:
The equation

(3.16) { Z'((g)) - gft’U(t)) = f(t), te(0,1)ae.

where f € L'(0,1;R") is a fixed function and g : [0, 1] x R® — R™ is a Carathéodory
function such that there exist a € L1 (0,1), 0 < b < 1 satisfying that ||g(¢, z)|, <
a(t) + b||z||n, has a strong solution.

Example 3.13.
{ U,(t) o cos(u(t)) _ u(t)+sin(u’(t)) — f(t), te (07 1)

(3.17) Vi N
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cos(x) + z+sin(y)
) ) \/Z1 2V/t+2
and therefore |g(,z,0)| < =7 + 5 5le] and [g(t, 2, y1) — 9(t, 2,92) < 55091 — vl
which implies that ¢ fulfills the conditions of Theorem 3.12.

has a strong solution since in this example we have that g(¢,z,y) =

3.2. Multivalued case.

Theorem 3.14. Let X be a normed space and let Y be Banach space. Consider a
nonempty subset D of X. Suppose that t : D — 2Y is a multivalued mapping and
s: D —Y is a mapping which satisfy:

(1) R(t) =Y andt~':Y — D is a univalued continuous and compact mapping,

(2) s is continuous and it maps bounded subsets into bounded subsets,
(3) There ezists R > 0 such that

(3.18) |lz||x > R, z€ D = As(x) ¢t(x) VYAe(0,1).
Then there exists xg € D with s(xg) € t(zo).

Proof. The mapping h : Y — Y given by h(y) = s ot !(y) is continuous and
compact. Therefore h is a continuous condensing mapping.

We will see that h satisfies a Leray-Schauder condition with Oy. Otherwise, we
can assume that for each n € N there are y,, € Y with ||y,|| > n and A, > 1 such
that

(3.19) h(yn) = )\nyn-

Since R(t) =Y for each n € N there exists x,, € D with y,, € t(x,), from this and
(3.19)
)\is(:cn) = yn € t(zp).
n
Therefore ||z,|| < R, from (3.18). Using assumption (2) we have that (s(x,)) is a
bounded sequence, then (y,) is a bounded sequence which is a contradiction.
Hence there exists M > 0 such that

lylly > M = h(y) # Ay, VYA>1,

and from Theorem 2.4 we have that there exist yg € Y such that h(yo) = yo, but
since R(t) =Y, there exists 9 € D such that t~1(yo) = 2. Then we obtain that
s(zo) = yo € t(xo) as we want to prove. O

Corollary 3.15. Let X be a Banach space and A : D(A) — 2% an m-accretive
operator such that 0 € A(0) and s : D(A) — X a continuous mapping. Suppose
that the following conditions are fulfilled:
(1) J3t is compact,
(2) there exists R > 0 such that ||s(z)|| < a + b||z|| whenever x € D(A) with
Jall > R

Then given p > b there exists xo € D(A) such that s(xg) € pxo + A(zo).
Proof. Let X\ := %. To show the result we are going to apply Theorem 3.14 to the

mappings t := I + AA and As. Thus we have to see that the coincidence problem
As(z) € t(x) has a solution.
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Since A is m-accretive, t 1 = .J f : X — D(A) is single-valued and nonexpansive
and by assumption (1) it is also compact. Moreover, it is not difficult to see that
llyll > ||x|| whenever y € x + AA(x). Indeed, we know that there is z € A(z) such
that y = = + Az, hence since A is accretive and 0 € A(0), we obtain

(3.20) [z =0 < flz = 0+ A(z = O)| = [l + Az[| = [ly]-

Assumption (2) guarantees that As maps bounded set into bounded sets.
Finally, let us see that there exists 5 > 0 such that pAs(x) ¢ (I+AA)(x) whenever
|z|| > B and € D(A). Indeed, if there exists u € (0,1) such that

(3.21) pAs(z) € (I + AA)(x),

then by (3.20)and (3.21) we have that pA||s(z)|| > ||z||. In this case, assumption
(2) yields

2]l < pA(a +bllz])),
which is a contradiction when we take § > R larger enough and p > b. O

Next result works with mappings which are condensing but not necessarily k-set
contractive, examples of such mappings can be found for instance in [3, 4].

