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FIXED POINT THEOREMS FOR GENERALIZED
CONTRACTIONS WITH APPLICATIONS TO COUPLED FIXED
POINT THEORY

ADRIAN PETRUSEL*, GABRIELA PETRUSEL", YI-BIN XIAO*, AND JEN-CHIH YAO*

ABSTRACT. In this paper, we present some fixed point theorems for generalized
contractions of Hardy-Rogers and of Ciri¢ type in complete metric spaces endowed
with a partial order relation. Some applications to coupled fixed point theory
involving generalized contraction conditions are obtained. Moreover, using the
concept of f-closed set, we will prove a general fixed point theorem of Ran-
Reurins type. As a consequence, several general coupled fixed point theorems in
the recent literature are given. Some open questions are pointed out.

1. INTRODUCTION

It is well known that Banach’s contraction principle for single-valued contractions
was extended in several directions. One of this research directions involved the so-
called generalized contractions mappings. For example, Kannan, Reich, Rus, Cirié,
Hardy-Rogers and others (see [20] for a exhaustive synthesis) replaced the classical
contraction condition (which involves d(z,y) and d(f(z), f(y))) by different more
general assumptions (involving not only d(x, y) and d(f(x), f(y)) but also d(z, f(z)),
d(y, f(y)), d(z, f(y)) and d(y, f(x))).

Another research direction regarding Banach’s contraction principle was initiated
by M. Turinici (see [24] for a very interesting and vast study) and further developed
by the paper of Ran and Reurings [19]. The idea is to impose the contraction
condition, not on the whole space, but only on the subset of comparable elements
(with respect to a certain partial ordering given on the metric space). For extensions
of the Ran-Reurings theorem see [12-14].

On the other hand, the concept of coupled fixed point and the study of cou-
pled fixed point problems appeared in some papers of Amann (scientific report)
and Opoitsev (see [10,11]), but the topic was strongly developed by D. Guo and
V. Lakshmikantham [5]), T. Gnana Bhaskar and V. Lakshmikantham [4] and V.
Lakshmikantham and L. Cirié [9).
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If (X, d) is a metric space and F' : X x X — X is an operator, then, by definition,

a coupled fixed point for F' is a pair (z*,y*) € X x X satisfying the system
x=F(z,y)
(L.1) { y=1F(y,x).

In the last year, the theory of coupled fixed points in the setting of an ordered
metric space and under some contraction type conditions on the operator I’ was re-
considered and many new works were published, see for example [1,8,15-17,21-24].

In this paper, we will continue this research by considering the generalized con-
traction conditions of Hardy-Rogers and Ciri¢ and the very interesting concepts of
F-invariant and F-closed sets, see [8,22,23]. Moreover, some general fixed point

theorems will be given and some consequences in coupled fixed point theory are
deduced.

2. F-INVARIANT AND F-CLOSED SETS
We recall here two important concepts related to coupled fixed point theory.

Definition 2.1 (Samet-Vetro [22]). Let (X, d) be a metric space and F': X x X —
X be a mapping. A nonempty subset M of X* is said to be F-invariant if for all
x,y,u,v € X the following assumptions are satisfied:

(i) (z,y,u,v) € M if and only if (v, u,y,z) € M
(ii) if (z,y,u,v) € M then (F(z,y), F(y,z), F(u,v), F(v,u)) € M.

As an example of F-invariant set, the authors in [22] show that, if F' is a mixed
monotone operator on a metric space endowed with a partial ordering < (i.e., in-
creasing in the first variable and decreasing in the second one), then the set

M := {(z,y,u,v) € X*: 2= u,y<v}
is F-invariant.

An improvement of the above concept was given in [8], as follows.

Definition 2.2 (Kubti et all. [8]). Let (X, d) be a metric space and F': X x X —

X be a mapping. A nonempty subset M of X* is said to be F-closed if for all
x,y,u,v € X the following implication holds:

(@, y,u,v) €M = (F(z,y), F(y,x), F(u,v), F(v,u)) € M.
Obviously, any F-invariant set is F'-closed but not reversely, see Example 13
in [8].
Moreover, the following characterization theorem holds for a F-closed set M.

Theorem 2.3 (see Lemma 14 in [8]). Let X be a nonempty set, M C X* and
F: X xX — X be an operator. Define

(z,y) = (u,v) & (z,y) = (u,v) or (u,v,z,y) € M
and
Tr(z,y) := (F(x,y), F(y,z)), for all (z,y) € X x X.
Then:
(a) M is F-closed if and only if Tp is increasing with respect to <;
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(b) if M is F-invariant then Tr is increasing with respect to <.

(¢) =X is a preorder (i.e., reflexive and transitive) on X x X if and only if
M has the transitive property, i.e., for all x,y,u,v,z,w € X te following
implication holds:

(x,y,u,v) € M and (u,v,z,w) € M imply (z,y,z,w) € M.
In this setting, the following very nice result is given in [8].

Theorem 2.4 (see Theorem 16 in [8])). Let X be a nonempty set, M C X* and
F: X xX — X be a continuous operator. Suppose:
(i) M is F-closed;
(ii) there exists (zo,y0) € X x X such that (F(xo,v0), F (yo,x0), o, yo) € M;
(iii) there exists k € (0,1) such that, for all (x,y,u,v) € M we have

d(F(z,y), F(u,v)) + d(F(y,z), F(v,u)) <k (d(z,u) + d(y,v)).
Then F has at least one coupled fixed point.

