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MANN AND HALPERN ITERATIONS
FOR THE SPLIT COMMON FIXED POINT PROBLEM
IN BANACH SPACES

WATARU TAKAHASHI

ABSTRACT. In this paper, we consider the split common fixed point problem
in Banach spaces. Then using the idea of Mann’s iteration, we first prove a
weak convergence theorem for finding a solution of the split common fixed point
problem in Banach spaces. Furthermore, using the idea of Halpern’s iteration,
we obtain a strong convergence theorem for finding a solution of the problem in
Banach spaces. It seems that these results are first in Banach spaces.

1. INTRODUCTION

Let H be a real Hilbert space and let C' be a nonempty, closed and convex subset
of H. A mapping U : C — H is called inverse strongly monotone if there exists
k > 0 such that

(r —y, Uz —Uy) > sl|Uzx = Uy|*, Va,yeC.

Let Hy and Hs be two real Hilbert spaces. Let D and ) be nonempty, closed
and convex subsets of Hy and Hs, respectively. Let A : Hi — Hy be a bounded
linear operator. Then the split feasibility problem [7] is to find z € H; such that
z € DN A7'Q. Recently, Byrne, Censor, Gibali and Reich [6] considered the
following problem: Given set-valued mappings A; : H; — 21, 1 < i < m, and
Bj: Hy — 2H2 1 < j < n, respectively, and bounded linear operators T; : H —
Hy, 1 < j < mn, the split common null point problem [6] is to find a point z € Hy
such that
z e (N, A710) N (NG, T 1 (B 10)),

where Ai_IO and B]-_IO are null point sets of A; and Bj, respectively. Defining
U = A*(I — Pg)A in the split feasibility problem, we have that U : Hy — Hj is an
inverse strongly monotone operator [1], where A* is the adjoint operator of A and

Py is the metric projection of Hy onto ). Furthermore, if DN A~1Q is nonempty,
then z € DN A™1Q is equivalent to

(1.1) 2= Pp(I — MA*(I — Po)A)z,
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where A > 0 and Pp is the metric projection of Hy onto D. Using such results
regarding nonlinear operators and fixed points, many authors have studied the
split feasibility peoblem and generalized split feasibility peoblems including the
split common null point problem in Hilbert spaces; see, for instance, [6, 8, 14, 30].
However, it is difficult to solve such results outside Hilbert spaces. Recently, by using
the hybrid methods of [15, 16, 18], Takahashi [22, 23, 24] proved strong convergence
theorems for finding solutions of the feasibility problem and the split common null
point problem in Banach spaces. Furthermore, by using the shrinking projection
method [27], Takahashi [26] proved a strong convergence theorem for finding a
solution of the split common fixed point problem in Banach spaces. On the other
hand, in 1953, Mann [12] introduced the following iteration process. Let C be a
nonempty, closed and convex subset of a Banach space F. A mapping T : C — C
is called nonexpansive if | Tz — Ty[| < ||z — yl| for all z,y € C. For an initial guess
x1 € C, an iteration process {z,} is defined recursively by

Tptl = ATy + (1 — Ckn)T.’L'n, Vn € N,

where {a, } is a sequence in [0, 1]. In 1967, Halpern [9] also gave an iteration process
as follows: Take xg,x1 € C arbitrarily and define {x,} recursively by

Tpt1 = anxo+ (1 — ap)Tx,, VneN,

where {ay,} is a sequence in [0, 1]. There are many investigations of iterative pro-
cesses for finding fixed points of nonexpansive mappings.

In this paper, motivated by these problems and methods, we consider the split
common fixed point problem in Banach spaces. Then using the idea of Mann’s
iteration, we first prove a weak convergence theorem for finding a solution of the
split common fixed point problem in Banach spaces. Furthermore, using the idea of
Halpern’s iteration, we obtain a strong convergence theorem for finding a solution
of the problem in Banach spaces. It seems that these results are first in Banach
spaces.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let H be a real Hilbert space with inner product (-,-) and

norm || - ||, respectively. For z,y € H and A € R, we have from [21] that
(2.1) lz +yl1? < llzll* + 2{y, = + y);
(2.2) 1Az + (1= Nyl* = Alz]|* + (1= Nlyl* = A1 = Nz - yl*

