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It 1972 Assad and Kirk [12] extended Banach contraction mapping principle to
non-self multi-valued contraction mappings T : K → P(X) in the case (X, d) is a
convex metric space in the sense of Menger and K is a non-empty closed subset of
X such that T maps ∂K into K. For other related results see [1, 3, 4, 7–11, 15, 16,
18–21,27,28,30,32,33,36,41,46,50].

On the other hand, recently many results appeared in literature giving sufficient
conditions for a self mapping T to be a PO if (X, d) is a metric space endowed with
a partial ordering ≤. They mainly deal with a monotone (either order-preserving or
order reversing) mapping satisfying a classical contractive condition but not for all
x, y ∈ X as in the classical Banach’s contraction principle, but only for comparable
elements with respect to the given partial order.

Those kind of results are actually hybrid fixed point theorems that combine two
types of fundamental fixed point theorems: the contraction mapping principle and
the Knaster-Tarski theorem, see [51]. The most relevant results in this direction
start practically from the following important papers [38,39,44,45] and the unifying
paper [34]. See also [22–26,29,37], for other very recent results on this topic.

Starting from these facts, the aim of the present paper is to obtain general fixed
point theorems for non-self contractions on Banach spaces endowed with a graph,
which will thus extend and unify all the previous mentioned results. In order to
do so, we first present in the next section a few preliminary notions and results
regarding fixed point theorems for mappings defined on metric spaces endowed with
a graph and next, present some basic results related to fixed point theorems for non
self contractions in Banach spaces or convex metric spaces. Our main results are
then obtained in Section 3 of the paper.

2. Metric spaces endowed with a graph

Let (X, d) be a metric space and let ∆ denote the diagonal of the Cartesian
product X × X. Consider now a directed simple graph G = (V (G), E(G)) such
that the set of its vertices, V (G), coincides with X and E(G), the set of its edges,
contains all loops, i.e., ∆ ⊂ E(G).

By G−1 we denote the converse graph of G, i.e., the graph obtained by G by
reversing its edges, i.e.,

E(G−1) = {(y, x) ∈ X ×X : (x, y) ∈ E(G)}.

If x, y are vertices in the graph G, then a path from x to y of length N is a sequence
{xi}Ni=1 of N + 1 vertices of G such that

x0 = x, xN = y and (xi−1, xi) ∈ E(G), i = 1, 2, . . . , N.

A graph G is said to be connected if there is at least a path between any two vertices.
If G = (V (G), E(G)) is a graph and H ⊂ V (G), then the graph (H,E(H)) with
E(H) = E(G) ∩ (H ×H) is called the subgraph of G determined by H. Denote it
by GH .

If G̃ = (X,E(G̃)) is the symmetric graph obtained by putting together the ver-
tices of both G and G−1, i.e.,

E(G̃) = E(G) ∪ E(G−1),
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then G is called weakly connected if G̃ is connected.
A mapping T : X → X is said to be (well) defined on a metric space endowed

with a graph G if it has the property

(2.1) ∀x, y ∈ X, (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G).

According to [34], a mapping T : X → X, which is well defined on a metric space
endowed with a graphG, is called aG-contraction if there exists a constant α ∈ (0, 1)
such that for all x, y ∈ X with (x, y) ∈ E(G) we have

(2.2) d(Tx, Ty) ≤ α · d(x, y).

In the sequel we present a fixed point theorem for contractions on metric spaces
endowed with a graph. It is actually a simplified form of a result (Theorem 3.2)
established in a more extended form in [34]. The proof presented here is also
significantly simplified, in order to meet the purposes of the present paper.

Theorem 2.1. Let (X, d,G) be a metric space endowed with a simple directed
and weakly connected graph G such that the following property (L) holds: for any
sequence {xn}∞n=1 ⊂ X with xn → x as n → ∞ and (xn, xn+1) ∈ E(G) for all
n ∈ N, there exists a subsequence {xkn}∞n=1 satisfying

(2.3) (xkn , x) ∈ E(G), ∀n ∈ N.

