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In this paper, we intend to obtain several versions, without invoking degree the-
ory, of the coincidence problem where s and t can both be nonlinear. In Section
3.1, we are concerned with the solvability of the following differential equation:

(1.2)

{
u′(t)− g(t, u(t), u′(t)) = f(t), t ∈ (0, 1) a.e.
u(0) = ξ,

where f ∈ L1([0, 1];Rn) is a fixed function and g : [0, 1] × Rn × Rn → Rn is a
Carathéodory function.

Finally, we will use this kind of coincidence results to obtain the existence of
solutions for a Dirichlet problem of the form:

(1.3)

{
∆ρ(u(x)) = f(x, u(x)) in Ω
ρ(u(x)) = 0 on ∂Ω,

where Ω is a bounded domain in Rn, ∆ is the standard Laplace operator, ρ ∈
C(R) ∩ C1(R \ {0}) and f : Ω× R → R is a Carathéodory function.

2. Preliminaries

In this section, we shall introduce notations, definitions and preliminary facts
which are used throughout this article.

Let X be a real normed space. As usual, given a nonempty subset A ⊆ X, denote
the closure of A by A, the boundary of A by ∂A, the convex hull of A by co(A), the
diameter of A by diam(A), and the family of bounded subsets of A by B(A).

Definition 2.1. Let X be a normed space. A measure of non-compactness is a
function µ : B(X) → R+ which satisfies:

(1) µ(A) = 0 ⇔ A is compact.
(2) µ(A) = µ(A).
(3) µ(A ∪B) = max{µ(A), µ(B)}
(4) µ(co(A)) = µ(A).

To avoid confusion when dealing with different spaces, we will in some cases add
the name of a subspace as a subscript.

Point 3 in the above definition implies that µ(A) ≤ µ(B), whenever A ⊂ B.
The most important examples of measures of noncompactness are the Kuratowski

measure of noncompactness (or set measure of noncompactness):
Given a bounded subset A of X,

α(A) = inf {r > 0 : A ⊂ ∪n
i=1Di, diam(Di) ≤ r} .

And the Hausdorff measure of noncompactness (or ball measure of noncompact-
ness):

Given a bounded subset A of X,

χ(A) = inf {r > 0 : A ⊂ ∪n
i=1B(xi, r), xi ∈ X} .

A detailed account of theory and applications of measures of noncompactness
may be found in the monographs [1, 4]
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Definition 2.2. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be two normed spaces endowed with
the measures of noncompactness µX and µY respectively. If C is a nonempty subset
of X and T : C → Y is a mapping,

(a) Given k > 0, the mapping T is called (µX , µY )-k-set contractive if
µY (T (A)) ≤ kµX(A) for all A ∈ B(C).

(b) The mapping T is called (µX , µY )-condensing if µY (T (A)) < µX(A) for all
bounded subset A of C with µX(A) > 0.

(c) The mapping T is called expansive if the inequality ∥T (x) − T (y)∥Y ≥
∥x− y∥X holds for every x, y ∈ C.

(d) The mapping T is called nonexpansive if the inequality ∥T (x) − T (y)∥Y ≤
∥x− y∥X holds for every x, y ∈ C.

(e) The mapping T is said to be bounded if there exists k > 0 such that
∥T (x)∥Y ≤ k for all x ∈ C.

The following well known theorem was proved in 1967 by Sadovskii [21], it is a
generalization of Darbo’s fixed point theorem [9]. We refer to [3] where the reader
will find many applications of these theorems.

Theorem 2.3. Suppose that C is a closed convex bounded subset of a Banach space
X and T : C → C a continuous and condensing mapping, then T has a fixed point.

When the domain C, in Sadovskii’s theorem, is unbounded the following result
is also well known.

Theorem 2.4. Suppose that C is a closed convex and unbounded subset of a Banach
space X and T : C → C a continuous and condensing mapping. If there exist R > 0
and z ∈ C such that for all u ∈ C ∩ SR(z)

T (u)− z ̸= λ(u− z), ∀λ > 1,

then T has a fixed point.

We recall the following theorem proved by Petryshyn in [19] (also see [20]).

Theorem 2.5. Suppose that U is an open bounded subset of a Banach space X and
T : U → X a continuous and condensing mapping. If there exists z ∈ U such that
for all u ∈ ∂U

u ̸= λT (u) + (1− λ)z, ∀λ ∈ (0, 1),

then T has a fixed point.

Let T : X → Y be a mapping which transforms bounded subsets of X into
bounded subsets of Y . For a such mapping, we define

l(T ) := sup{r > 0 : rµX(A) ≤ µY (T (A)), A ∈ B(X)}.

In the following we are going to use the Kuratowski measure of noncompactness.
Assuming that (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) are normed spaces and if a mapping
T : C → Y is (αX , αY )-condensing we will say simply that T is α-condensing.

If T : X → Y is an invertible and bounded linear map and N : Ω → Y is a k-set
contractive map with k < l(T ) such that for all x ∈ ∂Ω we have T (x) ̸= N(x),
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one can associate with the pair (T,N) a topological degree, the so-called Sadovskii-
Nussbaum degree (see [10] we also refer to the reader to [22]). This degree allows
us to show the following.

Theorem 2.6. Let X and Y be two Banach spaces and let T : X → Y be an
invertible, bounded linear map and Ω ⊆ X bounded open and symetric about 0 ∈ Ω.
Let N : Ω → Y be a k-set contractive map with k < l(T ). Then given y ∈ Y such
that T (x) ̸= λN(x) + λy, for all x ∈ ∂Ω and λ ∈ (0, 1), there exists x ∈ Ω such that
T (x) = N(x) + y.

Let X and Y be two normed spaces and A : X → 2Y a multivalued mapping.
Recall some useful notation, namely: the (effective) domain of A is D(A) := {x ∈
X : A(x) ̸= ∅}, the range of A is R(A) := {u ∈ A(x) : x ∈ D(A)} and its graph is
the subset of X × Y defined as G(A) := {(x, u) ∈ X × Y : x ∈ D(A), u ∈ A(x)}.