As consequence, some coupled fixed point theorems given in [22], as well as in
some other works can be obtained.

If f: X — X is a given mapping we denote by Fix(f) :={z € X : x = f(z)}
the fixed point set of f. The following fixed point theorem, given by Ran-Reurings
in [19], was the staring point of a long list of papers dealing with fixed point theorems
in ordered metric spaces.

Theorem 2.5 ([19]). Let X be a nonempty set endowed with a partial order "=<”
and d : X x X = R be a complete metric on X. Let f : X — X be a continuous
operator with respect to d and increasing with respect to "=<”. Suppose that there
exist a constant k € (0,1) and an element xg € X such that:

(i) d(f(z), f(y)) < kd(x,y), for all z,y € X with z < y.

(ii) zo = f(z0)-
Then Fixz(f) # 0 and the sequence of successive approximations (f™(z))nen starting
from any point x € X which is comparable to xog converges to a fixed point of f.
If additionally, every pair x,y € X has a lower bound and an upper bound, then
the fized point x* is unique and, for any point x € X, the sequence (f™(x))nen
converges to x*.

Several improvements of the condition that every pair x,y € X has a lower bound
and an upper bound and of the continuity of the operator f were given later by
Nieto and Rodriguez-Lopez, se [12] and [13]. See also the work of Turinici [24] for
a comprehensive study.

On the other hand, in a series of papers it is shown that an existence result for
the coupled fixed point problem (1.1) can be obtained as a consequence of a fixed
point theorem of Ran-Reurings type for the operator Tr(z,y) = (F(z,y), F(y,x)).

In this paper, we will illustrate the statement that any fixed point theorem in a
mixed order and metric structure implies a coupled fixed point theorem, by consid-
ering the case of generalized contractions of Hardy-Rogers and of Ciri¢. A general
Ran-Reurings type theorem is also given.
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3. MAIN RESULTS

The following fixed point theorem was proved by Hardy and Rogers in [6].

Theorem 3.1. Let (X,d) be a complete metric space and f: X — X be a mapping
for which there exist a,b,c € Ry with a+2b+2c € (0,1) such that, for all z,y € X,
we have

d(f(x), f(y)) < ad(z,y) +b(d(z, f(x)) + d(y, f(y))) + c(d(z, f(y) + d(y, f(2))) -
Then:
(i) Fiz(f) ={="};
(ii) for every x € X the sequence (f"(x))nen converges to x*;

(ili) d(f"(z),z") < 1oinad(l‘, f(x)), for allz € X (where o= %’flgi'g)

For our next results we need the following concepts.

Definition 3.2. Let X be a nonempty set endowed with a partial order ”<” and
d: X x X — Ry be a metric on X. The triple (X,d, <) is said to be:

(a) i-regular if for any increasing sequence (x,,)nen which is convergent to z* as
n — oo, we have that x, < z*, for all n € N;

(b) d-regular if for any decreasing sequence (x,)neny which is convergent to x*
as n — oo, we have that x, = x*, for all n € N;

We have now the following Ran-Reurings type theorem for the case of Hardy-
Rogers operators.

Theorem 3.3. Let X be a nonempty set, < be a partial order on X and d be a
complete metric on X. Let f : X — X be an increasing mapping with respect to =<,
for which there exist a,b,c € Ry with a + 2b+ 2¢ € (0,1) such that the following
assertions hold:

(i) there is zp € X with zyg < f(xo);
(ii) f has closed graph with respect to d or the space (X,d, <) is i-reqular;
(ili) d(f(z), f(y)) < ad(z,y) +b(d(z, f(z)) + d(y, [(y)))
+e(d(z, f(y)) + d(y, [(z))) ,
for all x,y € X with x <.
Then:

(a) Fixz(f) # 0 and, for every x € X with x < xy or xy9 < x, the sequence
(f™(z))nen converges to x* € Fix(f). Moreover, the following apriori esti-
mation holds

d(f"(x),2%) <

T 1-«

n

b

d(z, f(x)), forn € N ( where o := atote :
1-b—c

(b) if additionally, for every pair x,y € X of elements which are not comparable

with respect to <, there exists z € X such that z is comparable with x and

y, then Fiz(f) = {«*} and, for every x € X, the sequence (f™(z))nen

converges to x*.
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Proof. (a) Let g € X with ¢y < f(x¢). Denote x,, := f"(xp), n € N. Then by the
monotonicity of f, we get that (x,)nen is increasing. Moreover we have:
d(x1,22) = d(f(20), f(21)) < ad(zo, 21) + b (d(zo, f(z0)) + d(21, f(21)))
+ c(d(zo, f(z1)) + d(x1, f(20)))
<(a+b+c)d(zg,z1) + (b+ c)d(x1, x2).

Thus
a+b+c
< —d .
S CUPACT))
Denote « := ‘ffizfg. It is easy to see that o € (0, 1). By mathematical induction, we
immediately get that
(3.1) d(zp, Tnt1) < a"d(zg, f(xg)), for each n € N.

By (3.1), we obtain that

d(:Ul,l'Q)

n

(3.2) (2, Tnip) < 101

ad(:vo, f(xg)), for each n € N and p € N*.