Let T : X → X be a G-contraction. If XT := {x ∈ X : (x, Tx) ∈ E(G)} ̸= ∅, then
T is a Picard operator, i.e.,

(i) T has a unique fixed point in X, say x∗;
(ii) Picard iteration {xn := Tnx0}∞n=1 converges to x∗, for all x0 ∈ XT , and the

following estimates hold

(2.4) d(xn, x
∗) ≤ αn

1− α
d(x0, x1) , n = 0, 1, 2, . . .

(2.5) d(xn, x
∗) ≤ α

1− α
d(xn−1, xn) , n = 1, 2, . . .

Proof. Let x0 ∈ XT . This means that (x0, Tx0) ∈ E(G) and in view of (2.1), we
have

(2.6) (Tnx0, T
n+1x0) ∈ E(G), ∀n ∈ N.

Denote xn := Tnx0, for all n ∈ N. Then by the fact that T is a G-contraction and
in view of (2.1), we get

(2.7) d(xn, xn+1) ≤ αd(xn−1, xn), ∀n ∈ N.

Using (2.7) we obtain by induction

d(xn, xn+1) ≤ αnd(x0, x1) , n = 0, 1, 2, . . .

and then

d(xn, xn+p) ≤ αn
(
1 + α+ · · ·+ αp−1

)
d(x0, x1) =

=
αn

1− α
(1− αp) · d(x0, x1) , n, p ∈ N, p ̸= 0 .(2.8)
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Since 0 < α < 1, (2.8) shows that {xn}∞n=0 is a Cauchy sequence and hence is
convergent in (X, d,G). Denote

(2.9) x∗ = lim
n→∞

xn .

By the property (L) of (X, d,G), there exists a subsequence {xkn}∞n=1 satisfying

(xkn , x) ∈ E(G), ∀n ∈ N.
and hence, by the contraction condition (2.2) and in view of (2.1),

(2.10) d(Txkn , Tx
∗) ≤ αd(xkn , x

∗).

Therefore,

d(x∗, Tx∗) ≤ d(x∗, xkn+1) + d(xkn+1, Tx
∗) = d(xkn+1, x

∗) + d(Txkn , Tx
∗) .

which, by (2.10) yields

(2.11) d(x∗, Tx∗) ≤ d(x∗, xkn+1) + α · d(xkn , x∗) ,
valid for all n ≥ 1. Now, by letting n → ∞ in (2.11), we obtain

d(x∗, Tx∗) = 0

i.e., x∗ is a fixed point of T .
Note that the uniqueness of x∗ easily follows by the contraction condition (2.2).
The estimate (2.4) is obtained from (2.8) by letting p → ∞.
In order to obtain (2.5), observe that by (2.7) we inductively obtain

d(xn+k, xn+k+1) ≤ δk+1 · d(xn−1, xn) , k, n ∈ N ,

and hence, similarly to deriving (2.8), one obtains

(2.12) d(xn, xn+p) ≤
δ(1− δp)

1− δ
d(xn−1, xn) , n ≥ 1, p ∈ N∗ .

Now letting p → ∞ in (2.12), the desired estimate (2.5) follows. □
Remark 2.2. A similar result can be obtained by replacing the property (L) of the
triple (X, d,G) in Theorem 2.1 by the orbitally G-continuity of T .

Recall, see [34], Definition 2.4, that a mapping T : X → X defined on the metric
space endowed with a graph (X, d,G) is called orbitally G-continuous if for all
x, y ∈ X and any sequence {kn}∞n=1 of positive integers,

T knx → y and (T knx, T kn+1x) ∈ E(G), for all n ∈ N, imply T (T knx) → Ty.

Theorem 2.3. Let (X, d,G) be a metric space endowed with a simple directed and
weakly connected graph G. Let T : X → X be a G-contraction.

If XT := {x ∈ X : (x, Tx) ∈ E(G)} ≠ ∅ and T is a orbitally G-continuous
mapping, then T is a Picard operator and the estimates (2.4) and (2.5) hold.

Proof. The proof essentially runs as for the previous theorem. The only difference
occurs at the step where we have to prove that x∗ is a fixed point of T .

We know that xn = Tnx0 converges to x∗ as n → ∞. Since, by hypothesis, T is
orbitally G-continuous, we have that

xn+1 = T (Tnx0) → Tx∗.