Theorem 3.16. Let (X, | - ||x) be a normed space and let (Y,|| - ||y) be a Banach
space. Assume that t : X — 2Y is a multivalued mappings with R(t) = Y such
that t=1 : Y — X s single-valued nonexpansive and s : D(t) — Y a continuous
a-condensing mapping satisfying that there exists R > 0 and yo € Y such that

(3.22) |z —tyollx > R = ps(x) + (1 — )y ¢ t(x) Ve (0,1).
Then there exists xog € X such that s(xo) € t(xo).

Proof. Since t! : Y — X is nonexpansive, then ¢t~! is continuous. Consider the
mapping h := sot™! : Y — Y, it is continuous because it is composition of
continuous functions. Reasoning as in the proof of Theorem 3.3 we can prove that
h is condensing.

Finally, we show that h satisfies a Leray-Schauder condition with gg. If this was
false, we could find y, € Y and A, > 1, for each n € N, satisfying

lyn —woll >n  and  h(yn) — Yo = An(Yn — Y0)-

Taking x,, = t!(y,), the previous assumption along with the definition of h yields

5(xn) — Yo = A (Yn — Y0),

SO
1 1

)\—ns(ﬂsn) + <1 - Aﬂ) Yo = Yn € t(wn).

Using (3.22) we conclude that ||, — t 'yo||x < R, which means that the sequence
(x) is bounded. Then the sequence (s(zy)) is bounded, because s is a-condensing.
Therefore y,, is bounded, but this is a contradiction.

By Theorem 2.4 there exists y € Y such that h(y) = y. Choosing zg = t~!(y) we
have that s(zo) =y € t(zo). O
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Example 3.17. Let (H,(-,-)) be a finite dimensional real Hilbert space and let D
be a nonempty closed convex subset of H.
Given a mapping f : D — H, the variational inequality defined by f and D is

find g € D such that
(3.23) SRR i

(f(x0),y —x0) >0, for all y € D.

As an application of Theorem 3.16, we shall see that VI(f, D) admits a solution
whenever f is a continuous mapping which satisfies that there exists R > 0 such
that

(3.24) |lz||lg > R, v € D= (f(x),z) >0,
and 0 € D.
Let us introduce the indicator function of D: Ip : H — [0, 400] defined by

Ip(z) = 0,iftxeD,
DW= 4o, if 2 € H\ D.

It is well known (for instance see [5]) that Ip is a proper convex lower semi
continuous function and its subdifferential dIp : H — 29 given by

Olp(z)={(€ H: ({,y—x) <Ip(y) — Ip(x), forally e H},

is clearly an m-accretive operator on H where its effective domain is D(0Ip) = D.
Moreover, it is easy to see that

OIp(x) ={y€ H:(y,z—x) <0 forevery z € D}.

Thus, a solution of VI(f, D) will be a point xg € D such that —f(xg) € dIp(xo).

In order to study the existence of solution for this problem , we call t := I +3JIp :
D—2" ands:=—f+1:D— H.

Since OIp is m-accretive then ¢! is a single-valued nonexpansive mapping and
R(t) = H. The mapping s is a-condensing because s is compact, since it is contin-
uous and H is finite dimensional.

Note that 0 € D implies that 0 € 9Ip(0). So t~1(0) = 0. We will choose o = 0
and R given by (3.24) in Theorem 3.16.

If condition (3.22) does not hold the exist x € D with ||z||z > R and p € (0,1)
such that u(—f(z) + z) € x4+ dIp(x), i.e. —uf(x)+ (p— 1) € dlp(xz). Which
means that for all v € D

(—pf () + (1= Va0 ) < 0.

The convexity of D along with that 0 and z are elements of D implies (1—pu)x € D.
Then

(=nf(@) + (p =Dz, (1 = plz —x) <0,
p2(f(x),x) — (u = Vplzlf <0,

<ﬂ@m»s“;nﬂ@sa

which contradicts assumption (3.24).
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The above facts allow us to say that ¢ and s are under the hypotheses of Theorem
3.16, so we conclude that there exists ¢ € D such that s(zg) € xg + dIp(xg) and
this means that —f(xg) € dIp(xo).