We note that one may identify each subset G ⊆ X × Y with a multivalued
mapping A : X → 2Y by defining A(x) := {u ∈ Y : (x, u) ∈ G}. The inverse
A−1 : R(A) → 2X is then defined by A−1(u) := {x ∈ X : u ∈ A(x)} and it is clear
that G(A−1) = {(u, x) ∈ X × Y : (x, u) ∈ G(A)}.

Given an operator A : D(A) → 2X , we define

Jλ := (I + λA)−1 : R(I + λA) → 2D(A), here I means the identity operator. As
usual, we call to Jλ a resolvent of A.

Definition 2.7. An operator A ⊂ X × X is said to be accretive if and only if
∥x− y∥ ≤ ∥x− y+ λ(u− v)∥ for all x, y ∈ D(A), for each u ∈ Ax and v ∈ Ay, and
for all λ > 0. If moreover, R(A+ I) = X, we say that A is m-accretive.

Proposition 2.8. The operator A ⊂ X×X is accretive if and only if for each λ > 0,
the resolvent Jλ : R(I + λA) → D(A) is a single-valued nonexpansive mapping.

A detailed account of theory and applications of accretive operators may be found,
for instance, in the monograph [5].

3. A Leray-Schauder condition to the coincidence problem

3.1. Single-valued case. The first purpose here is to establish several coincidence
results by using Theorem 2.4.

Theorem 3.1. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces. Consider C a
convex closed subset of X such that the mappings t : C → Y and s : C → Y satisfy:

(1) t(C) is a convex subset of Y and t−1 : t(C) → C is uniformly continuous
on bounded subsets of t(C),

(2) s is a continuous k-set contractive mapping,
(3) s(C) ⊂ t(C),
(4) k < l(t),
(5) There are R > 0 and x0 ∈ C such that for every x ∈ C with ∥x− x0∥ ≥ R

we have

(3.1) s(x)− t(x0) ̸= λ(t(x)− t(x0)) ∀λ > 1.

Then there is z ∈ C such that s(z) = t(z).
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Proof. It is not difficult to check that t−1 : t(C) → C is 1
l(t) -set contractive. However,

if we do not assume the continuity of t, then t(C) may be unclosed (for instance see

[12]). Thus, we have to consider t−1 : t(C) → C given by

t−1(y) =

{
t−1(y) , si y ∈ t(C)
limn t

−1(xn) , xn ∈ t(C), xn → y ∈ ∂(t(C)).

We claim that t−1 is also 1
l(t) -set contractive. Let A be a bounded subset of t(C).

Since A = (A ∩ t(C)) ∪ (A ∩ ∂(t(C))), and t−1 : t(C) → C is 1
l(t) -set contractive, it

is enough to assume that A ⊂ ∂(t(C)).
Take r = αY (A) and ε > 0, there exist A1, A2, . . . , An such that A ⊂ ∪n

i=1Ai ⊂
∂(t(C)) and diam∥·∥Y (Ai) ≤ r + ε

3 .

(3.2) αX(t−1(A)) ≤ max{αX(t−1(Ai)) : i = 1, . . . , n}.
Let

Bi :=
∪
y∈Ai

{
x ∈ t(C) : ∥x− y∥Y ≤ ε

3

}
.

Note that Ai ⊂ Bi. Then

αX(t−1(Ai)) ≤ αX(t−1(Bi)) = αX(t−1(Bi))

= αX(t−1(Bi)) ≤
1

l(t)
αY (Bi).(3.3)

For u, v ∈ Bi there exist xu, xv ∈ Ai such that max{∥u− xu∥Y , ∥v − xv∥Y } ≤ ε
3 ,

then

∥u− v∥Y ≤ ∥u− xu∥Y + ∥xu − xv∥Y + ∥xv − v∥Y

≤ ε

3
+ diam∥·∥Y (Ai) +

ε

3

≤ 2ε

3
+ r +

ε

3
= r + ε.

So diam(Bi) ≤ r + ε, therefore αY (Bi) ≤ r + ε.
Using (3.2), (3.3) and since ε is an arbitrary positive number we have

αX(t−1(A)) ≤ 1

l(t)
αY (A)

as we claimed.
Since by assumption (3), s(C) ⊆ t(C), we may consider the mapping h : t(C) →

t(C) given by h(x) = s(t−1(x)), clearly h is a continuous mapping and for every

bounded subset B of t(C) we have

αY (h(B)) = αY (s ◦ t−1(B)) ≤ kαX(t−1(B)) ≤ k

l(t)
αY (B),

in consequence h is a condensing mapping because k
l(t) < 1.

Next step will be to check that h satisfies a Leray-Schauder condition with y0 :=
t(x0). Otherwise, without loss of generality, we may assume that for every n ∈ N,



1910 J. GARCIA-FALSET, C. A. HERNÁNDEZ LINARES, O. MLEŞNIŢE

there exists yn ∈ t(C) (i.e., there exits xn ∈ C such that yn = t(xn)) and λn > 1
such that

(3.4) ∥yn − y0∥Y ≥ n

and

(3.5) h(t(xn))− y0 = λn(t(xn)− y0).

From (3.1) and (3.5) we deduce that

∥xn − x0∥X < R,

which means that {xn} is a bounded sequence.
Since s is α-condensing then {s(xn)} is a bounded sequence. From (3.5) then

t(xn) =
1

λn
(s(xn)− y0) + y0,

this implies that {t(xn)} is also bounded which is in contradiction with (3.4).

Finally, applying Theorem 2.4, there exists z0 ∈ t(C) such that h(z0) = z0. Since
s(C) ⊆ t(C), there is z ∈ C such that z0 = t(z), which means that t(z) = s(z). □

Corollary 3.2. Let (X, ∥·∥X) and (Y, ∥·∥Y ) be Banach spaces and let t : X → Y be
a continuous invertible linear map and C a convex closed subset of X.Let s : C → Y
be a continuous k-set contraction with k < l(t) and satisfying that s(C) ⊂ t(C). If
there are R > 0 and x0 ∈ C such that

x ∈ C, ∥x− x0∥X ≥ R ⇒ s(x)− t(x0) ̸= λ(t(x)− t(x0)) ∀λ > 1,

then there is z ∈ C such that s(z) = t(z).