A standard procedure implies that (zj),en is a Cauchy sequence. Hence it is
convergent in (X, d) to an element z* € X. We show now that z* € Fiz(f).

If f has closed graph, then the conclusion is obvious.

If the space (X, d, =) is i-regular, then we have

d(z”, f(a7)) < d(z”, f(za)) + d(f(zn), f(2"))
< d(x*, xpy1) + ad(xp, %) + b (d(xn, Tpy1) + d(z*, f(27)))
£ (d(n, (@) + d(a* npn)

Thus
b
d(z*, f(@) <~ A, ) + ——d(@n, Tar)
1-b—c 1-b—c
(3.3)
1+¢ .
T—p— o)

By (3.3), letting n — oo, we get that z* € Fix(f).

Let us consider now any z € X with < xg or £y < . Denote y, := f"(z), for
n € N. By our assumption, we have that z,, < y, or y, =X x,, for all n € N. Then
we have

d(Yn, Tn) = d(f(Yn-1), f(@n-1))
< ad(yn-1,Tn-1) + b (d(Yn-1,yn) + d(xpn_1, 7))
+ ¢ (d(Yn—1, Tn) + d(Tn—1,Yn))
< ad(Yn—1,Tn-1)+b (d(Yn-1, Tn-1) +d(Tn-1, Tn) +d(Tn, yn) + d(Tn-1, 7))
+ c(d(Yn—1,Tn-1) + d(xpn—1,2n) + d(Xpn—1,2n) + d(xn, yn)) -
Thus, we obtain

a+b+ec 2(b+¢
(3-4) d(ym xn) < 7d(yn717 -Tnfl) + 1(—b—)C

S d(zp—1,2n),Vn € N.
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If we denote a,, := d(yn, Tn), by := f(_bgr_CZd(:cn,l, Zyn), then (3.4) can be written as

an < atp_1+ by, Vn € N,
Since o < 1 and li_>m b, = 0, by Lemma 2.3 in [18], we obtain that a,, — 0 as
n—oo

n — oo. Thus (y,) converges to x*. The apriori estimation follows by (3.2) by
letting p — oo.

(b) We prove first the uniqueness of the fixed point. Suppose there exist z*, y* €
Fix(f). If 2*,y* are comparable (for example z* < y*), then we have

d(z”,y") = d(f(27), f(y")) < (a +2¢)d(z", y"),

which implies d(z*,y*) = 0 and thus z* = y*. If 2*, y* are not comparable, then

there exists z € X which is comparable to z* and y*. As a consequence, f"(z*) and
f™(z) and respectively f™(z) and f™(y*) are comparable, for each n € N. Then

d(z”, f(2)) = d(f(z"), f(2))
< ad(a”,2) +bd(z, f(2)) + c(d(a”, f(2)) + d(z, f(z7)))
<ad(z*, z)+bd(z,2") + bd(z*, f(2)) + c(d(z", f(2)) + d(z,2)) .

Hence b

a+b+c
* < * .
aa*, () < (e 2)

By mathematical induction we can prove that

« n a+b+c
(35) o ) = (FE
Hence, the sequence (f"(z)) converges to z* as n — 00.

In a similar way, using that f"(z) and f"(y*) are comparable for each n € N,
we get that (f™(z)) converges to y* as n — oo. By the uniqueness of the limit we
obtain that xz* = y*.

Let x € X be arbitrarily chosen. If z and xy are comparable, then, by (a), we
know that (f™(z)) converges to * as n — oo. If x and x¢ are not comparable, then
there exists z € X which is comparable with x and respectively with zg. Since xg
and z are comparable (with respect to <), we obtain that (f™(z)) converges to the
unique fixed point z* as n — oco. On the other hand

d(f™(z),2") < d(f™(z), ["*(2)) + d(f"(z), 7).
If y, := f"(z) and z, := f"(z), the we have
d(Yn, 2n) = d(f(Yn-1), f(2n-1))
< ad(Yn—1,2n-1) + b (d(Yn—1,yn) + d(2n-1, 2n))
+ ¢ (d(Yn—-1, 2n) + d(2n—-1,Yn))
< ad(yn-1,2n-1) + (b4 ¢) (d(Yn-1, 2n-1) + 2d(2n—1, 2n) + d(Yn, 2n)) -

) d(z*,z), for all n € N*.

Hence ) 2+ 0

a+b+c +c
d(yn7 Zn) < md(yn—lv Zn—l) + md(zn—la Zn)-

As before, by Lemma 2.3 in [18], we obtain that d(y,,z,) — 0 as n — oo, which

proves that (f™(z)) converges to z* as n — oco. The proof is complete. O
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Remark 3.4. A similar result holds if we replace the condition zy < f(z¢) with
f(zo) < xo and the i-regularity of the space with its d-regularity.

From the above fixed point theorem, we get the following coupled fixed point
theorem for Hardy-Rogers type operators F': X x X — X.