On the other hand, xn+1 converges to x∗ as well. So, x∗ = Tx∗, as required. □
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We end this section by presenting some examples of graphs, mainly taken from
the paper [34], which are important in this context.

Example 2.4. If G0 is the complete graph on X, that is, E(G0) = X ×X, then a
G0-contraction is a usual contraction in the sense of Banach, i.e., it satisfies

d(Tx, Ty) ≤ α · d(x, y), for all x, y ∈ X.

Example 2.5. Let X be a nonempty set endowed with a partial ordering ⪯. Con-
sider the graph G1 on X whose set of vertices is given by

E(G1) = {(x, y) ∈ X ×X : x ⪯ y}.
As shown by Jachymski [34], Example 2.3, the class of G1-contractions corresponds
to the mappings studied by Nieto and Rogriguez-Lopez [38].

Example 2.6. Let X be a nonempty set endowed with a partial ordering ⪯. Con-
sider the graph G1 on X whose set of vertices is given by

E(G2) = {(x, y) ∈ X ×X : x ⪯ y ∨ y ⪯ x}.
Then the mappings studied by Ran and Reurings [45] areG2-contractions. As shown
by Jachymski [34], Example 2.4, the class of G2-contractions is actually larger and
coincides with the class of mappings studied by Petruşel and Rus [44] and Nieto
and Rogriguez-Lopez [39].

Note also that Jachymski [34] has showed, see Example 2.4, that there exist G-
contractions which are not usual contractions, so Theorems 2.1 and Theorem 2.3
are effective generalizations of the classical contraction mapping principle.

3. Fixed point theorems for non-self contractions in Banach spaces
endowed with a graph

Let X be a Banach space, K a nonempty closed subset of X and T : K → X
a non-self mapping. If x ∈ K is such that Tx /∈ K, then we can always choose an
y ∈ ∂K (the boundary of K) such that y = (1 − λ)x + λTx (0 < λ < 1), which
actually expresses the fact that

(3.1) d(x, Tx) = d(x, y) + d(y, Tx), y ∈ ∂K,

where we denoted d(x, y) = ∥x− y∥.
A related condition to that given by (3.1), called inward condition, has been

used by Caristi [28] to obtain a generalization of contraction mapping principle for
nonself mappings. The inward condition is more general since it does not require y
in (3.1) to belong to ∂K.

Note also that, in general, the set Y of points y satisfying condition (3.1) above
may contain more than one element.

For a nonself mapping T : K → X we shall say that it is (well) defined on the
Banach space X endowed with the graph G if it has this property for the subgraph
of G induced by K, that is,

(3.2) (x, y) ∈ E(G) with Tx, Ty ∈ K implies (Tx, Ty) ∈ E(G) ∩ (K ×K),

for all x, y ∈ K.
The next theorem extends Theorem 2.1 and thus establishes a fixed point theorem

for non self contractions defined on a Banach space endowed with a graph.
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Theorem 3.1. Let (X, d,G) be a Banach space endowed with a simple directed and
weakly connected graph G such that the property (L) holds, i.e., for any sequence
{xn}∞n=1 ⊂ X with xn → x as n → ∞ and (xn, xn+1) ∈ E(G) for all n ∈ N, there
exists a subsequence {xkn}∞n=1 satisfying

(3.3) (xkn , x) ∈ E(G), ∀n ∈ N.
Let K be a nonempty closed subset of X and T : K → X be a GK-contraction, that
is, there exists a constant δ ∈ [0, 1) such that

(3.4) d(Tx, Ty) ≤ δ · d(x, y), for all (x, y) ∈ E(GK),

where GK is the subgraph of G determined by K.
If KT := {x ∈ ∂K : (x, Tx) ∈ E(G)} ̸= ∅ and T satisfies Rothe’s boundary

condition

(3.5) T (∂K) ⊂ K,

then
(i) Fix (T ) = {x∗};
(ii) Picard iteration {xn = Tnx0}∞n=1 converges to x∗, for all x0 ∈ KT , and the

following estimates hold

(3.6) d(xn, x
∗) ≤ δn

1− δ
d(x0, x1) , n = 0, 1, 2, . . .