Proof. Notice that t(C) is a convex subset of Y since C is convex and t is a linear
mapping. Moreover, the open mapping theorem says that t−1 : Y → X is a contin-
uous linear mapping and then uniformly continuous. Now, in order to obtain the
conclusion we may apply Theorem 3.1. □

Next result may be considered as a sharpening of Theorem 2.5.

Theorem 3.3. Let X be a normed space and let Y be a Banach space. Assume
that U is a bounded open subset of X, t : U → Y an expansive mapping such that
t(U) is an open bounded subset of Y with ∂(t(U)) ⊂ t(∂U) and s : U → Y is a
continuous condensing mapping. If there exists x0 ∈ U such that for all x ∈ ∂U

(3.6) t(x) ̸= λs(x) + (1− λ)t(x0) ∀λ ∈ (0, 1)

then there exists z0 ∈ Y such that t(z0) = s(z0).

Proof. Since t is expansive then it is injective. Since t is an injection, we deduce
that t(∂U) ⊂ ∂(t(U)). That means, with our assumptions, t(∂U) = ∂(t(U)). Then

t(U) = t(U) ∪ t(∂U) = t(U) ∪ ∂(t(U)) = t(U).

Define h = s◦t−1 : t(U) → Y . Since t−1 and s are continuous then h is a continuous
mapping.
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We claim that h is α-condensing. Let A be a bounded subset of Y . Take B =
t−1(A), since t−1 is nonexpansive then

diam∥·∥X (B) = diam∥·∥X (t
−1(A)) ≤ diam∥·∥Y (A).

This means that B is bounded.
Notice that if αY (A) = 0, then αX(B) = 0. Hence if we assume that αY (A) > 0:

αY (h(A)) = αY (s(B)) < αX(B) = αX(t−1(A)) ≤ αY (A),

otherwise 0 = αY (h(A)) < αY (A). Therefore h is α-condensing as we claimed.
Now, we are going to show that

y ̸= λh(y) + (1− λ)t(x0), ∀λ ∈ (0, 1),

whenever y ∈ ∂(t(U)).
Otherwise, there would be y ∈ ∂(t(U)) = t(∂U) and a number λ ∈ (0, 1) such

that

y = λh(y) + (1− λ)t(x0).

Then there exists x ∈ ∂U such that t(x) = y, so

t(x) = λ(s ◦ t−1)(t(x)) + (1− λ)t(x0)

this implies

t(x) = λs(x) + (1− λ)t(x0),

which contradicts (3.6).
Finally, since t(U) is open, Theorem 2.5 guarantees the existence of a fixed point

y0 ∈ t(U) for h, then there exists z0 ∈ U such that y0 = t(z0) and so s(z0) =
t(z0). □

Remark 3.4. If in the above theorem we add that X is a Banach space and that t
is continuous, then t(U) is a closed subset of Y (for instance see [12]). Therefore
the assumption ∂(t(U)) ⊂ t(∂U) is directly satisfied.

The following corollary allows us to give a completion of Theorem 2.6.

Corollary 3.5. Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be Banach spaces and let t : X → Y
be an expansive continuous invertible affine map and U a bounded open subset of
X.Let s : U → Y be a continuous condensing mapping. If there is x0 ∈ U such that
for all x ∈ ∂U ,

t(x) ̸= λs(x) + (1− λ)t(x0) ∀λ ∈ (0, 1),

then there is z ∈ U such that s(z) = t(z).

Proof. The open mapping theorem guarantees that t(U) is an open subset of Y and
that t−1 : Y → X is a continuous affine mapping and then uniformly continuous.
Now, in order to obtain the conclusion we may apply Theorem 3.3. □

Example 3.6. We would like to know if the the system of equations given by

(3.7)

{
x2 =

√
x+ y

y2 = 3 sin(2x+ y)

has at least a non trivial solution.
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Consider X = (R2, 13∥ · ∥∞), Y = (R2, ∥ · ∥∞), U = (1/2, 2) × (1/2, 2) ⊂ X, the

mapping t : U → Y given by

t(x, y) = (x2,
1

3
y2)

and the mapping s : X → Y given by

s(x, y) = (
√
x+ y, sin(2x+ y)).

Note that s is continuous and it is compact since we are working in finite dimen-
sional spaces. It can be shown that

∥t(x1, y1)− t(x2, y2)∥∞ ≥ 1

3
∥(x1, y1)− (x2, y2)∥∞,

that is, t is expansive. Moreover, t(∂U) = ∂(t(U)) and t(U) is an open set.
We need to check that (3.6) is satisfied in Theorem 3.3.
Observe that

∂U = σ1 ∪ σ2 ∪ σ3 ∪ σ4,

where

σ1 = {(1/2, t) : t ∈ [1/2, 2]},
σ2 = {(t, 2) : t ∈ [1/2, 2]},
σ3 = {(2, t) : t ∈ [1/2, 2]},
σ4 = {(t, 1/2) : t ∈ [1/2, 2]}.

We will check that (3.6) is satisfied with the point (1, 1) for every (x, y) ∈ ∂U ,
i.e., for all (x, y) ∈ ∂U we will see that

(3.8) (x2,
1

3
y2) ̸=

(
λ
√
x+ y + (1− λ), λ sin(2x+ y) +

1

3
(1− λ)

)
for all λ ∈ (0, 1).

For t ∈ [1/2, 2] and for λ ∈ (0, 1) we observe that

λ

√
1

2
+ t+ (1− λ) ≥ λ+ (1− λ) = 1 >

1

4
,(3.9)

λ sin(2t+ 2) +
1

3
(1− λ) ≤ λ+

1

3
(1− λ) =

2

3
λ+

1

3
(3.10)

<
2

3
+

1

3
= 1 <

4

3
,

λ
√
2 + t+ (1− λ) < 2λ+ (1− λ) = λ+ 1 < 2 < 4.(3.11)

then (3.9) shows that (3.8) holds on σ1, (3.11) shows that (3.8) holds on σ2 and
(3.11) shows that (3.8) holds on σ3.