Theorem 3.5. Let X be a nonempty set, X be a partial order on X and d be a
complete metric on X. Let F': X x X — X be an operator such that:
(a) F has closed graph or the triple (X,d, <) is i-reqular;
(b) there exists (xo,y0) € X X X such that xg =< F(zo,y0) and F(yo, o) = Yo;
(c) there exists a,b,c € Ry with a+2b+2c € (0,1) such that, for all (x,y), (u,v) €
X x X with (x < u,y = v) (or reversely), we have

d(F(z,y), F(u,v)) + d(F(y, ), F(v,u) < ald(z,u) + d(y, v)]
+b[d(z, F(z,y)) + d(y, F(y,z)) + d(u, F(u,v)) + d(v, F(v,u))]
+ cld(z, F(u,v)) + d(y, F(v,u)) + d(u, F(z,y)) + d(v, F(y,z))] .

Then, F has a coupled fized point (x*,y*) € X x X and the sequences (F™ (o, yo))neN
and (F™(yo,x0))neny converge to x* and to y*, respectively. Moreover, if for all
(x,y), (x1,y1) € X x X there exists (u,v) € X x X such that (x = u,y = v) and
(u X x1,v = y1) (or reversely), then the coupled fixed point is unique and, for all
(x,y) € X x X, the sequences (F™(x,y))nen and (F™(y,z))nen converge to z* and
to y*, respectively.

Proof. 1t is easy to see that the hypotheses of this theorem imply that all the
hypotheses of Theorem 3.3 applied for f := Tr : Z — Z (where Z := X x X
is endowed with the I' type metric d*((x,v), (u,v)) = d(z,u) + d(y,v), for all
(x,y), (u,v) € X x X) and Tr(z,y) :== (F(z,y), F(y,x)) take place. O

The following result was proved in [22]. Notice that Theorem 3.5 follows by

Theorem 3.6 by taking M := {(a,b,c,d) € X*:a = ¢,b < d}.
Theorem 3.6. Let (X,d) be a complete metric space, F' : X x X — X be a
continuous mapping and M be a nonempty subset of X*. Suppose that the following
assertions are satisfied:

(a) M is F-invariant;

(b) there exists (z0,y0) € X x X such that (F(xo,y0), F'(Y0, o), Z0,Yo) € M;

(c) there exist v, 3,0,7v,0 € Ry with a+ F+ 3 +~v+ 6 <1 such that

d(F(z,y), F(u,v)) < [d(x u) + d(y,v)]

Bld(z, F(z,y)) + d(y, F(y, z))]

Bld(z, F(z,y)) + d(y, F(y, z))]

6 [d(u, F(u,v)) 4 d(v, F(v,u))]

7 [d(z, F(u,v)) 4+ d(y, F(v,u))]

0 [d(u, F(z,y)) + d(v, F(y,2))] ,V(z,y,u,v) € M
Then, F has a coupled ﬁxed point (x*,y*) € X x X. Moreover, if for all

(x,y), (x1,y1) € X x X there exists (u,v) € X x X such that (x,y,u,v) € M
and (x1,y1,u,v) € M, then the coupled fixed point is unique.
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In the second part of our work, we will show that the above two theorems follow
by applying a Ran-Reurings type fixed point theorem.

Another generalization of Theorem 3.1 is the following fixed point theorem for
generalized contractions given by Lj. Cirié¢ in [3].

Theorem 3.7. Let (X,d) be a metric space and f : X — X be a mapping for which
there exists q € (0,1) such that, for all z,y € X, we have

d(f(2), () < qmax {d(z,), d(x, f(@)).d(y. F (). 5 (dlz, f(4) +d(y. @) }.

N

If X is f-orbitally complete, then:
(i) Fiz(f) ={z"};

(ii) for every x € X the sequence (f"(x))nen converges to x*;

(iil) d(f™(z),z*) < %d(m,f{m)), forallx € X.

We have now the following Ran-Reurings type theorem for the case of Ciri¢ type
operators.

Theorem 3.8. Let X be a nonempty set, = be a partial order on X and d be a
complete metric on X. Let f : X — X be an increasing mapping with respect to =<,
for which there exists q € (0,1) such that:

(i) there is xg € X with xy < f(x0);
(ii) f has closed graph with respect to d or the space (X,d, <) is i-reqular;
(ili) d(f(z), f(y)) < gmax{d(z,y),d(=, f(x)),d(y, f(y)),
3 (d(z, f(y)) +d(y, f(2)))},
for all x,y € X with x < y.
Then:

(a) Fiz(f) # 0 and the sequence (f™(xo))nen converges to z* € Fix(f) as
n — oo and the following estimation holds

n

1—g¢q

d(f"(zo),z") < d(zo, f(w0)), forn € N;
(b) if additionally, q € (0, %), then, for every x € X with x < xg or xg = x, the
sequence (f™(x))nen converges to x* and the following estimation holds

n

q

A(f"@).at) < 7

d(z, f(x)), forneN.

Moreover, if we also suppose that for every pair (z,y) € X x X of elements
which are not comparable with respect to <, there exists z € X such that z
is comparable with x and with y, then Fiz(f) = {z*} and, for every z € X,
the sequence (f™(x))nen converges to z*.
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Proof. (a) Let xy € X with 29 < f(zg). Denote x,, := f™(zp), n € N. Then, by the
monotonicity of f, we get that (x,)nen is increasing. Moreover we have:

d(z1,22) = d(f(w0), f(1))

1
< gmax {d(wo, z1), d(zo, f(w0)), d(z1, f(21)), 5 (d(zo0, f(21)) + d(w1, f(20))) }
1
= gmax {d(a:o, x1),d(x1,x2), §d(ac0,x2)} = gmax{d(xo, 1), d(z1,x2)}.
Since ¢ < 1, we get that d(z1,z2) < qd(xo, f(xp)). By mathematical induction, we
immediately get that
(3.6) A0, 2ns1) < q"d(x0, f(20)), for each n € .