(3.7) d(xn, x
∗) ≤ δ

1− δ
d(xn−1, xn) , n = 1, 2, . . .

Proof. If T (K) ⊂ K, then T is actually a self mapping of the closed set K and the
conclusion follows by Theorem 3.2 in [34] with X = K. Therefore, we consider the
case T (K) ̸⊂ K. Let x0 ∈ KT . This means that (x0, Tx0) ∈ E(G) and in view of
(2.1), we have

(3.8) (Tnx0, T
n+1x0) ∈ E(G), ∀n ∈ N.

Denote yn := Tnx0, for all n ∈ N.
By (3.5) it also follows that Tx0 ∈ K.
Denote x1 := y1 = Tx0. Now, if Tx1 ∈ K, set x2 := y2 = Tx1. If Tx1 /∈ K, we

can choose an element x2 on the segment [x1, Tx1] which also belong to ∂K, that
is,

x2 = (1− λ)x1 + λTx1 (0 < λ < 1).

Continuing in this way we obtain two sequences {xn} and {yn} whose terms satisfy
one of the following properties:

i) xn := yn = Txn−1, if Txn−1 ∈ K;
ii) xn = (1− λ)xn−1 + λTxn−1 ∈ ∂K (0 < λ < 1), if Txn−1 /∈ K.
To simplify the argumentation in the proof, let us denote

P = {xk ∈ {xn} : xk = yk = Txk−1}
and

Q = {xk ∈ {xn} : xk ̸= Txk−1}.
Note that {xn} ⊂ K for all n ∈ N and that, if xk ∈ Q, then both xk−1 and xk+1

belong to the set P . Moreover, by virtue of (3.5), we cannot have two consecutive
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terms of {xn} in the set Q (but we can have two consecutive terms of {xn} in the
set P ) .

We claim that {xn} is a Cauchy sequence. To prove this, we must discuss three
different cases: Case I. xn, xn+1 ∈ P ; Case II. xn ∈ P , xn+1 ∈ Q; Case III.
xn ∈ Q, xn+1 ∈ P ;

Case I. xn, xn+1 ∈ P .
In this case we have xn = yn = Txn−1, xn+1 = yn+1 = Txn, hence

d(xn+1, xn) = d(yn+1, yn) = d(Tyn, T yn−1).

Since, by (3.8), (yn, yn−1) ∈ E(G), we have by the contraction condition (3.4)

d(Tyn, T yn−1) = d(Txn, Txn−1) ≤ δd(xn, xn−1),

and therefore,

(3.9) d(xn+1, xn) ≤ δd(xn, xn−1).

Case II. xn ∈ P , xn+1 ∈ Q.
In this case we have xn = yn = Txn−1, but xn+1 ̸= yn+1 = Txn and

d(xn, xn+1) + d(xn+1, Txn) = d(xn, Txn).

Thus d(xn+1, Txn) ̸= 0 and hence

d(xn, xn+1) = d(xn, Txn)− d(xn+1, Txn) < d(xn, Txn) = d(Txn−1, Txn),

since xn ∈ P . So, by using (3.4) we get

d(xn, xn+1) < d(Txn−1, Txn) = d(Tyn−1, T yn),

and using similar arguments to that in Case I, we obtain again inequality (3.9).
Case III. xn ∈ Q, xn+1 ∈ P . In this case we have xn+1 = Txn, xn ̸= yn = Txn−1

and

(3.10) d(xn, xn−1) + d(xn, Txn−1) = d(xn−1, Txn−1).

Hence, by triangle inequality

d(xn, xn+1) ≤ d(xn, Txn−1) + d(Txn−1, xn+1)

= d(xn, Txn−1) + d(Txn−1, Txn)

= d(xn, Txn−1) + d(Tyn−1, T yn).

Since, by (3.8), (yn−1, yn) ∈ E(G), we obtain by the contraction condition (3.4)

d(Tyn−1, T yn) ≤ δd(yn−1, yn) = δd(xn−1, xn),

Thus, since 0 < δ < 1, by using (3.10), we have

d(xn, Txn−1) + δd(xn−1, xn) < d(xn, Txn−1) + d(xn−1, xn) = d(xn−1, Txn−1).