For t ∈ [12/10, 2] and for λ ∈ (0, 1)

λ

t2

√
t+

1

2
+

1− λ

t2
≤ λ

√(
10

12

)3

+

(
1

2

)(
10

12

)4

+
1− λ

t2

< λ+ (1− λ) < 1.(3.12)
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For t ∈ [1/2, 12/10] and for λ ∈ (0, 1)

λ sin

(
2t+

1

2

)
+

1− λ

3
≥ λ sin

(
2

(
12

10

)
+

1

2

)
+

1− λ

3

= λ sin

(
29

10

)
+

1− λ

3
>

λ

5
+

1− λ

3

=
1

3
− λ

(
2

15

)
>

1

3
− 2

15
=

3

15
>

1

12
.(3.13)

From (3.12) and (3.13) we deduce that (3.8) holds on σ4.
Therefore, by Theorem 3.3 there exists (x, y) ∈ U such that t(x, y) = s(x, y) and

this point is a solution of the system.

3.1.1. Existence of strong solution to a differential equation. Consider the Banach
space (Rn, ∥ · ∥n) and let L1(0, 1;Rn) be the Banach space of Bochner integrable
functions x : [0, 1] → Rn endowed with the norm

∥x∥1 =
∫ 1

0
∥x(t)∥ndt.

It is well known that if x : [0, 1] → Rn is absolutely continuous, then it is almost
everywhere differentiable on [0, 1], its derivative x′ ∈ L1(0, 1;Rn) and

x(t) = x(0) +

∫ t

0
x′(s)ds.

In this section we are concerned to find an absolutely continuous function u :
[0, 1] → Rn such that its derivative u′ ∈ L1(0, 1;Rn) satisfies almost for every point
in (0, 1) the following differential equation

(3.14)

{
u′(t)− g(t, u(t), u′(t)) = f(t), t ∈ (0, 1) a.e.
u(0) = ξ ∈ Rn,

where f ∈ L1(0, 1;Rn) is a fixed function and g : [0, 1] × Rn × Rn → Rn is a
Carathéodory function. A such function u is called strong solution of Eq.(3.14).

First, let us notice that (3.14) is equivalent to the differential equation

(3.15)

{
u′(t)− g(t, u(t) + ξ, u′(t)) = f(t), t ∈ (0, 1) a.e.
u(0) = 0,

Thus, our goal will be to study the existence of a strong solution of (3.15).
Let us introduce the Sobolev space W 1,1(0, 1;Rn) as the space of all absolutely

continuous functions. Then we can write this space as:

W 1,1(0, 1;Rn) :=
{
u ∈ L1(0, 1;Rn) : u′ ∈ L1(0, 1;Rn)

}
,

The space W 1,1(0, 1;Rn) can be endowed with the norm

∥u∥1,1 := max{∥u∥1, ∥u′∥1},

where ∥ · ∥1 is the usual norm in L1(0, 1;Rn). (W 1,1(0, 1;Rn), ∥ · ∥1,1) is a Banach
space.
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Now we can consider the following subspace X := {u ∈ W 1,1(0, 1;Rn) : u(0) =
0}. This is a closed subspace of (W 1,1(0, 1;Rn), ∥ · ∥1,1) and thus it is also a Banach
space.

Lemma 3.7. Let u be an element in X. Then ∥u∥1,1 = ∥u′∥1.

Proof. It is well know that if u ∈ X then u(t) = u(t) − u(0) =
∫ t
0 u

′(τ)dτ in [0, 1].
Therefore

∥u(t)∥n ≤
∫ t

0
∥u′(τ)∥ndτ,

this means that ∥u∥1 ≤ ∥u′∥1 and consequently ∥u∥1,1 = ∥u′∥1. □
Lemma 3.8. Let f be a fixed element of L1(0, 1;Rn). The mapping T : X →
L1(0, 1;Rn) defined by T (u)(t) = u′(t)− f(t) is an expansive bijection.

Proof. T is an expansive mapping. Indeed, by Lemma 3.7, we know that if u, v ∈ X,
then ∥u− v∥1,1 = ∥u′ − v′∥1, then,

∥Tu− Tv∥1 = ∥u′ − v′∥1 = ∥u− v∥1,1.
Now, let us see that T is onto. Indeed, given u ∈ L1(0, 1;Rn) it is enough to

consider

w(t) :=

∫ t

0
(u(τ) + f(τ))dτ,

since in this case, w ∈ X and T (w) = u. □
LetM(0, 1;Rn) be the set of all measurable functions φ : [0, 1] → Rn. If f : [0, 1]×

Rn → Rn is a Carathéodory function, then f defines a mapping Nf : M(0, 1;Rn) →
M(0, 1;Rn) by Nf (φ)(t) := f(t, φ(t)). This mapping is called the superposition
(or Nemytskii) operator generated by f . The next three lemmas are of foremost
importance for our subsequent analysis.

Lemma 3.9. Let f : [0, 1]× Rn → Rn be a Carathéodory function, if there exist a
constant b ≥ 0 and a function a(·) ∈ L1

+(0, 1;R) such that

∥f(t, x)∥n ≤ a(t) + b∥x∥n,
then Nf maps continuously L1(0, 1;Rn) into itself.

In order to do a proof of the above lemma we can follow a similar argument as
in [2, Theorems 3.1 and 3.7]).

If we argue as in [2, Lemma 9.5] we obtain:

Lemma 3.10. Let g : [0, 1] × Rn × Rn → Rn be a Carathéodory function, if there
exist a constant b ≥ 0 and a function a(·) ∈ L1

+(0, 1;R) such that

∥g(t, x, y)∥n ≤ a(t) + b(∥x∥n + ∥y∥n),
then the map Ng : W 1,1(0, 1;Rn) → L1(0, 1;Rn) defined by

Ng(φ)(t) = g(t, φ(t), φ′(t))

is continuous.

Lemma 3.11. Let g : [0, 1]× Rn × Rn → Rn be a Carathéodory function such that
there exist a ∈ L1

+(0, 1,R), b, k > 0 satisfying that
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(1) ∥g(t, x, 0)∥n ≤ a(t) + b∥x∥n,
(2) ∥g(t, x, y1)− g(t, x, y2)∥n ≤ k∥y1 − y2∥n.

Then, the operator Ng : X → L1(0, 1;Rn) is 2k-set contractive.