By (3.6), we obtain that

n

(3.7) (2, Tnsp) < 1q_

d(xo, f(zo)), for each n € N and p € N*.
q

A standard procedure implies that (z,)nen is a Cauchy sequence. Hence it is
convergent in (X, d) to an element z* € X. We will prove that z* € Fiz(f).

If f has closed graph, then the conclusion is obvious.

If the space (X, d, =) is i-regular, then we have

d(a®, f(z7)) < d(a”, f(zn)) + d(f(zn), f(27))

< d(@", zny1)
1

+ qmax {d(n, "), d(n, 2as1), d(@", f(@*)), 5 (@@n, [7) + A", 010)) }
= d(x*, xp41) + gmax{d(zy, x¥), d(Tn, Tnt1),d(z", f(z*))}.

Thus

d(z*, f(z¥)) < 1iq [d(z*, xpy1) + q (d(xn, ") + d(@n, Tni1))] = 0,n — o0.
Hence we obtain x* = f(z*). The apriori estimation follows by (3.7) by letting
p — 0.

(b) Let € X be such that = and xy are comparable. Denote vy, := f"(z), for
n € N. By our assumption, we have that z,, < y, or ¥, = x,, for each n € N. Then
we have

d(Yn; Tn) = d(f(Yn-1), f(Tn-1))
< gmax {d(yn—h Tn1), d(Yn—1,Yn), A(Tn—1,Tn),
<gq (d(ynfb xnfl) + d(m’n*l’ xn) + d(l‘n, yn)) .

Hence

(Awn—1.70) + d(wn-1,90)) |

DN |

d(ynaxn) < 1% (d(yn—hxn—1> + d(xn—hxn)) ,Vn e N.

q
If we denote ay, := d(yn, zp), by = ﬁd(xn_l,xn), then the above relation can be
written as

Gp—1 + bp,¥n € N.

an <
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Since 1. < 1 and li_)m b, = 0, by Lemma 2.3 in [18], we obtain that a,, — 0 as
n e.9]
n — oco. Thus (y,) converges to z*.

Under additional conditions, we can also prove the uniqueness of the fixed point.
Suppose there exist z*, y* € Fiz(f). If 2*,y* are comparable (for example z* < y*),
then we have

d(z*,y") = d(f(«7), f(y)) < qd(z”,y"),
which implies d(z*,y*) = 0 and thus z* = y*. If z*,y* are not comparable, then
there exists z € X which is comparable to z* and y*. As a consequence, f"(z*) and
f™(z) and, respectively f(z) and f™(y*) are comparable, for each n € N. Then

d(z*, f(2)) = d(f(z"), f(2))
< gmax {d(x*, z),d(z, f(2)),
< q(d(z™, z) +d(z*, f(2))).

(A, f()) + d(z,2")) }

N =

Hence q
d(z*, f(2)) < qu(x*,z).

By mathematical induction we can prove that

n
d(z*, f(z)) < <1qq> d(z*,z), for all n € N*,
Hence, the sequence (f"(z)) converges to z* as n — 0o.

Using the fact that f(z) and f™(y*) are comparable for each n € N, we get (by a
similar approach) that (f"(z)) converges to y* as n — oco. Thus z* = y*.

Let z € X be such that z and xy are not comparable. Then there exists z € X
which is comparable with « and respectively with x. Since x¢ and z are comparable
(with respect to =), we obtain that (f"(z)) converges to the unique fixed point z*
as n — 0o. On the other hand,

d(f"(x),z%) < d(f"(2), ["(2)) + d(f"(2), 27).
If y, :== f"(z) and z, := f"(z), the we have
d(Yn, 2n) = d(f(Yn-1), f(zn-1))

< gmax {d(yn—h Zn—l)’ d(yn—h yn)) d(zn—la Zn)a

_

5 (@yn=1,20) + d(zn-1, ) |
1
< gmax {d(yn—lv Zn-1) + d(2n-1,2n) + d(2n, Yn), B (d(Yn—1, 2n) + d(2n—1,Yn)) }
= q(d(yn—1,2n-1) + d(zn-1,2n) + d(zn,yn)) -
Hence

d(y'm Zn) < %_qd(yn—la Zn—l) + %zqd(zn—la zn)yvn e N*.

As before, by Lemma 2.3 in [18], we obtain that d(y,,z,) — 0 as n — oo, which
proves that, for each z € X, the sequence (f"(x)) converges to z* as n — oo. The
proof is complete. O

Remark 3.9. A similar result holds if we replace the condition zy < f(x¢) with
f(xo) < xg and the i-regularity of the space with its d-regularity.
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From the above fixed point theorem, we get the following coupled fixed point
theorem for Ciri¢ type operators F': X x X — X.