Since, by (3.8), (xn−2, xn−1) = (yn−2, yn−1) ∈ E(G), by the contraction condition
(3.4) we get

(3.11) d(xn, xn+1) < d(xn−1, Txn−1) = d(Txn−2, Txn−1) ≤ δd(xn−2, xn−1).

Therefore, by summarizing all three cases and using (3.9) and (3.11), it follows that
the sequence {d(xn, xn−1)} satisfies the inequality

(3.12) d(xn, xn+1) ≤ δmax{d(xn−2, xn−1), d(xn−1, xn)},
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for all n ≥ 2. Now, by induction for n ≥ 2, from (3.12) one obtains

d(xn, xn+1) ≤ δ[n/2]max{d(x0, x1), d(x1, x2)},

where [n/2] denotes the greatest integer not exceeding n/2.
Further, for m > n > N ,

d(xn, xm) ≤
∞∑

i=N

d(xi, xi−1) ≤ 2
δ[N/2]

1− δ
max{d(x0, x1), d(x1, x2)},

which shows that {xn} is a Cauchy sequence.
Since {xn} ⊂ K and K is closed, {xn} converges to some point x∗ in K, i.e.,

(3.13) x∗ = lim
n→∞

xn.

By property (L), there exists a subsequence {xkn}∞n=1 satisfying

(xkn , x
∗) ∈ E(G), ∀n ∈ N.

and hence, by the contraction condition (3.4),

(3.14) d(Txkn , Tx
∗) ≤ αd(xkn , x

∗).

Therefore,

d(x∗, Tx∗) ≤ d(x∗, xkn+1) + d(xkn+1, Tx
∗) = d(xkn+1, x

∗) + d(Txkn , Tx
∗) .

which, by (3.14) yields

(3.15) d(x∗, Tx∗) ≤ d(x∗, xkn+1) + δ · d(xkn , x∗) ,

for all n ≥ 1. Letting now n → ∞ in (3.15), we obtain

d(x∗, Tx∗) = 0,

which shows that x∗ is a fixed point of T .
The uniqueness of x∗ immediately follows by the contraction condition (3.4).

□

Similarly to Theorem 2.3, one obtains the following result.

Theorem 3.2. Let (X, d,G) be a Banach space endowed with a simple directed and
weakly connected graph G. Let K be a nonempty closed subset of X and T : K → X
be a G-contraction on K.

If KT := {x ∈ ∂K : (x, Tx) ∈ E(G)} ̸= ∅, T is orbitally G-continuous and T
satisfies Rothe’s boundary condition

T (∂K) ⊂ K,

then the conclusion of Theorem 3.1 remains valid.

Theorems 3.1 and 3.2 subsume several important results in the fixed point theory
of self and nonself mappings. We illustrate them by the following example.
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Example 3.3. Let X = [0, 1] ∪ {3} be endowed with the usual norm and let
K = {0, 1, 3}. Consider the function T : K → X, defined by Tx = 0, for x ∈ {0, 1}
and T3 = 0.5. Let the graph G be defined by

E(G) = {(x, x) : x ∈ [0, 1]} ∪ {(0, 1), (1, 3), (3, 3), (3, 0.5)}.
It is easy to check that T is well defined on the Banach space X endowed with the
graph GK .

Indeed, the subgraph GK of G determined by K has the set of vertices E(GK) =
{(0, 0), (0, 1), (1, 1), (1, 3), (3, 3)} and it is easy to check that (3.2) holds, that is, for
all x, y ∈ K,

(x, y) ∈ E(G) with Tx, Ty ∈ K implies (Tx, Ty) ∈ E(G) ∩ (K ×K).

In view of (3.2), the edges (1, 3), (3, 3) has to be removed and for the rest of edges
we have

(T0, T0) = (T0, T1) = (T1, T1) = (0, 0) ∈ E(GK).

Moreover, G is weakly connected and T is a non self G-contraction on K with

contraction coefficient α =
1

4
, since

|T0− T3| = 1

2
<

1

4
· |0− 3| and |T1− T3| = 1

2
≤ 1

4
· |1− 3|.

(for the rest of the edges of E(GK), the contraction condition (3.4) is obvious, since
the quantity in its left hand side is always zero).