Proof. From assumptions (1) and (2) we obtain that

∥g(t, x, y)∥n ≤ a(t) + b∥x∥n + k∥y∥n,

for (t, x, y) ∈ [0, 1] × Rn × Rn. Hence, using Lemma 3.10, we infer that Ng : X →
L1(0, 1;Rn) is a continuous mapping.

Let A be a bounded subset of X, and let r = αX(A). Then for every ε > 0 there
exist subsets A1, . . . , An of X such that A = ∪n

i=1Ai and diam∥·∥1,1(Ai) < r + ε.

Since by [23, Theorem 1], we know that the injection ofW 1,1(0, 1;Rn) in L1(0, 1,Rn)
is compact then A,A1, . . . , An are relatively compact in L1(0, 1;Rn).

Let ui ∈ Ai for i = 1, . . . , n. Define the mapping gui : [0, 1]× Rn → Rn given by
gui(t, x) = g(t, x, u′i(t)). Since g is a Carathéodory function then the gui ’s are also.
Moreover from assumption (1) and Lemma 3.9, the mapping Nui : L

1(0, 1;Rn) →
L1(0, 1;Rn) defined as Nuiv(t) = gui(t, v(t)) is well defined and it is also continuous.
Then Nui are uniformly continuous on ∪n

i=1Ai. So, there exists δ > 0 such that for
∥v − w∥1 < δ with v, w ∈ ∪n

i=1Ai we have

∥Nui(v)−Nui(w)∥1 :=
∫ 1

0
∥g(t, v(t), u′i(t))− g(t, w(t), u′i(t))∥ndt < ε.

For each Ai there is a finite family of subsets Ai,j such that Ai = ∪jAi,j and
diam∥·∥1(Ai,j) < δ.

Therefore for any v, w ∈ Ai,j we have

∥Ng(v)−Ng(w)∥1 =
∫ 1

0
∥g(t, v(t), v′(t))− g(t, w(t), w′(t))∥ndt

≤
∫ 1

0
∥g(t, v(t), v′(t))− g(t, v(t), u′i(t))∥ndt

+

∫ 1

0
∥g(t, v(t), u′i(t))− g(t, w(t), u′i(t))∥ndt

+

∫ 1

0
∥g(t, w(t), u′i(t))− g(t, w(t), w′(t))∥ndt

≤ k

∫ 1

0
∥v′(t)− u′i(t)∥ndt+ ε+ k

∫ 1

0
∥u′i(t)− w′(t)∥ndt

≤ k∥v − ui∥1,1 + ε+ k∥w − ui∥1,1
≤ 2kr + ε.

That is

αL1(Ng(A)) ≤ 2kαX(A).

□

Now, for studying the existence of a strong solution to (3.15), we define

T : X → L1(0, 1;Rn) by T (u) = u′ − f
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and
S : X → L1(0, 1;Rn) by S(u) = Ng̃(u),

where g̃(t, x, y) = g(t, x+ ξ, y).
Thus, to show that (3.15) has a solution is to see that the coincidence problem,

T (u) = S(u) admits a solution.

Theorem 3.12. If max{b+k, 2k} < 1, (3.15) has at least a solution in the Sobolev
space W 1,1(0, 1;Rn).

Proof. In order to show that T, S fulfill the conditions of Corollary 3.5. First we
shall show that there exists r > 0 such that if ∥u∥1,1 ≥ r then T (u) ̸= µNg̃(u) for
all µ ∈ (0, 1), since the rest of conditions are consequences of the above lemmas.
Thus, let us take u ∈ X satisfying that T (u) = λNg̃(u) for some λ ∈ (0, 1). Hence

u′(t)− f(t) = λg(t, u(t) + ξ, u′(t)), t ∈ (0, 1) a.e.

from this equality we infer that

∥u′(t)∥n ≤ λ
(
a(t) + b(∥u(t)∥n + ∥ξ∥n) + k∥u′(t)∥n

)
+ ∥f(t)∥n a.e.

Therefore,
∥u′∥1 ≤ λ∥a||1 + λb∥u∥1 + λb|ξ|+ λk∥u′∥1 + ∥f∥1.

Applying Lemma 3.7, we obtain that

(1− λ(b+ k))∥u∥1,1 ≤ λ(∥a∥1 + b|ξ|) + ∥f∥1.

Since by hypothesis b + k < 1 if we call r := ∥a∥1+|ξ|+∥f∥1
1−(b+k) , it is easy to see

that ∥u∥1,1 < r. This inequality allows us to conclude that if ∥u∥1,1 ≥ r, then
Tu ̸= λNg̃(u) for all λ ∈ (0, 1).

Now, let u0(t) =
∫ t
0 f(τ)dτ . We choose x0 = Tu0 = 0 and

U = {u ∈ X : ∥u− u0∥1,1 < r + ∥u0∥}.
If u ∈ ∂(U) we have ∥u − u0∥1,1 = r + ∥u0∥ which implies ∥u∥1,1 ≥ r so for all
λ ∈ (0, 1)

Tu ̸= λNg̃(u) + (1− λ)x0.

Applying Corollary 3.5 there exists z0 ∈ U such that Tz0 = Ng̃z0, as we want to
show. □

A trivial consequence of Theorem 3.12 is the following one:
The equation

(3.16)

{
u′(t)− g(t, u(t)) = f(t), t ∈ (0, 1) a.e.
u(0) = ξ,

where f ∈ L1(0, 1;Rn) is a fixed function and g : [0, 1]×Rn → Rn is a Carathéodory
function such that there exist a ∈ L1

+(0, 1), 0 ≤ b < 1 satisfying that ∥g(t, x)∥n ≤
a(t) + b∥x∥n, has a strong solution.

Example 3.13.

(3.17)

{
u′(t)− cos(u(t))√

t
− u(t)+sin(u′(t))

2
√
t+2

= f(t), t ∈ (0, 1)

u(0) = ξ,
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has a strong solution since in this example we have that g(t, x, y) = cos(x)√
t

+ x+sin(y)

2
√
t+2

and therefore |g(t, x, 0)| ≤ 1√
t
+ 1

2
√
2
|x| and |g(t, x, y1) − g(t, x, y2)| ≤ 1

2
√
2
|y1 − y2|,

which implies that g fulfills the conditions of Theorem 3.12.

