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2 WATARU TAKAHASHI

where λ > 0 and PD is the metric projection of H1 onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the
split feasibility peoblem and generalized split feasibility peoblems including the
split common null point problem in Hilbert spaces; see, for instance, [6, 8, 14, 30].
However, it is difficult to solve such results outside Hilbert spaces. Recently, by using
the hybrid methods of [15, 16, 18], Takahashi [22, 23, 24] proved strong convergence
theorems for finding solutions of the feasibility problem and the split common null
point problem in Banach spaces. Furthermore, by using the shrinking projection
method [27], Takahashi [26] proved a strong convergence theorem for finding a
solution of the split common fixed point problem in Banach spaces. On the other
hand, in 1953, Mann [12] introduced the following iteration process. Let C be a
nonempty, closed and convex subset of a Banach space E. A mapping T : C → C
is called nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. For an initial guess
x1 ∈ C, an iteration process {xn} is defined recursively by

xn+1 = αnxn + (1− αn)Txn, ∀n ∈ N,

where {αn} is a sequence in [0, 1]. In 1967, Halpern [9] also gave an iteration process
as follows: Take x0, x1 ∈ C arbitrarily and define {xn} recursively by

xn+1 = αnx0 + (1− αn)Txn, ∀n ∈ N,

where {αn} is a sequence in [0, 1]. There are many investigations of iterative pro-
cesses for finding fixed points of nonexpansive mappings.

In this paper, motivated by these problems and methods, we consider the split
common fixed point problem in Banach spaces. Then using the idea of Mann’s
iteration, we first prove a weak convergence theorem for finding a solution of the
split common fixed point problem in Banach spaces. Furthermore, using the idea of
Halpern’s iteration, we obtain a strong convergence theorem for finding a solution
of the problem in Banach spaces. It seems that these results are first in Banach
spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product ⟨·, ·⟩ and
norm ∥ · ∥, respectively. For x, y ∈ H and λ ∈ R, we have from [21] that

(2.1) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;

(2.2) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Furthermore we have that for x, y, u, v ∈ H,

(2.3) 2⟨x− y, u− v⟩ = ∥x− v∥2 + ∥y − u∥2 − ∥x− u∥2 − ∥y − v∥2.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by PC , that is, ∥x− PCx∥ ≤ ∥x− y∥ for
all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We
know that the metric projection PC is firmly nonexpansive, i.e.,

(2.4) ∥PCx− PCy∥2 ≤ ⟨PCx− PCy, x− y⟩
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for all x, y ∈ H. Furthermore ⟨x−PCx, y−PCx⟩ ≤ 0 holds for all x ∈ H and y ∈ C;
see [19]. The following result was proved by Takahashi and Toyoda [28].

Lemma 2.1 ([28]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let {xn} be a sequence in H. If ∥xn+1 − u∥ ≤ ∥xn − u∥ for all
n ∈ N and u ∈ C, then {PCxn} converges strongly to some z ∈ C, where PC is the
metric projection on H onto C.

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. A uniformly convex Banach space is strictly convex and
reflexive.

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.5) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E∗. We also know that E is reflexive if
and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J−1 coincides with
the duality mapping J∗ on E∗. For more details, see [19] and [20]. We know the
following result.

Lemma 2.2 ([19]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C.

Lemma 2.3 ([19]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x1 ∈ E and z ∈ C.
Then, the following conditions are equivalent:

(1) z = PCx1;
(2) ⟨z − y, J(x1 − z)⟩ ≥ 0, ∀y ∈ C.
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Let E be a Banach space and let A be a mapping of of E into 2E
∗
. A multi-valued

mapping A on E is said to be monotone if ⟨x − y, u∗ − v∗⟩ ≥ 0 for all u∗ ∈ Ax,
and v∗ ∈ Ay. A monotone operator A on E is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on E. The
following theorem is due to Browder [4]; see also [20, Theorem 3.5.4].

Theorem 2.4 ([4]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E∗. Let A be a monotone operator of E into
2E

∗
. Then A is maximal if and only if for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let A be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

0 ∈ J(xr − x) + rAxr.

This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr, r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A−10 = {z ∈ E : 0 ∈ Az}. We know that A−10 is closed and convex; see [20].

Let E be a smooth, strictly convex and reflexive Banach space and let η be a real
number with η ∈ (−∞, 1). Then a mapping U : E → E with F (U) ̸= ∅ is called
η-demimetric [26] if, for any x ∈ E and q ∈ F (U),

⟨x− q, J(x− Ux)⟩ ≥ 1− η

2
∥x− Ux∥2,

where F (U) is the set of fixed points of U .

Examples We know examples of η-demimetric mappings from [26, 25].

(1) Let H be a Hilbert space and let k be a real number with 0 ≤ k < 1. A
mapping U : C → H is called a k-strict pseudo-contraction [5] if

∥Ux− Uy∥2 ≤ ∥x− y∥2 + k∥x− Ux− (y − Uy)∥2

for all x, y ∈ C. If U is a k-strict pseudo-contraction and F (U) ̸= ∅, then U is
k-demimetric; see [26].