Theorem 3.10. Let X be a nonempty set, < be a partial order on X and d be a
complete metric on X. Let F': X x X — X be an operator such that:
(a) F has closed graph or the triple (X, d, <) is i-reqular;
(b) there exists (xo,y0) € X x X such that xg =< F(xo,y0) and F(yo, o) = yo;
(c) there exists ¢ € (0,1) such that, for all (z,y),(u,v) € X x X satisfying
(x < u,y = v), we have

d(F(z,y), F(u,v))

1
5 [d(.%', F(u> ’U)) + d(ua F(.%', y))]
Then, F has at least one coupled fized point (z*,y*) € X x X and the sequences
(F™(x0,90)) and (F™(yo,x0)) converge to x* and to y*, respectively. If additionally,
we suppose that for all (z,y), (x1,y1) € X X X there ezists (u,v) € X X X such that
(x Ru,y = v) and (u 2 x1,v = y1) (or reversely), then the coupled fixed point is
unique and, for all (z,y) € X x X, the sequences (F"(x,y))nen and (F™(y, T))neN
converge to x* and to y*, respectively.

< gmax {d(x, u),d(z, F(x,y)),d(u, F(u,v)),

Proof. The conclusion follows by applying Theorem 3.8 for f :=Tp : Z — Z (where
Z := X x X is endowed with the ! type metric d*((x,y), (u,v)) := d(z,u) +d(y,v),
for all (z,y), (u,v) € X x X) and Tr(z,y) := (F(z,y), F(y,x)). O

By the above results, it is quite clear that every fixed point theorem of Ran-
Reurings type generates a coupled fixed point theorem under a similar contraction
type condition. In fact a more general method can be proved for these two type of
problems. We will show this approach in what follows.

Definition 3.11. Let X be a nonempty set, P C X? and f : X — X be an operator.
Then, P is said f-closed if the following implication holds:

(z,w) € P implies (f(z), f(w)) € P.

Some examples of f-closed sets are presented in Remark 3.18 and Remark 3.19.
Here we just notice the following characterization of f-closed sets.

Lemma 3.12. Let X be a nonempty set, P C X x X and f: X — X be a given
operator. We define

r=y & z=yor(z,y €P
Then:

(a) P has the transitive property if and only if < is a preorder on X.
(b) P is f-closed if and only if f is increasing with respect to <.

Proof. (a) Suppose P has the transitive property, i.e., (z,y),(y,z) € P implies
(z,z) € P. Then the binary relation < is transitive too, i.e., z < y and y < z
implies x = z. Moreover, by the definition, < is reflexive. The reverse implication
is also true.

(b) Suppose that f is increasing with respect to <. We show that P is f-closed.
Indeed, take z,y € X with (z,y) € P. Then < y. By the monotonicity of f we
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get that f(x) < f(y). Thus (f(z), f(y)) € P. Hence, P is f-closed. The reverse
implication can be obtained in a similar manner. O

Definition 3.13. Let (X,d) be a metric space, f : X — X be an operator and
P C X2. The triple (X, d,P) is said to be:
(a) i-P-regular if for any sequence (zp)nen, With (2, zp4+1) € P for all n € N,
which is convergent to z* as n — oo, we have that (z,,z*) € P, for all
n € N;
(b) d-P-regular if for any sequence (z,)nen, with (2,41,2,) € P for all n € N,
which is convergent to z* as n — oo, we have that (z*, z,) € P, for all
n € N;

The following general Ran-Reurings type fixed point theorem (in fact, a fixed
point result for almost contractions in the sense of Berinde, see [2]) is given in
terms of f-closed sets.

Theorem 3.14. Let (X,d) be a complete metric space, P C X? and f : X — X be
an operator. Suppose:
(i) P is f-closed;
(ii) f has closed graph or the triple (X,d,P) is i-P-regular;
(iii) there exists xy € X such that (xg, f(xo)) € P;
(iv) there exists k € [0,1) and | > 0 such that, for all (z,y) € P, we have

d(f(z), f(y)) < kd(z,y) + ld(y, f(z)).
Then f has at least one fized point and the sequence z,, := f™(x¢), n € N converges

to an element x* € Fiz(f).

Proof. Let us denote x,, := f™(xg), n € N. By (iii) and the f-closedness property
of P we obtain that (x,,z,+1) € P for all n € N. Then, by (iv) we obtain that

d(xna'rn—i-l) < knd(x()a f(x(]))v for all n € N.

Thus, by classical approach we get that the sequence (x,)nen is Cauchy in (X, d).
Denote by z* € X the limit of the sequence (x,,)nen. If f has closed graph, then we
immediately get that * € Fiz(f). If the triple (X, d, P) is i-P-regular, then, since
(Tn, Tpt+1) € P, we obtain that (z,,2*) € P and so, by (iv), we get

d(xpy1, f(27)) = d(f(xn), f(z7)) < kd(zp, ") + ld(z", f(z,)) — 0 as n — oo.
Hence z* = f(x*). O
Remark 3.15. A similar result holds if we replace the condition (xq, f(z¢)) € P

with the assumption (f(z¢),z0) € P and the i-P-regularity of the space with its
d-P-regularity.

Remark 3.16. One can remark that we do not ask the symmetry of P nor its
reflexivity.

In the particular case when [ = 0, we obtain the following result.