3.2. Multivalued case.

Theorem 3.14. Let X be a normed space and let Y be Banach space. Consider a
nonempty subset D of X. Suppose that t : D → 2Y is a multivalued mapping and
s : D → Y is a mapping which satisfy:

(1) R(t) = Y and t−1 : Y → D is a univalued continuous and compact mapping,
(2) s is continuous and it maps bounded subsets into bounded subsets,
(3) There exists R > 0 such that

(3.18) ∥x∥X ≥ R, x ∈ D ⇒ λs(x) /∈ t(x) ∀λ ∈ (0, 1).

Then there exists x0 ∈ D with s(x0) ∈ t(x0).

Proof. The mapping h : Y → Y given by h(y) = s ◦ t−1(y) is continuous and
compact. Therefore h is a continuous condensing mapping.

We will see that h satisfies a Leray-Schauder condition with 0Y . Otherwise, we
can assume that for each n ∈ N there are yn ∈ Y with ∥yn∥ ≥ n and λn > 1 such
that

(3.19) h(yn) = λnyn.

Since R(t) = Y for each n ∈ N there exists xn ∈ D with yn ∈ t(xn), from this and
(3.19)

1

λn
s(xn) = yn ∈ t(xn).

Therefore ∥xn∥ ≤ R, from (3.18). Using assumption (2) we have that (s(xn)) is a
bounded sequence, then (yn) is a bounded sequence which is a contradiction.

Hence there exists M > 0 such that

∥y∥Y ≥ M ⇒ h(y) ̸= λy, ∀λ > 1,

and from Theorem 2.4 we have that there exist y0 ∈ Y such that h(y0) = y0, but
since R(t) = Y , there exists x0 ∈ D such that t−1(y0) = x0. Then we obtain that
s(x0) = y0 ∈ t(x0) as we want to prove. □

Corollary 3.15. Let X be a Banach space and A : D(A) → 2X an m-accretive
operator such that 0 ∈ A(0) and s : D(A) → X a continuous mapping. Suppose
that the following conditions are fulfilled:

(1) JA
λ is compact,

(2) there exists R > 0 such that ∥s(x)∥ ≤ a + b∥x∥ whenever x ∈ D(A) with
∥x∥ ≥ R.

Then given ρ > b there exists x0 ∈ D(A) such that s(x0) ∈ ρx0 +A(x0).

Proof. Let λ := 1
ρ . To show the result we are going to apply Theorem 3.14 to the

mappings t := I + λA and λs. Thus we have to see that the coincidence problem
λs(x) ∈ t(x) has a solution.
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Since A is m-accretive, t−1 = JA
λ : X → D(A) is single-valued and nonexpansive

and by assumption (1) it is also compact. Moreover, it is not difficult to see that
∥y∥ ≥ ∥x∥ whenever y ∈ x + λA(x). Indeed, we know that there is z ∈ A(x) such
that y = x+ λz, hence since A is accretive and 0 ∈ A(0), we obtain

(3.20) ∥x− 0∥ ≤ ∥x− 0 + λ(z − 0)∥ = ∥x+ λz∥ = ∥y∥.

Assumption (2) guarantees that λs maps bounded set into bounded sets.
Finally, let us see that there exists β > 0 such that µλs(x) /∈ (I+λA)(x) whenever

∥x∥ ≥ β and x ∈ D(A). Indeed, if there exists µ ∈ (0, 1) such that

(3.21) µλs(x) ∈ (I + λA)(x),

then by (3.20)and (3.21) we have that µλ∥s(x)∥ ≥ ∥x∥. In this case, assumption
(2) yields

∥x∥ ≤ µλ(a+ b∥x∥),
which is a contradiction when we take β > R larger enough and ρ > b. □

Next result works with mappings which are condensing but not necessarily k-set
contractive, examples of such mappings can be found for instance in [3, 4].

Theorem 3.16. Let (X, ∥ · ∥X) be a normed space and let (Y, ∥ · ∥Y ) be a Banach
space. Assume that t : X → 2Y is a multivalued mappings with R(t) = Y such
that t−1 : Y → X is single-valued nonexpansive and s : D(t) → Y a continuous
α-condensing mapping satisfying that there exists R > 0 and y0 ∈ Y such that

(3.22) ∥x− t−1y0∥X ≥ R ⇒ µs(x) + (1− µ)y0 /∈ t(x) ∀µ ∈ (0, 1).

Then there exists x0 ∈ X such that s(x0) ∈ t(x0).

Proof. Since t−1 : Y → X is nonexpansive, then t−1 is continuous. Consider the
mapping h := s ◦ t−1 : Y → Y , it is continuous because it is composition of
continuous functions. Reasoning as in the proof of Theorem 3.3 we can prove that
h is condensing.

Finally, we show that h satisfies a Leray-Schauder condition with y0. If this was
false, we could find yn ∈ Y and λn > 1, for each n ∈ N, satisfying

∥yn − y0∥ ≥ n and h(yn)− y0 = λn(yn − y0).

Taking xn = t−1(yn), the previous assumption along with the definition of h yields

s(xn)− y0 = λn(yn − y0),

so
1

λn
s(xn) +

(
1− 1

λn

)
y0 = yn ∈ t(xn).

Using (3.22) we conclude that ∥xn − t−1y0∥X < R, which means that the sequence
(xn) is bounded. Then the sequence (s(xn)) is bounded, because s is α-condensing.
Therefore yn is bounded, but this is a contradiction.

By Theorem 2.4 there exists y ∈ Y such that h(y) = y. Choosing x0 = t−1(y) we
have that s(x0) = y ∈ t(x0). □
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Example 3.17. Let (H, ⟨·, ·⟩) be a finite dimensional real Hilbert space and let D
be a nonempty closed convex subset of H.

Given a mapping f : D → H, the variational inequality defined by f and D is

(3.23) V I(f,D) :

{
find x0 ∈ D such that
⟨f(x0), y − x0⟩ ≥ 0, for all y ∈ D.