(2) Let H be a Hilbert space and let C be a nonempty subset of H. A mapping
U : C → H is called generalized hybrid [10] if there exist α, β ∈ R such that

α∥Ux− Uy∥2 + (1− α)∥x− Uy∥2 ≤ β∥Ux− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. Such a mapping U is called (α, β)-generalized hybrid. A (1,0)-
generalized hybrid mapping is nonexpansive. If U is generalized hybrid and F (U) ̸=
∅, then U is 0-demimetric; see [25].

(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be
a nonempty, closed and convex subset of E. Let PC be the metric projection of E
onto C. Then PC is (−1)-demimetric; see [26].
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(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B−10 ̸= ∅. Let λ > 0. Then the metric resolvent
Jλ is (−1)-demimetric; see [26].

Lemma 2.5 ([26]). Let E be a smooth, strictly convex and reflexive Banach space
and let η be a real number with η ∈ (−∞, 1). Let U be an η-demimetric mapping of
E into itself. Then F (U) is closed and convex.

We also know the following lemmas:

Lemma 2.6 ([2], [32]). Let {sn} be a sequence of nonnegative real numbers, let {αn}
be a sequence in [0, 1] with

∑∞
n=1 αn = ∞, let {βn} be a sequence of nonnegative

real numbers with
∑∞

n=1 βn < ∞, and let {γn} be a sequence of real numbers with
lim supn→∞ γn ≤ 0. Suppose that

sn+1 ≤ (1− αn)sn + αnγn + βn

for all n = 1, 2, . . . . Then limn→∞ sn = 0.

Lemma 2.7 ([11]). Let {Γn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {Γni} of {Γn} which satisfies
Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers as follows:

τ(n) = max{k ≤ n : Γk < Γk+1},

where n0 ∈ N satisfies {k ≤ n0 : Γk < Γk+1} ̸= ∅. Then, the following hold:

(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0.

3. Weak convergence theorem

In this section, we prove a weak convergence theorem of Mann’s type iteration for
the split common fixed point problem in Banach spaces. Let E be a Banach space
and let D be a nonempty, closed and convex subset of E. A mapping U : D → E is
called demiclosed if for a sequence {xn} in D such that xn ⇀ p and xn −Uxn → 0,
p = Up holds.

Theorem 3.1. Let H be a Hilbert space and let F be a smooth, strictly convex
and reflexive Banach space. Let JF be the duality mapping on F and let η be a
real number with η ∈ (−∞, 1). Let T : H → H be a nonexpansive mapping and
let U : F → F be an η-demimetric and demiclosed mapping with F (U) ̸= ∅. Let
A : H → F be a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint
operator of A. Suppose that F (T ) ∩A−1F (U) ̸= ∅. For any x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)T
(
I − rA∗JF (A− UA)

)
xn, ∀n ∈ N,

where {βn} ⊂ [0, 1] and r ∈ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < r∥AA∗∥ < 1− η

for some a, b ∈ R. Then {xn} converges weakly to a point z0 ∈ F (T ) ∩ A−1F (U),
where z0 = limn→∞ PF (T )∩A−1F (U)xn.
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Proof. Since T is nonexpansive, F (T ) is closed and convex [21]. We also have from
Lemma 2.5 that F (U) is closed and convex. Then F (T ) ∩ A−1F (U) is closed and
convex. Since F (T ) ∩ A−1F (U) is nonempty, the metric projection PF (T )∩A−1F (U)

of H onto F (T )∩A−1F (U) is well-defined. Let z ∈ F (T )∩A−1F (U). Then z = Tz
and Az −UAz = 0. Put yn = T

(
xn − rA∗JF (Axn −UAxn)

)
for all n ∈ N. Since T

is nonexpansive, we have that

∥yn−z∥2 =
∥∥T (xn − rA∗JF (Axn − UAxn)

)
− Tz

∥∥2
≤ ∥xn − rA∗JF (Axn − UAxn)− z∥2

= ∥xn − z − rA∗JF (Axn − UAxn)∥2

= ∥xn − z∥2 − 2⟨xn − z, rA∗JF (Axn − UAxn)⟩
+ ∥rA∗JF (Axn − UAxn)∥2

≤ ∥xn − z∥2 − 2r⟨Axn −Az, JF (Axn − UAxn)⟩
+ r2∥AA∗∥∥JF (Axn − UAxn)∥2(3.1)

≤ ∥xn − z∥2 − r(1− η)∥Axn − UAxn∥2

+ r2∥AA∗∥∥Axn − UAxn∥2

= ∥xn − z∥2 + r(r∥AA∗∥ − (1− η))∥Axn − UAxn∥2.

From 0 < r∥AA∗∥ < 1 − η we have that ∥yn − z∥ ≤ ∥xn − z∥ for all n ∈ N and
hence

∥xn+1 − z∥ = ∥βnxn + (1− βn)yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn) ∥xn − z∥
≤ ∥xn − z∥ .