Corollary 3.17. Let (X, d) be a complete metric space, P C X2 and f : X — X be
an operator. Suppose:

(i) P is f-closed;
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(ii) f has closed graph or the triple (X, d,P) is i-P-regular;
(iii) there exists xog € X such that (xg, f(x0)) € P;
(iv) there exists k € [0,1) such that, for all (z,y) € P, we have

d(f(x), f(y)) < kd(z,y).

Then we have the following conclusions:

(a) f has at least one fized point and the sequence x,, :== f™(xg), n € N converges
to an element x* € Fix(f);

(b) For any x € X such that (xo,x) or (zg,x) belongs to P, the sequences x,, :=
f™(xo) and uy, == f"(x), n € N are Cauchy equivalent (i.e., d(Tpn,un) — 0
as n — o) and hence (f™(x)) converges to the same point x* € Fix(f);

(¢) If additionally, we suppose that for every x € X for which neither (xg, ) nor
(zo,x) does not belong to P there exists z € X such that (xg,2), (z,z) € P,
then Fix(f) = {z*} and (f™(x))nen converges to x* as n — oo.

Proof. (b) If (0, ) or (z,) belongs to P, then (£"(zo), f"(x)) or (£"(x), f"(z0))
are in P, for every n € N. Thus, we have (for the first situation, for example), that

d(xp, up) < k"d(zg,z) — 0 as n — oo.

(c) Let = € X be such that (xg,z) and (xo, z) do not belong to P. Then, there exists
z € X such that (zg,2) and (z,z) are in P. By (b) the sequences z,, := f™(zo) and
vy = f"(z), n € N are Cauchy equivalent. Thus, the sequences v, := f"(z) and
wy, := f"(x), n € Nare Cauchy equivalent too. Concerning the uniqueness, suppose
there exists y* € Fixz(f) such that y* # z*. If (z9,y*) or (y*,x¢) are in P, then by

d(y*, =%) = d(f"(y"), f"(«7))
< d(f"(y), [" (o)) + d(f" (wo), [ (7))

< k"d(y*,xo) + d(f"(x0),2") — 0 as n — oo,

we obtain that y* = z*. On the other hand, if neither (xg,y*) nor (y*,zo) does
not belong to P, then there exists z € X such that (y*, z) and (z,x0) are in P. By
the fact that (z,z0) € P, we get that f™(z) and f"(x¢) are Cauchy equivalent and,
thus, f"(z) converges to z* € Fixz(f). Then we get again

d(y*, x%) = d(f"(y"), [" (7))
< d(f"(y*), f*(2)) + d(f"(2), f(27))
< k"d(y*,z) +d(f"(z),2") — 0 as n — oo.

Thus, we obtain that y* = z*. The proof is now complete. U

Remark 3.18. 1) In particular, in the above theorem, if the metric space (X, d)
is endowed with a partial order < and we consider P := {(z,y) € X x X : x <y}
or P:={(z,y) € X x X : y X x} then, under the additional hypothesis that f is
increasing with respect to <, we obtain Ran-Reurings Theorem, see Theorem 2.5.

2) In the above framework, if we choose P := {(z,y) € X x X : z < yory <z}
and we suppose that f is increasing with respect to <, then P is f-closed and some
generalizations of the results given in [14] can be obtained.
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Remark 3.19. Let (X,d) be a metric space and f : X — X. Let A denote the
diagonal of the Cartesian product X x X. Consider a directed graph G such that
the set V(G) of its vertices coincides with X, and the set E(G) of its edges contains
all loops, i.e., A C E(G). If we define P := {(z,y) € X x X : (z,y) € E(G)} and
suppose that f preserves edges (see (2.2) in [7]), then P is f-closed and, by Theorem
3.14, we get some extensions of the results given in [7].

Remark 3.20. The result can be extended, under additional conditions, to the
case of nonlinear contractions (also called ¢-contractions). Recall that f: X — X
is said to be a @-contraction if ¢ : Ry — R, is a comparison function (i.e., it is
increasing and satisfies the condition nh—>Holo ©"(t) = 0 for each t > 0) and

d(f(x), f(y)) < e(d(x,y)), for all z,y € X.

More precisely, we have the following result.

Theorem 3.21. Let (X,d) be a complete metric space, P C X% and f: X — X be

an operator. Suppose:
(i) P is f-closed;

(ii) f has closed graph or the triple (X, d,P) is i-P-regular;

(iii) there exists xo € X such that (xo, f(xo)) € P;

(iv) there exists a comparison function ¢ : Ry — Ry such that

d(f(x), f(y)) < e(d(x,y)), for all (z,y) € P;

(v) for every x,y € X for which neither (z,y) nor (y,x) does not belong to P
there exists z € X such that (x,z),(z,y) € P;

Then, Fix(f) = {x*} and (f™"(z))nen converges to z* as n — oo.

Proof. Let us denote x,, := f™(xg), n € N. By (iii) and the f-closedness property
of P we obtain that (x,,z,+1) € P for all n € N. Then, by (iv) we obtain that

(3.8) d(xp, Tpt1) < " (d(xo, f(x0))), for all n € N.

We can prove now that the sequence (x,) is Cauchy.

Let € > 0 be arbitrary. Since ¢"(e) — 0 as n — oo, there exists n(e) > 0 such
that ¢"(e) < §, for each n > n(e). Let g := ™) and yp, == g™ (x0), m € N. Then
we have

d(ym, ym+1) = d(f"" (o), [ (g(w0))) < "™ (d(w0, g(0))) = 0, n = oc.