As an application of Theorem 3.16, we shall see that V I(f,D) admits a solution
whenever f is a continuous mapping which satisfies that there exists R ≥ 0 such
that

(3.24) ∥x∥H ≥ R, x ∈ D ⇒ ⟨f(x), x⟩ > 0,

and 0 ∈ D.
Let us introduce the indicator function of D: ID : H → [0,+∞] defined by

ID(x) :=

{
0, if x ∈ D,
+∞, if x ∈ H \D.

It is well known (for instance see [5]) that ID is a proper convex lower semi
continuous function and its subdifferential ∂ID : H → 2H given by

∂ID(x) = {ξ ∈ H : ⟨ξ, y − x⟩ ≤ ID(y)− ID(x), for all y ∈ H},

is clearly an m-accretive operator on H where its effective domain is D(∂ID) = D.
Moreover, it is easy to see that

∂ID(x) = {y ∈ H : ⟨y, z − x⟩ ≤ 0 for every z ∈ D}.

Thus, a solution of V I(f,D) will be a point x0 ∈ D such that −f(x0) ∈ ∂ID(x0).
In order to study the existence of solution for this problem , we call t := I+∂ID :

D → 2H and s := −f + I : D → H.
Since ∂ID is m-accretive then t−1 is a single-valued nonexpansive mapping and

R(t) = H. The mapping s is α-condensing because s is compact, since it is contin-
uous and H is finite dimensional.

Note that 0 ∈ D implies that 0 ∈ ∂ID(0). So t−1(0) = 0. We will choose y0 = 0
and R given by (3.24) in Theorem 3.16.

If condition (3.22) does not hold the exist x ∈ D with ∥x∥H ≥ R and µ ∈ (0, 1)
such that µ(−f(x) + x) ∈ x + ∂ID(x), i.e. −µf(x) + (µ − 1)x ∈ ∂ID(x). Which
means that for all v ∈ D

⟨−µf(x) + (µ− 1)x, v − x⟩ ≤ 0.

The convexity ofD along with that 0 and x are elements ofD implies (1−µ)x ∈ D.
Then

⟨−µf(x) + (µ− 1)x, (1− µ)x− x⟩ ≤ 0,

µ2⟨f(x), x⟩ − (µ− 1)µ∥x∥2H ≤ 0,

⟨f(x), x⟩ ≤ µ− 1

µ
∥x∥2H ≤ 0,

which contradicts assumption (3.24).
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The above facts allow us to say that t and s are under the hypotheses of Theorem
3.16, so we conclude that there exists x0 ∈ D such that s(x0) ∈ x0 + ∂ID(x0) and
this means that −f(x0) ∈ ∂ID(x0).

Next result shows that if s, t are under the conditions of Theorem 3.16 and we add
that s is a bounded mapping then Leray-Schauder’s condition is directly fulfilled.

Corollary 3.18. Let (X, ∥ · ∥X) be a normed space and let (Y, ∥ · ∥Y ) be a Banach
space. Assume that t : X → Y is an expansive surjection and s : X → Y a
continuous, bounded and α-condensing mapping. Then there exists x0 ∈ X such
that s(x0) = t(x0).

Proof. In order to obtain the result, we only have to see that t, s : X → Y , defined
as in Theorem 3.16, satisfy condition (3.22) with y0 := 0Y .

To do this, we argue as follows:
Since t : X → Y is expansive, we have that

∥t(x)− t(0X)∥Y ≥ ∥x∥X for all x ∈ X,

thus, since t is onto, we infer

∥t(x)∥Y ≥ ∥x− t−1(0Y )∥X − ∥t−1(0Y )∥X − ∥t(0X)∥Y .

On the other hand, since s is a bounded mapping, there exists M > 0 such that
∥s(x)∥Y ≤ M for every x ∈ X.

If now we take R := M + ∥t−1(0Y )∥X + ∥t(0X)∥Y . We may conclude that if
∥x− t−1(0Y )∥X ≥ R, then

∥t(x)∥Y ≥ ∥x− t−1(0Y )∥X − ∥t−1(0Y )∥X − ∥t(0X)∥Y ≥ M,

which means that s(x)− 0Y ̸= λ(t(x)− 0Y ) whenever λ > 1. □

Corollary 3.19. Let (X, ∥ · ∥X) be a normed space and let (Y, ∥ · ∥Y ) be a Banach
space. Assume that t : X → Y is an expansive surjection and s : X → Y a
continuous, α-condensing mapping satisfying that there exists R > 0 and y0 ∈ Y
such that

(3.25) ∥x− t−1y0∥X ≥ R ⇒ ∥s(x)− y0∥Y ≤ ∥x− t−1(y0)∥X .

Then there exists x0 ∈ X such that s(x0) = t(x0).

Proof. We are going to prove that t, s : X → Y , defined as in Theorem 3.16, satisfies
condition (3.22). Indeed, since t−1 is a nonexpansive mapping, we have

∥x− t−1(y0)∥X = ∥t−1(t(x))− t−1(y0)∥X ≤ ∥t(x)− y0∥Y .

The above inequality along with (3.25) implies that if ∥x− t−1y0∥ ≥ R, then

∥s(x)− y0∥Y ≤ ∥x− t−1(y0)∥X ≤ ∥t(x)− y0∥Y .

Consequently

s(x)− y0 ̸= λ(t(x)− y0) whenever λ > 1.

□
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3.2.1. A nonlinear Dirichlet problem. Let Ω be a measurable subset on Rn which
for simplicity will be assumed to be bounded.

The Sobolev space Wm,p(Ω) is the Banach space of all functions in Lp(Ω) all of
whose weak derivatives up to order m also belong to Lp(Ω). The norm in this space
is given by

∥u∥m,p = ∥u∥p +
∑

1≤|α|≤m

∥Dαu∥p,

where α = (α1, . . . , αn) ∈ Nn, |α| =
∑n

i=1 αi, and Dαu = ∂α1+···+αn

∂x
α1
1 ...∂xαn

n
u.

Wm,p
0 (Ω) is the closure of C∞

0 (Ω) in Wm,p(Ω).