Then limn→∞ ∥xn − z∥ exists. Thus {xn}, {Axn} and {yn} are bounded. Using the
equality (2.2), we have that for n ∈ N and z ∈ F (T ) ∩A−1F (U)

∥xn+1 − z∥2 = ∥βnxn + (1− βn)yn − z∥2

= βn ∥xn − z∥2 + (1− βn) ∥yn − z∥2 − βn(1− βn) ∥xn − yn∥2

≤ βn ∥xn − z∥2 + (1− βn) ∥xn − z∥2

+ (1− βn)r(r∥AA∗∥ − (1− η))∥Axn − UAxn∥2 − βn(1− βn) ∥xn − yn∥2

= ∥xn − z∥2 + (1− βn)r(r∥AA∗∥ − (1− η))∥Axn − UAxn∥2

− βn(1− βn) ∥xn − yn∥2 .

Therefore, we have that βn(1− βn) ∥xn − yn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 and

(1− βn)r(1− η − r∥AA∗∥)∥Axn − UAxn∥2 ≤ ∥xn − z∥2 − ∥xn+1 − z∥2 .

Thus we have from 0 < a ≤ βn ≤ b < 1 that

(3.2) lim
n→∞

∥xn − yn∥2 = 0 and lim
n→∞

∥Axn − UAxn∥2 = 0.
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Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging weakly
to w. Since A is bounded and linear, we also have that {Axni} converges weakly to
Aw. Using limn→∞ ∥Axn − UAxn∥ = 0 and the demiclosedness of U , we have that
Aw = UAw and hence w ∈ A−1F (U). We also have that

∥xn − Txn∥ = ∥xn − yn + yn − Txn∥
= ∥xn − yn + T

(
xn − rA∗JF (Axn − UAxn)

)
− Txn∥

≤ ∥xn − yn∥+ ∥xn − rA∗JF (Axn − UAxn)− xn∥
= ∥xn − yn∥+ ∥rA∗JF (Axn − UAxn)∥ → 0.

Since xni ⇀ w and a nonexpansive T is demiclosed [19], we have w = Tw. This
implies that w ∈ F (T ) ∩A−1F (U).

We next show that if xni ⇀ x∗ and xnj ⇀ y∗, then x∗ = y∗. We know x∗, y∗ ∈
F (T )∩A−1F (U) and hence limn→∞ ∥xn−x∗∥ and limn→∞ ∥xn−y∗∥ exist. Suppose
x∗ ̸= y∗. Since H satisfies Opial’s condition, we have that

lim
n→∞

∥xn−x∗∥ = lim
i→∞

∥xni − x∗∥ < lim
i→∞

∥xni − y∗∥

= lim
n→∞

∥xn − y∗∥ = lim
j→∞

∥xnj − y∗∥

< lim
j→∞

∥xnj − x∗∥ = lim
n→∞

∥xn − x∗∥.

This is a contradiction. Then we have x∗ = y∗. Therefore, xn ⇀ x∗ ∈ F (T ) ∩
A−1F (U). Moreover, since for any z ∈ F (T ) ∩A−1F (U)

∥xn+1 − z∥ ≤ ∥xn − z∥ , ∀n ∈ N,

we have from Lemma 2.1 that PF (T )∩A−1F (U)xn → z0 for some z0 ∈ F (T )∩A−1F (U).
The property of metric projection implies that

⟨x∗ − PF (T )∩A−1F (U)xn, xn − PF (T )∩A−1F (U)xn⟩ ≤ 0.

Therefore, we have

∥x∗ − z0∥2 = ⟨x∗ − z0, x
∗ − z0⟩ ≤ 0.

This means that x∗ = z0, i.e., xn ⇀ z0. □

4. Strong convergence theorem

In this section, we prove a strong convergence theorem of Halpern’s type iteration
for the split common fixed point problem in Banach spaces.

Theorem 4.1. Let H be a Hilbert space and let F be a smooth, strictly convex
and reflexive Banach space. Let JF be the duality mapping on F and let η be a
real number with η ∈ (−∞, 1). Let T : H → H be a nonexpansive mapping and
let U : F → F be an η-demimetric and demiclosed mapping with F (U) ̸= ∅. Let
A : H → F be a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint
operator of A. Suppose that F (T ) ∩ A−1F (U) ̸= ∅. Let {un} be a sequence in H
such that un → u. For x1 = x ∈ H, let {xn} ⊂ H be a sequence generated by

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)T (xn − rA∗JF (I − U)Axn)

)
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for all n ∈ N, where r ∈ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < r∥AA∗∥ < 1− η, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < a ≤ βn ≤ b < 1

where a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ F (T ) ∩ A−1F (U),
where z0 = PF (T )∩A−1F (U)u.