Next result shows that if s, ¢ are under the conditions of Theorem 3.16 and we add
that s is a bounded mapping then Leray-Schauder’s condition is directly fulfilled.

Corollary 3.18. Let (X, | - ||x) be a normed space and let (Y, || - |ly) be a Banach
space. Assume that t : X — Y is an expansive surjection and s : X — Y a
continuous, bounded and a-condensing mapping. Then there exists g € X such
that s(xg) = t(xg).

Proof. In order to obtain the result, we only have to see that ¢,s: X — Y, defined
as in Theorem 3.16, satisfy condition (3.22) with yo := Oy.

To do this, we argue as follows:

Since t : X — Y is expansive, we have that

[#(z) = t0x)lly = [l2llx for all & € X,
thus, since t is onto, we infer
[ty >z =t 0yv)[[x = [[£7H0y)[lx — [1E0x) |y

On the other hand, since s is a bounded mapping, there exists M > 0 such that
|s(x)|ly < M for every x € X.

If now we take R := M + [[t71(0y)||x + |[t(0x)|ly. We may conclude that if
|z —t~1(0y)|lx > R, then

[t(@)lly = llz =t (0y)llx = 71 0v)llx = [1E0x) [y = M,
which means that s(z) — 0y # A(t(x) — Oy) whenever A > 1. O

Corollary 3.19. Let (X, | - ||x) be a normed space and let (Y, || - ||y) be a Banach
space. Assume that t : X — Y is an expansive surjection and s : X — Y a
continuous, a-condensing mapping satisfying that there exists R > 0 and yg € Y
such that

(3.25) lz — t"'yollx = R = [|s(z) = yolly < llz — " (yo)llx.
Then there exists xo € X such that s(xg) = t(xo).

Proof. We are going to prove that ¢t,s: X — Y, defined as in Theorem 3.16, satisfies
condition (3.22). Indeed, since ¢t~! is a nonexpansive mapping, we have

lz =t~ (yo)llx = 7 (¢(2)) =t (yo) lx < [IE(x) — wolly-
The above inequality along with (3.25) implies that if ||z — ¢t~ lyg|| > R, then
(@) = yolly < llz =t~ (yo)llx < llt(a) = wolly-
Consequently
s(x) —yo # Mt(x) — yo) whenever A > 1.
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3.2.1. A nonlinear Dirichlet problem. Let € be a measurable subset on R™ which
for simplicity will be assumed to be bounded.

The Sobolev space W™P(Q2) is the Banach space of all functions in LP(2) all of
whose weak derivatives up to order m also belong to LP(€2). The norm in this space
is given by

ety = llully + Y 1D%ullp,
1<|a|<m

g1+ +an

where a = (a1,...,0p) € N, |a| =37 | a4, and D% = T

WP () is the closure of C3°(Q2) in W™P(Q).

In this section, We shall study the existence of solutions in L!(2) for the equation

Ap(u(z)) = f(z,u(z)) z=€Q
(3.26) { p(Z(x)) —0 z €N

Let us now specify the conditions assuring the existence of a solution for Equation
(3.26):
(1) 2 is a bounded domain in R™ with a smooth boundary 0.
(2) p€ C(R)NCHR\{0}), p(0) = 0.
(3) There exists C' > 0 and v € RT with v > 1 such that

P (r) > Clr|~! for each r € R\ {0}.

(4) f: 2 xR — R is a Carathéodory function such that |f(s,z)| < a(s) +
blz|, where a € L'(2) and b > 0. This condition guarantees that the
superposition operator associated to f,

Ny(u)(s) = f(s,u(s)),

acts form L'(€2) into L!(Q2) and is continuous. We refer to [2] for background
material on superposition operators.