In this section, We shall study the existence of solutions in L1(Ω) for the equation

(3.26)

{
∆ρ(u(x)) = f(x, u(x)) x ∈ Ω
ρ(u(x)) = 0 x ∈ ∂Ω

.

Let us now specify the conditions assuring the existence of a solution for Equation
(3.26):

(1) Ω is a bounded domain in Rn with a smooth boundary ∂Ω.
(2) ρ ∈ C(R) ∩ C1(R \ {0}), ρ(0) = 0.
(3) There exists C > 0 and γ ∈ R+ with γ > 1 such that

ρ′(r) ≥ C|r|γ−1 for each r ∈ R \ {0}.

(4) f : Ω × R → R is a Carathéodory function such that |f(s, x)| ≤ a(s) +
b|x|, where a ∈ L1(Ω) and b ≥ 0. This condition guarantees that the
superposition operator associated to f,

Nf (u)(s) = f(s, u(s)),

acts form L1(Ω) into L1(Ω) and is continuous. We refer to [2] for background
material on superposition operators.

H. Brezis and W. Strauss in [6] showed that under the above conditions (1) and
(2), the operator

(3.27)

{
D(P ) = {u ∈ L1(Ω) : ρ(u) ∈ W 1,1

0 (Ω), ∆ρ(u) ∈ L1(Ω)}
P (u) = ∆ρ(u), u ∈ D(P )

is m-dissipative, which means that −P is m-accretive.

Definition 3.20. We say that v ∈ L1(Ω) is a solution of Problem (3.26) whenever

v ∈ L1(Ω), ρ(v) ∈ W 1,1
0 (Ω), ∆ρ(v) ∈ L1(Ω) and ∆ρ(v(x)) = f(x, v(x)) a.e. x ∈ Ω.

That is, whenever v ∈ D(P ) is a solution of the coincidence problem P (v) = Nf (v),
where D(P ) and P are defined in (3.27).

Theorem 3.21. If Conditions (1–4) are fulfilled, then Problem (3.26) has a solu-
tion.
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Proof. Let us consider the following operator

D(Q) = {u ∈ W 1,1
0 (Ω), ∆u ∈ L1(Ω)}

Q(u) = ∆u, u ∈ D(Q),

where ∆u is understood in the sense of distributions. From [6, Theorem 8] we know
that there exists D > 0 such that

(3.28) D∥u∥1,1 ≤ ∥Qu∥1
for each u ∈ D(Q). Moreover, [11, Remark 4.12] shows that there exists

Q−1 : L1(Ω) → D(Q)

and it is continuous.
In [11, Theorem 4.11] was proved that the superposition operator

S : L1(Ω) → L1(Ω) such that S(u)(x) := ρ−1(u(x)).

is well defined and it is continuous.
As a consequence of the above facts we may introduce the operator:

T : L1(Ω) → L1(Ω) defined by T (u) = S(Q−1(u)).

Now, we will see that T (u) ∈ D(P ) for every u ∈ L1(Ω).
Indeed, we know that T (u) ∈ L1(Ω). Moreover ρ(T (u)) = Q−1(u) ∈ D(Q).
Consequently

ρ(T (u)) ∈ W 1,1
0 (Ω) and ∆ρ(T (u)) ∈ L1(Ω)},

i.e. T (u) ∈ D(P ).
The above argument says that T is the inverse operator, in L1(Ω), of P.

Next, let us see that T is a compact mapping.
Indeed, let A be a bounded subset of L1(Ω). From (3.28), we have that (Q−1(A))

is a bounded subset of W 1,1(Ω) and since the embedding W 1,1(Ω) ↪→ L1(Ω) is
compact, we have that Q−1(A) relatively compact in L1(Ω), and thus, since S :
L1(Ω) → L1(Ω) is a continuous mapping, T (A) must be a relatively compact subset
of L1(Ω).

On the other hand, Condition (4) implies that the superposition operator Nf :
L1(Ω) → L1(Ω) is continuous and maps bounded subsets into bounded subsets and
since P (D(P )) = L1(Ω), we also have that Nf (D(P )) ⊆ P (D(P )).

In order to find a solution of Problem (3.26) it will be enough to apply Theorem
3.14. To this end, we shall show that there exists R > 0 such that if u ∈ D(P ) and
there exists µ ∈ (0, 1) with

(3.29) P (u) = µNf (u),

then ∥u∥1 ≤ R.
Suppose that u satisfies (3.29). Since |f(s, x)| ≤ a(s) + b|x|, we have that

(3.30) µ∥Nf (u)∥1 ≤ ∥a∥1 + b∥u∥1
On the other hand, we know that

ρ′(r) ≥ C|r|γ−1 for each r ∈ R \ {0},
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which implies that

|ρ(r)| ≥ C

γ
|r|γ .

The above inequality means that C
γ |u(s)|

γ ≤ |ρ(u(s))| a.e. s ∈ Ω. Thus, we infer

that u ∈ Lγ(Ω). Since Ω is a bounded set, Hölder’s inequality yields∫
Ω
|u(s)|ds ≤

(∫
Ω
|u(s)|γds

) 1
γ
(λ(Ω))

γ−1
γ ,

where λ(Ω) is Lebesgue measure of Ω. Hence, if we call K := C
γ λ(Ω)

1−γ , we obtain

that

K∥u∥γ1 ≤ C

γ

∫
Ω
|u(s)|γds ≤ ∥ρ(u)∥1.

Moreover, by (3.28), D∥ρ(u)∥1 ≤ ∥∆ρ(u)∥1. Therefore,
(3.31) DK∥u∥γ1 ≤ ∥∆ρ(u)∥1.

(3.30) along with (3.31) implies

DK∥u∥γ1 ≤ ∥a∥1 + b∥u∥1.
Consequently,

DK ≤ ∥a∥1 + b∥u∥1
∥u∥γ1

.

However, since γ > 1 it is clear that

lim
∥u∥1→∞

∥a∥1 + b∥u∥1
∥u∥γ1

= 0.

Hence there exists R > 0 such that if ∥u∥1 > R then

∥a∥1 + b∥u∥1
∥u∥γ1

<
DK

2
.

The above inequality allows us to conclude that ∥u∥1 ≤ R whenever u is a solution
of (3.29). □
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