Proof. As in the proof of Theorem 3.1, F (T ) ∩ A−1F (U) is nonempty, closed and
convex and hence the metric projection PF (T )∩A−1F (U) of H onto F (T )∩A−1F (U)
is well-defined. Put zn = T (I − rA∗JF (I − U)A)xn for all n ∈ N. Let z ∈ F (T ) ∩
A−1F (U). We have that z = Tz and Az − UAz = 0. As in the proof of Theorem
3.1, we have that

∥zn − z∥2 = ∥T (I − rA∗JF (I − U)A)xn − Tz∥2

≤ ∥xn − rA∗JF (I − U)Axn − z∥2

≤ ∥xn − z∥2 − 2r⟨Axn −Az, JF (I − U)Axn⟩(4.1)

+ r2∥AA∗∥ ∥(I − U)Axn∥2

≤ ∥xn − z∥2 − r(1− η)∥Axn − UAxn∥2 + r2∥AA∗∥ ∥(I − U)Axn∥2

= ∥xn − z∥2 + r(r∥AA∗∥ − (1− η)) ∥(I − U)Axn∥2 .

From 0 < r∥AA∗∥ < (1 − η) we have that ∥zn − z∥ ≤ ∥xn − z∥ for all n ∈ N. Put
yn = αnun + (1− αn)T (xn − rA∗JF (I − U)Axn). We have that

∥yn − z∥ = ∥αn(un − z) + (1− αn)(zn − z)∥
≤ αn∥un − z∥+ (1− αn)∥zn − z∥
≤ αn ∥un − z∥+ (1− αn) ∥xn − z∥ .

Using this, we get that

∥xn+1 − z∥ = ∥βn(xn − z) + (1− βn)(yn − z)∥
≤ βn ∥xn − z∥+ (1− βn) ∥yn − z∥
≤ βn ∥xn − z∥+ (1− βn)(αn ∥un − z∥+ (1− αn) ∥xn − z∥)
= (1− αn(1− βn))∥xn − z∥+ αn(1− βn)∥un − z∥.

Since {un} is bounded, there exists M > 0 such that supn∈N ∥un−z∥ ≤ M . Putting
K = max{∥x1 − z∥,M}, we have that ∥xn − z∥ ≤ K for all n ∈ N. In fact, it is
obvious that ∥x1 − z∥ ≤ K. Suppose that ∥xk − z∥ ≤ K for some k ∈ N. Then we
have that

∥xk+1 − z∥ ≤ (1− αk(1− βk))∥xk − z∥+ αk(1− βk)∥uk − z∥
≤ (1− αk(1− βk))K + αk(1− βk)K = K.

By induction, we obtain that ∥xn − z∥ ≤ K for all n ∈ N. Then {xn} is bounded.
Furthermore, {Axn}, {zn} and {yn} are bounded. Take z0 = PF (T )∩A−1F (U)u. Since
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zn = T (I − rA∗JF (I − U)A)xn, we have that

xn+1 − xn = βnxn + (1− βn){αnun + (1− αn)zn} − xn

and hence

xn+1 − xn−(1− βn)αnun

= βnxn + (1− βn)(1− αn)zn − xn

= (1− βn){(1− αn)zn − xn}
= (1− βn){zn − xn − αnzn}.

Thus we have that

⟨xn+1−xn − (1− βn)αnun, xn − z0⟩
= (1− βn)⟨zn − xn, xn − z0⟩ − (1− βn)⟨αnzn, xn − z0⟩(4.2)

= −(1− βn)⟨xn − zn, xn − z0⟩ − (1− βn)αn⟨zn, xn − z0⟩.
From (2.3) and (4.1), we have that

2⟨xn−zn, xn − z0⟩
= ∥xn − z0∥2 + ∥zn − xn∥2 − ∥zn − z0∥2(4.3)

≥ ∥xn − z0∥2 + ∥zn − xn∥2 − ∥xn − z0∥2

= ∥zn − xn∥2.
From (4.2) and (4.3), we have that

2⟨xn+1−xn, xn − z0⟩
= 2(1− βn)αn⟨un, xn − z0⟩
− 2(1− βn)⟨xn − zn, xn − z0⟩ − 2(1− βn)αn⟨zn, xn − z0⟩(4.4)

≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.

Furthermore, using (2.3) and (4.4), we have that

∥xn+1 − z0∥2 − ∥xn − xn+1∥2 − ∥xn − z0∥2

≤ 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.

Setting Γn = ∥xn − z0∥2, we have that

Γn+1 − Γn−∥xn − xn+1∥2

≤ 2(1− βn)αn⟨un, xn − z0⟩(4.5)

− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩.
Noting that

∥xn+1 − xn∥ = ∥βnxn + (1− βn){αnun + (1− αn)zn} − xn∥
= ∥(1− βn)αn(un − zn) + (1− βn)(zn − xn)∥(4.6)

≤ (1− βn)
(
∥zn − xn∥+ αn∥un − zn∥

)
,
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we have that

∥xn+1 − xn∥2 ≤ (1− βn)
2
(
∥zn − xn∥+ αn∥un − zn∥

)2
= (1− βn)

2∥zn − xn∥2(4.7)

+ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)
.