Hence, for € > 0 there exists m(e) > 0 such that d(ym,ym+1) < 5, for each m >
m(e). Let
B(Ymei€) == A{y € X | d(y, Ym(e)) < €}
We will show that g : B(ym@; €) — B(ym(e); €). Indeed, let u € B’(ym(e); €). Then
d(g(w), Ym(e)) < d(g(w), 9(Ym(e))) + AI(Ym(e))s Ym(e))
=d(9(u), 9(YUm(e))) + AdYm(e)+1> Ym(e))-

If (U, Ym(e)) OF (U, Ym(e)) are in P, then we can write directly

d(g(u), g(ym(e) )) < Qon(E) (d(u7 Ym(e) )) < (pn(e) (6) <

N
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If neither (u, Yy (e)) NOT (U, Yy (e)) does not belong to P, then there exists z € X such
that (u, z)and (2, Y () are in P. Then

d(g(u), 9(Ym(e))) < d(g(u), 9(2)) + d(9(2), 9(Um(e)))
< @™V (d(u, 2)) + ¢ (A2, Ym(e)))-
Hence
Ag(0), () < (£, 2)) + "2 Ym0)) + AYm(ey1: Umie)) < €
As a consequence, for every i,j € N with 4,7 > m(e), we get

d(yi) yj) < d(yu ym(e)) + d(yja ym(e)) < 2,

which proves that the sequence (y,,) is Cauchy and hence (z,,) is Cauchy. The rest
of the proof is similar to the previous one. O

Remark 3.22. It is an open problem to obtain an existence result for the fixed
points result of f without the hypothesis (v) of the above theorem. for example, a
solution for this question is the case when we suppose, instead of the assumption

lim ¢"(t) =0, for each ¢t > 0,
n—oo

that

(3.9) Z ©"(t) < oo, for each t > 0.

n>0

Recall that a function ¢ : Ry — Ry which is increasing and has the above property
(3.9) is called a strong comparison function. Then, by (3.8), we can prove that the
sequence (z,) is Cauchy and, by (ii), we get that the limit of the sequence (zy,) is
a fixed point for f.

Using the above results we can derive now some general coupled fixed point
theorems. For example, Theorem 2.4 given in [8] can be immediately derived.

Theorem 3.23. Theorem 2.4 follows by Corollary 3.17.

Proof. Let Z := X x X endowed with the metric
d*((z,y), (u,v)) := d(z,u) + d(y,v), for all (z,y), (u,v) € X x X,
generated by d. We consider the operator T': Z — Z given by
Tp(z,y) := (F(z,y), F(y,z)), for all (z,y) € X x X
and define
P:={(z,w) € Z X Z:2z=(z,y),w=(u,v),(x,y,u,v) € M}.

Since M is F-closed, we get that P is Tr-closed. Moreover, by the hypotheses of
Theorem 2.4, TF satisfies the following assumptions:
(i) Tr has closed graph with respect to d*;
(i) there exists zp := (xo,yo) € Z such that (29, Tr(20)) € P;
(iii) there exists k € [0,1) such that, for all (z,w) € P, we have

d*(Tp(z), Tr(w)) < kd*(z,w).
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Since the fixed points of T are coupled fixed points for F', the conclusion of Theorem
2.4 follows by Corollary 3.17. U

Moreover, by Corollary 3.17 or, more generally, by Theorem 3.14, we can obtain
several known coupled fixed point theorems, as well as some new ones. For example,
we can prove the following result.

Theorem 3.24. Let X be a nonempty set, M C X* and F : X x X — X be an
operator with closed graph. Suppose:
(i) M is F-closed;
(i) there exists (xo,y0) € X x X such that (xo,y0, F(zo,Y0), F (y0,0)) € M;
(iii) there exists k € [0,1) and I > 0 such that, for all (x,y,u,v) € M we have

d(F(z,y), F(u,v)) + d(F(y,z), F(v,u)) <

k(d(z,u) +d(y,v)) + 1 (d(u, F(z,y)) + d(v, F(y, z))) .
Then F has at least one coupled fized point.

In a similar way, by Theorem 3.21, we obtain the following general existence and
uniqueness result for the coupled fixed point problem.

Theorem 3.25. Let X be a nonempty set, M C X* and F : X x X — X be an
operator with closed graph. Suppose:
(i) M is F-closed;
(ii) there exists (xo,y0) € X x X such that (x0,y0, F(z0,Y0), F (v0,z0)) € M;
(iii) there ezists a strong comparison function ¢ : Ry — Ry such that, for all
(x,y,u,v) € M we have

d(F(z,y), F(u,v)) + d(F(y, ), F(v,u)) < p((d(z,u) + d(y, v)))-

Then F has a unique coupled fixed point (x*,y*) € X x X and, for all (z,y) € X x X,
the sequences (F™(x,y))nen and (F™(y,x))nen converge to * and y*, respectively.

Remark 3.26. It is also very clear that, if instead of the I' type metric d*, we
consider on X x X the 1> type metric d((x,y), (u,v)) := max{d(z,u),d(y,v)}, we
can obtain another chain of consequences of Theorem 3.14 and Theorem 3.21.
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