Property (L) holds with the only two constant sequences {xn = 0} and {xn = 1}
satisfying the property (xn, xn+1) ∈ E(GK) for all n ∈ N.

Rothe’s boundary condition is also satisfied, as ∂K = {0, 1} and so T (∂K) =
{0} ⊂ K.

Finally, since we also have KT = {0, 1} ̸= ∅, all assumptions in Theorem 3.1 are
satisfied and 0 is the unique fixed point of T .

Remark 3.4. Note that we can obtain the conclusion in Example 3.3 by applying
Theorem 3.2, too, since T is in this case orbitally G-continuous. But, since T is a
non self mapping, we cannot apply neither Theorem 2.1 nor Theorem 3.2 in [34].

4. Particular cases, conclusions and further study

Theorems 3.1 and 3.2 established in this paper are, indeed, very general, at least
for two main reasons.

First, they extend and unify several important fixed point theorems by consider-
ing nonself mappings instead of self mappings.

Secondly, by working on Banach spaces endowed with a graph, our results are
valid not only for mappings that satisfy the contraction condition for pairs (x, y)
of the whole space X ×X, but only for the vertices (x, y) of a simple directed and
weakly connected graph G = (X,E(G)), with E(G) ⊂ X ×X.

Amongst the most important particular cases of Theorem 3.1 and Theorem 3.2,
we mention in the following just a few of them.

1. If G is the graph G0 in Example 2.4, then by Theorem 3.1 we obtain an
extension of the Jachymski’s theorem ( [34], Theorem 3.2), in the simplified form
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given by us in the present paper (Theorem 2.1) and restricted to Banach spaces
instead of complete metric spaces.

2. If G is the graph G1 in Example 2.5, then by Theorem 3.1 and Theorem 3.2 we
obtain extensions of the results established by [38] to the case of nonself contractions
(and also restricted to Banach spaces instead of complete metric spaces).

3. If G is the graph G2 in Example 2.5, then by Theorem 3.1 and Theorem 3.2 we
obtain extensions of the results established by Ran and Reurings [45], Petruşel and
Rus [44], Nieto and Rogriguez-Lopez [39] etc., to the case of nonself contractions.

4. If X = A ∪ B, T (A) ⊂ B, T (B) ⊂ A and consider the graph G = (X,E(G))
with

E(G) = {(x, y) ∈ X ×X : x ∈ A, y ∈ B},
then by Theorem 3.1 and Theorem 3.2 we obtain extensions of the results established
by Kirk, Srinivasan and Veeramani [35] to the case of nonself contractions, see
also [42], [43].

Note also that Theorem 3.1 and Theorem 3.2, stated and proven here in the
setting of a Banach space, could be extended to convex metric spaces without any
conceptual difficulty.

Our further study will focus on establishing similar results but in the case of
other important contraction conditions from the metrical fixed point theory.
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[1] M. Abbas, B. Ali and G. Petruşel, Fixed points of set-valued contractions in partial metric
spaces endowed with a graph, Carpathian J. Math. 30 (2014), 129–137.

[2] R. P. Agarwal, M. A. El-Gebeily and D. O’Regan, Generalized contractions in partially ordered
metric spaces, Appl. Anal. 87 (2008), 1–8.

[3] M. A. Alghamdi, V. Berinde and N. Shahzad, Fixed points of multi-valued non-
self almost contractions, J. Appl. Math. Volume 2013, Article ID 621614, 6 pages
http://dx.doi.org/10.1155/2013/621614.

[4] M. A. Alghamdi, V. Berinde and N. Shahzad, Fixed points of non-self almost contractions,
Carpathian J. Math. 30 (2014), 1–8.

[5] N. A. Assad, On a fixed point theorem of Iséki, Tamkang J. Math. 7 (1976), 19–22.
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monotone Prešić-Kannan and Prešić-Chatterjea mappings in partially ordered metric spaces,
Creat. Math. Inform. 23 (2014), 223–234.

[42] M. Petric, Some results concerning cyclical contractive mappings, Gen. Math. 18 (2010), 213–
226.

[43] M. Petric, Best proximity point theorems for weak cyclic Kannan contractions, Filomat 25
(2011), 145–154.
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