Thus we have from (4.5) and (4.7) that

Γn+1 − Γn ≤ ∥xn − xn+1∥2 + 2(1− βn)αn⟨un, xn − z0⟩
− (1− βn)∥zn − xn∥2 − 2(1− βn)αn⟨zn, xn − z0⟩

≤ (1− βn)
2∥zn − xn∥2

+ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)

+ 2(1− βn)αn⟨un, xn − z0⟩ − (1− βn)∥zn − xn∥2

− 2(1− βn)αn⟨zn, xn − z0⟩
and hence

Γn+1−Γn + βn(1− βn)∥zn − xn∥2

≤ (1− βn)
2
(
2αn∥zn − xn∥∥un − zn∥+ α2

n∥un − zn∥2
)

(4.8)

+ 2(1− βn)αn⟨un, xn − z0⟩ − 2(1− βn)αn⟨zn, xn − z0⟩.
We will divide the proof into two cases.

Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn for
all n ≥ N . In this case, limn→∞ Γn exists and then limn→∞(Γn+1 − Γn) = 0. Using
limn→∞ αn = 0 and 0 < a ≤ βn ≤ b < 1, we have from (4.8) that

(4.9) lim
n→∞

∥zn − xn∥ = 0.

From (4.6) we have that

(4.10) lim
n→∞

∥xn+1 − xn∥ = 0.

We also have that

∥yn − zn∥ = ∥αnun + (1− αn)zn − zn∥(4.11)

= αn∥un − zn∥ → 0.

Furthermore, from ∥yn − xn∥ ≤ ∥yn − zn∥+ ∥zn − xn∥, we have that

(4.12) lim
n→∞

∥yn − xn∥ = 0.

We show that lim supn→∞⟨u − z0, yn − z0⟩ ≤ 0, where z0 = PF (T )∩A−1F (U)u.
Put l = lim supn→∞⟨u − z0, yn − z0⟩. Then without loss of generality, there exists
a subsequence {yni} of {yn} such that l = limi→∞⟨u − z0, yni − z0⟩ and {yni}
converges weakly to some point w ∈ H. From ∥xn − yn∥ → 0, {xni} converges
weakly to w ∈ H. Since ∥zn − xn∥ → 0, we also have that {zni} converges weakly
to w ∈ H. On the other hand, from (4.1) we have that

r(1− η − r∥AA∗∥) ∥(I − U)Axn∥2 ≤ ∥xn − z∥2 − ∥zn − z∥2

= (∥xn − z∥ − ∥zn − z∥)(∥xn − z∥+ ∥zn − z∥)(4.13)



THE SPLIT COMMON FIXED POINT PROBLEM 11

≤ ∥xn − zn∥ (∥xn − z∥+ ∥zn − z∥).

Then we get from ∥xn − zn∥ → 0 that

(4.14) lim
n→∞

∥Axn − UAxn∥ = 0.

Since {xni} converges weakly to w ∈ H and A is bounded and linear, we also have
that {Axni} converges weakly to Aw. Using limn→∞ ∥Axn − UAxn∥ = 0 and the
demiclosedness of U , we have that Aw = UAw. We also have that

∥xn − Txn∥ = ∥xn − zn + zn − Txn∥
= ∥xn − zn + T

(
xn − rA∗JF (Axn − UAxn)

)
− Txn∥

≤ ∥xn − zn∥+ ∥xn − rA∗JF (Axn − UAxn)− xn∥
= ∥xn − zn∥+ ∥rA∗JF (Axn − UAxn)∥ → 0.

Since xni ⇀ w and a nonexpansive T is demiclosed [19], we have w = Tw. This
implies that w ∈ F (T ) ∩ A−1F (U). Since {yni} converges weakly to w ∈ F (T ) ∩
A−1F (U), we have that

l = lim
i→∞

⟨u− z0, yni − z0⟩ = ⟨u− z0, w − z0⟩ ≤ 0.

Since yn − z0 = αn(un − z0) + (1 − αn)(T (xn − rA∗JF (I − U)Axn) − z0), we have
from (2.1) that

∥yn − z0∥2 ≤ (1− αn)
2∥T (xn − rA∗JF (I − U)Axn)− z0∥2

+ 2αn⟨un − z0, yn − z0⟩.

From (4.1), we have

∥yn − z0∥2 ≤ (1− αn)
2 ∥xn − z0∥2 + 2αn⟨un − z0, yn − z0⟩.

This implies that

∥xn+1−z0∥2 ≤ βn ∥xn − z0∥2 + (1− βn) ∥yn − z0∥2

≤ βn ∥xn − z0∥2

+ (1− βn)
(
(1− αn)

2 ∥xn − z0∥2 + 2αn⟨un − z0, yn − z0⟩
)

=
(
βn + (1− βn)(1− αn)

2
)
∥xn − z0∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩

≤ (βn + (1− βn)(1− αn)) ∥xn − z0∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩

= (1− (1− βn)αn) ∥xn − z0∥2 + 2(1− βn)αn⟨un − z0, yn − z0⟩

= (1− (1− βn)αn) ∥xn − z0∥2

+ 2(1− βn)αn(⟨un − u, yn − z0⟩+ ⟨u− z0, yn − z0⟩).