H. Brezis and W. Strauss in [6] showed that under the above conditions (1) and
(2), the operator

(3.27) { D(P) = {u € LNQ) : p(u) € Wy (), Ap(u) € L} ()}

P(u) = Ap(w), u € D(P)

is m-dissipative, which means that — P is m-accretive.

Definition 3.20. We say that v € L*(Q) is a solution of Problem (3.26) whenever
v e LYQ), pv) € I/VOLI(Q)7 Ap(v) € LY(Q) and Ap(v(z)) = f(z,v(z)) a.e. z € Q.

That is, whenever v € D(P) is a solution of the coincidence problem P(v) = N¢(v),
where D(P) and P are defined in (3.27).

Theorem 3.21. If Conditions (1-4) are fulfilled, then Problem (3.26) has a solu-
tion.
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Proof. Let us consider the following operator
D(Q) = {ue Wy''(Q), Aue LY(Q)}
Q(u) = Au, u € D(Q)a
where Aw is understood in the sense of distributions. From [6, Theorem 8] we know
that there exists D > 0 such that
(3.28) Dllullry < [[Qullx
for each u € D(Q). Moreover, [11, Remark 4.12] shows that there exists

Q™' LY() = D(Q)
and it is continuous.
In [11, Theorem 4.11] was proved that the superposition operator
S: LY (Q) = LY(Q) such that S(u)(z) := p~(u(z)).
is well defined and it is continuous.
As a consequence of the above facts we may introduce the operator:
T : LY(Q) — LY(Q) defined by T'(u) = S(Q™*(u)).

Now, we will see that T'(u) € D(P) for every u € LY(Q).
Indeed, we know that T'(u) € L*(2). Moreover p(T(u)) = Q1 (u) € D(Q).
Consequently

p(T(u) € Wi(2) and Ap(T(u)) € L'(Q)),

ie. T(u) € D(P).
The above argument says that T is the inverse operator, in L(Q), of P.

Next, let us see that T is a compact mapping.

Indeed, let A be a bounded subset of L!(£2). From (3.28), we have that (Q~1(A))
is a bounded subset of W11(Q) and since the embedding W1(Q) — LY(Q) is
compact, we have that Q~1(A) relatively compact in L'(2), and thus, since S :
LY(©2) — L'(Q) is a continuous mapping, T(A) must be a relatively compact subset
of L}(Q).

On the other hand, Condition (4) implies that the superposition operator Ny :
LY(Q) — L'(Q) is continuous and maps bounded subsets into bounded subsets and
since P(D(P)) = L*(Q), we also have that N;(D(P)) C P(D(P)).

In order to find a solution of Problem (3.26) it will be enough to apply Theorem
3.14. To this end, we shall show that there exists R > 0 such that if w € D(P) and
there exists p € (0,1) with

(3.29) P(u) = puNy(u),

then ||ul|; < R.
Suppose that u satisfies (3.29). Since |f(s,x)| < a(s) + b|z|, we have that

(3.30) pINs ()l < llally + bllullx
On the other hand, we know that
P (r) > C|r|7~! for each r € R\ {0},
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which implies that
C
lp(r)] = —I|r[™.
Y

The above inequality means that %|u(s)|7 < |p(u(s))| a.e. s € Q. Thus, we infer
that u € L7(£2). Since 2 is a bounded set, Holder’s inequality yields

5 11
[ utsls < ([ o)) @)
Q Q
where A(€2) is Lebesgue measure of Q. Hence, if we call K := %/\(9)1*7, we obtain
that o
Klallf < = [ us)ds < lp(wlh.
Moreover, by (3.28), D||p(u)||1 < |[[Ap(u)|1. Therefore,
(3.31) DK [ull{ < [[Ap(u)ll1-
(3.30) along with (3.31) implies
DK [ull{ < flall + blluf;.

Consequently,
i < Nl + bl
=l
However, since v > 1 it is clear that
fim el Aol o
lulhi—oo  Jlull}

Hence there exists R > 0 such that if ||u||; > R then
b DK
lals + bllully _

lull{ 2
The above inequality allows us to conclude that ||u||; < R whenever u is a solution
of (3.29). O
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