Since
∑∞

n=1(1− βn)αn = ∞, by Lemma 2.6 we obtain that xn → z0.
Case 2: Suppose that there exists a subsequence {Γni} of the sequence {Γn} such

that Γni < Γni+1 for all i ∈ N. In this case, we define τ : N → N by

τ(n) = max{k ≤ n : Γk < Γk+1}.
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Then we have from Lemma 2.7 that Γτ(n) ≤ Γτ(n)+1. Thus we have from (4.8) that
for all n ∈ N,

βτ(n)(1−βτ(n))∥zτ(n) − xτ(n)∥2

≤ (1− βτ(n))
22ατ(n)∥zτ(n) − xτ(n)∥∥uτ(n) − zτ(n)∥

+ (1− βτ(n))
2α2

τ(n)∥uτ(n) − zτ(n)∥2(4.15)

+ 2(1− βτ(n))ατ(n)⟨uτ(n), xτ(n) − z0⟩
− 2(1− βτ(n))ατ(n)⟨zτ(n), xτ(n) − z0⟩.

Using limn→∞ αn = 0 and 0 < a ≤ βn ≤ b < 1, we have from (4.15) that

(4.16) lim
n→∞

∥zτ(n) − xτ(n)∥ = 0.

As in the proof of Case 1 we have that

(4.17) lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0.

and

(4.18) lim
n→∞

∥yτ(n) − zτ(n)∥ = 0.

Since ∥yτ(n) − xτ(n)∥ ≤ ∥yτ(n) − zτ(n)∥+ ∥zτ(n) − xτ(n)∥, we have that

(4.19) lim
n→∞

∥yτ(n) − xτ(n)∥ = 0.

For z0 = PF (T )∩A−1F (U)u, let us show that lim supn→∞⟨z0 − u, yτ(n) − z0⟩ ≥ 0. Put

l = lim sup
n→∞

⟨z0 − u, yτ(n) − z0⟩.

Without loss of generality, there exists a subsequence {yτ(ni)} of {yτ(n)} such that
l = limi→∞⟨z0 − u, yτ(ni) − z0⟩ and {yτ(ni)} converges weakly to some point w ∈ H.
From ∥yτ(n) − xτ(n)∥ → 0, {xτ(ni)} converges weakly to w ∈ H. Furthermore, since
∥zτ(n) − xτ(n)∥ → 0, we also have that {zτ(ni)} converges weakly to w ∈ H. As in

the proof of Case 1 we have that w ∈ F (T ) ∩A−1F (U). Then we have

l = lim
i→∞

⟨z0 − u, yτ(ni) − z0⟩ = ⟨z0 − u,w − z0⟩ ≥ 0.

As in the proof of Case 1, we also have that∥∥yτ(n) − z0
∥∥2 ≤ (1− ατ(n))

2
∥∥xτ(n) − z0

∥∥2 + 2ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩
and then

∥xτ(n)+1 − z0∥2 ≤ βτ(n)
∥∥xτ(n) − z0

∥∥2 + (1− βτ(n))
∥∥yτ(n) − z0

∥∥2
≤

(
1− (1− βτ(n))ατ(n)

) ∥∥xτ(n) − z0
∥∥2

+ 2(1− βτ(n))ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩.
From Γτ(n) ≤ Γτ(n)+1, we have that

(1− βτ(n))ατ(n)

∥∥xτ(n) − z0
∥∥2 ≤ 2(1− βτ(n))ατ(n)⟨uτ(n) − z0, yτ(n) − z0⟩.

Since (1− βτ(n))ατ(n) > 0, we have that∥∥xτ(n) − z0
∥∥2 ≤ 2⟨uτ(n) − z0, yτ(n) − z0⟩
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= 2⟨uτ(n) − u, yτ(n) − z0⟩+ 2⟨u− z0, yτ(n) − z0⟩.
Thus we have that

lim sup
n→∞

∥∥xτ(n) − z0
∥∥2 ≤ 0

and hence ∥xτ(n) − z0∥ → 0. From (4.17), we have also that xτ(n) − xτ(n)+1 → 0.
Thus ∥xτ(n)+1 − z0∥ → 0 as n → ∞. Using Lemma 2.7 again, we obtain that

∥xn − z0∥ ≤ ∥xτ(n)+1 − z0∥ → 0

as n → ∞. This completes the proof. □

5. Applications

In this section, using Theorem 3.1, we first get well-known and new weak conver-
gence theorems which are connected with the split common fixed point problems in
Banach spaces. We know the following result obtained by Marino and Xu [13]; see
also [29].

Lemma 5.1 ([13, 29]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let k be a real number with 0 ≤ k < 1. Let U : C → H be a
k-strict pseudo-contraction. If xn ⇀ z and xn − Uxn → 0, then z ∈ F (U).

We also know the following result from Kocourek, Takahashi and Yao [10]; see
also [31].

Lemma 5.2 ([10, 31]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let U : C → H be generalized hybrid. If xn ⇀ z and
xn − Uxn → 0, then z ∈ F (U).

Theorem 5.3. Let H1 and H2 be Hilbert spaces. Let k be a real number with
k ∈ [0, 1). Let T : H1 → H1 be a nonexpansive mapping with F (T ) ̸= ∅ and let
U : H2 → H2 be a k-strict pseudo-contraction with F (U) ̸= ∅. Let A : H1 → H2 be
a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A.
Suppose that F (T ) ∩A−1F (U) ̸= ∅. For any x1 = x ∈ H1, define

xn+1 = βnxn + (1− βn)T
(
I − rA∗(A− UA)

)
xn, ∀n ∈ N,

where {βn} ⊂ [0, 1] and r ∈ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < r∥AA∗∥ < 1− k

for some a, b ∈ R. Then {xn} converges weakly to a point z0 ∈ F (T ) ∩ A−1F (U),
where z0 = limn→∞ PF (T )∩A−1F (U)xn.

Proof. Since U is a k-strict pseudo-contraction of H2 into H2 such that F (U) ̸= ∅,
from (1) in Examples, U is k-demimetric. Furthermore, from Lemma 5.1, U is
demiclosed. Therefore, we have the desired result from Theorem 3.1. □
Theorem 5.4. Let H1 and H2 be Hilbert spaces. Let T : H1 → H1 be a nonexpan-
sive mapping with F (T ) ̸= ∅ and let U : H2 → H2 be a generalized hybrid mapping
with F (U) ̸= ∅. Let A : H1 → H2 be a bounded linear operator such that A ̸= 0 and
let A∗ be the adjoint operator of A. Suppose that F (T ) ∩ A−1F (U) ̸= ∅. For any
x1 = x ∈ H1, define

xn+1 = βnxn + (1− βn)T
(
I − rA∗(A− UA)

)
xn, ∀n ∈ N,
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where {βn} ⊂ [0, 1] and r ∈ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < r∥AA∗∥ < 1

for some a, b ∈ R. Then {xn} converges weakly to a point z0 ∈ F (T ) ∩ A−1F (U),
where z0 = limn→∞ PF (T )∩A−1F (U)xn.

Proof. Since U is a generalized hybrid mapping of H2 into H2 such that F (U) ̸= ∅,
from (2) in Examples, U is 0-demimetric. Furthermore, from Lemma 5.2, U is
demiclosed. Therefore, we have the desired result from Theorem 3.1. □
Theorem 5.5. Let H be a Hilbert space and let F be a smooth, strictly convex
and reflexive Banach space. Let JF be the duality mapping on F . Let C and D be
nonempty, closed and convex subsets of H and F , respectively. Let PC and PD be
the metric projections of H onto C and F onto D, respectively. Let A : H → F be
a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A.
Suppose that C ∩A−1D ̸= ∅. For any x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)PC

(
I − rA∗JF (A− PDA)

)
xn, ∀n ∈ N,

where {βn} ⊂ [0, 1] and r ∈ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < r∥AA∗∥ < 2

for some a, b ∈ R. Then {xn} converges weakly to a point z0 ∈ C ∩ A−1D, where
z0 = limn→∞ PC∩A−1Dxn.

Proof. Since PC is the metric projection of H onto C, PC is nonexpansive. Further-
more, since PD is the metric projection of F onto D, from (3) in Examples, PD is
(−1)-demimetric. We also have that if {xn} is a sequence in F such that xn ⇀ p and
xn − PDxn → 0, then p = PDp. In fact, assume that xn ⇀ p and xn − PDxn → 0.
It is clear that PDxn ⇀ p and ∥JF (xn − PDxn)∥ = ∥xn − PDxn∥ → 0. Since PD is
the metric projection of F onto D, we have that

⟨PDxn − PDp, JF (xn − PDxn)− JF (p− PDp)⟩ ≥ 0.

Therefore, −∥p− PDp∥2 = ⟨p− PDp,−JF (p− PDp)⟩ ≥ 0 and hence p = PDp. This
implies that PD is demiclosed. Therefore, we have the desired result from Theorem
3.1. □
Theorem 5.6. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let JF be the duality mapping on F . Let T and B be
maximal monotone operators of H into H and F into F ∗, respectively. Let Qµ be
the resolvent of T for µ > 0 and let Jλ be the metric resolvent of B for λ > 0,
respectively. Let A : H → F be a bounded linear operator such that A ̸= 0 and let
A∗ be the adjoint operator of A. Suppose that T−10 ∩ A−1(B−10) ̸= ∅. For any
x1 = x ∈ H, define

xn+1 = βnxn + (1− βn)Qµ

(
I − rA∗JF (A− JλA)

)
xn, ∀n ∈ N,

where {βn} ⊂ [0, 1] and r ∈ (0,∞) satisfy the following:

0 < a ≤ βn ≤ b < 1 and 0 < r∥AA∗∥ < 2

for some a, b ∈ R. Then {xn} converges weakly to a point z0 ∈ T−10 ∩A−1(B−10),
where z0 = limn→∞ PT−10∩A−1(B−10)xn.
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Proof. Since Qµ is the resolvent of T on H, Qµ is nonexpansive. Furthermore,
since Jλ is the metric resolvent of B for λ > 0, from (4) in Examples, Jλ is (−1)-
demimetric. We also have that if {xn} is a sequence in F such that xn ⇀ p and
xn − Jλxn → 0, then p = Jλp. In fact, assume that xn ⇀ p and xn − Jλxn → 0. It
is clear that Jλxn ⇀ p and ∥JF (xn − Jλxn)∥ = ∥xn − Jλxn∥ → 0. Since Jλ is the
metric resolvent of B, we have from [3] that

⟨Jλxn − Jλp, JF (xn − Jλxn)− JF (p− Jλp)⟩ ≥ 0.

Therefore, −∥p − Jλp∥2 = ⟨p − Jλp,−JF (p − Jλp)⟩ ≥ 0 and hence p = Jλp. This
implies that Jλ is demiclosed. Therefore, we have the desired result from Theorem
3.1. □

Similarly, using Theorem 4.1, we have the following strong convergence theorems.

Theorem 5.7. Let H1 and H2 be Hilbert spaces. Let k be a real number with
k ∈ [0, 1). Let T : H1 → H1 be a nonexpansive mapping with F (T ) ̸= ∅ and let
U : H2 → H2 be a k-strict pseudo-contraction with F (U) ̸= ∅. Let A : H1 → H2

be a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of
A. Suppose that F (T ) ∩ A−1F (U) ̸= ∅. Let {un} be a sequence in H1 such that
un → u. For x1 = x ∈ H1, let {xn} ⊂ H1 be a sequence generated by

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)T (xn − rA∗(I − U)Axn)

)
for all n ∈ N, where r ∈ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < r∥AA∗∥ < 1− k, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < a ≤ βn ≤ b < 1

where a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ F (T ) ∩ A−1F (U),
where z0 = PF (T )∩A−1F (U)u.

Theorem 5.8. Let H1 and H2 be Hilbert spaces. Let T : H1 → H1 be a nonexpan-
sive mapping with F (T ) ̸= ∅ and let U : H2 → H2 be a generalized hybrid mapping
with F (U) ̸= ∅. Let A : H1 → H2 be a bounded linear operator such that A ̸= 0
and let A∗ be the adjoint operator of A. Suppose that F (T ) ∩ A−1F (U) ̸= ∅. Let
{un} be a sequence in H1 such that un → u. For x1 = x ∈ H1, let {xn} ⊂ H be a
sequence generated by

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)T (xn − rA∗(I − U)Axn)

)
for all n ∈ N, where r ∈ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < r∥AA∗∥ < 1, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < a ≤ βn ≤ b < 1

where a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ F (T ) ∩ A−1F (U),
where z0 = PF (T )∩A−1F (U)u.
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Theorem 5.9. Let H be a Hilbert space and let F be a smooth, strictly convex
and reflexive Banach space. Let JF be the duality mapping on F . Let C and D be
nonempty, closed and convex subsets of H and F , respectively. Let PC and PD be
the metric projections of H onto C and F onto D, respectively. Let A : H → F be
a bounded linear operator such that A ̸= 0 and let A∗ be the adjoint operator of A.
Suppose that C ∩ A−1D ̸= ∅. Let {un} be a sequence in H such that un → u. For
x1 = x ∈ H, let {xn} ⊂ H be a sequence generated by

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)PC(xn − rA∗JF (I − PD)Axn)

)
for all n ∈ N, where r ∈ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < r∥AA∗∥ < 2, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < a ≤ βn ≤ b < 1

where a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ C ∩ A−1D, where
z0 = PC∩A−1Du.

Theorem 5.10. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let JF be the duality mapping on F . Let T and B be
maximal monotone operators of H into H and F into F ∗, respectively. Let Qµ be
the resolvent of T for µ > 0 and let Jλ be the metric resolvent of B for λ > 0,
respectively. Let A : H → F be a bounded linear operator such that A ̸= 0 and let
A∗ be the adjoint operator of A. Suppose that T−10 ∩A−1(B−10) ̸= ∅. Let {un} be
a sequence in H such that un → u. For x1 = x ∈ H, let {xn} ⊂ H be a sequence
generated by

xn+1 = βnxn + (1− βn)
(
αnun + (1− αn)Qµ(xn − rA∗JF (I − Jλ)Axn)

)
for all n ∈ N, where r ∈ (0,∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy

0 < r∥AA∗∥ < 2, lim
n→∞

αn = 0,

∞∑
n=1

αn = ∞ and 0 < a ≤ βn ≤ b < 1

where a, b ∈ R. Then {xn} converges strongly to a point z0 ∈ T−10 ∩ A−1(B−10),
where z0 = PT−10∩A−1(B−10)u.
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