Furthermore we have that for x,y,u,v € H,
(2.3) 2(z —y,u—v) = |lz =0 + ly —ul® — [l —ul* ~ [ly - v]*.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest
point projection of H onto C is denoted by Pg, that is, ||z — Pox| < ||z — y|| for
all z € H and y € C. Such P is called the metric projection of H onto C. We
know that the metric projection P is firmly nonexpansive, i.e.,

(2.4) |Pex — Peyl® < (Pox — Poy.a —y)
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for all x,y € H. Furthermore (x — Pox,y— Pox) < 0 holds for all x € H and y € C;
see [19]. The following result was proved by Takahashi and Toyoda [28].

Lemma 2.1 ([28]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let {x,} be a sequence in H. If ||xp+1 — u|| < ||zn — ul| for all
n €N and u € C, then {Pcxy,} converges strongly to some z € C, where Pc is the
metric projection on H onto C.

Let E be a real Banach space with norm || - || and let E* be the dual space of
E. We denote the value of y* € E* at x € E by (z,y*). When {z,} is a sequence
in E, we denote the strong convergence of {z,,} to x € F by x,, — x and the weak
convergence by x, — z. The modulus § of convexity of E is defined by

) |lz+y
o0 =int {1 L2 < 1l < 1o - 2 ¢

for every € with 0 < ¢ < 2. A Banach space F is said to be uniformly convex if
d(e) > 0 for every € > 0. A uniformly convex Banach space is strictly convex and
reflexive.

The duality mapping J from E into 2F" is defined by

Ju={2" € B : (z,a") = ||z|* = [|2"|*}

for every x € E. Let U = {x € E : ||z|]| = 1}. The norm of F is said to be Gateaux
differentiable if for each z,y € U, the limit
o) L+t = e

t—0 t
exists. In the case, E is called smooth. We know that E is smooth if and only
if J is a single-valued mapping of E into E*. We also know that FE is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is
a single-valued bijection and in this case, the inverse mapping J~! coincides with
the duality mapping J. on E*. For more details, see [19] and [20]. We know the
following result.

Lemma 2.2 ([19]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x—y,Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convex and (x —y, Jx — Jy) =0, then = = y.

Let C' be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any « € E, there exists a unique element
z € C such that ||z — z|| < ||z — y|| for all y € C. Putting z = Pox, we call Po the
metric projection of E onto C.

Lemma 2.3 ([19]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x1 € F and z € C.
Then, the following conditions are equivalent:

(1) z = Poxy;

(2) (z—y,J(z1—2)) >0, VyeC.
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Let E be a Banach space and let A be a mapping of of E into 2¥". A multi-valued
mapping A on E is said to be monotone if (x — y,u* — v*) > 0 for all u* € Az,
and v* € Ay. A monotone operator A on FE is said to be maximal if its graph is
not properly contained in the graph of any other monotone operator on E. The
following theorem is due to Browder [4]; see also [20, Theorem 3.5.4].

Theorem 2.4 ([4]). Let E be a uniformly convex and smooth Banach space and let
J be the duality mapping of E into E*. Let A be a monotone operator of E into
2F"  Then A is mazimal if and only if for any r > 0,

R(J+rA)=FE",
where R(J +rA) is the range of J +rA.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let A be a maximal monotone operator of E into 2F". For all z € E and r > 0,
we consider the following equation

0€ J(zy —x) +rAz,.

This equation has a unique solution x,.. We define J, by z, = J.x. Such J.,r > 0
are called the metric resolvents of A. The set of null points of A is defined by
A7'0={z€ E:0¢€ Az}. We know that A~!0 is closed and convex; see [20].

Let F be a smooth, strictly convex and reflexive Banach space and let 7 be a real
number with 7 € (—oo,1). Then a mapping U : E — E with F(U) # () is called
n-demimetric [26] if, for any x € F and ¢ € F(U),

1—
(v —q.J(x = Uz)) = —" o = Ual %,

where F'(U) is the set of fixed points of U.
Examples We know examples of n-demimetric mappings from [26, 25].

(1) Let H be a Hilbert space and let k be a real number with 0 < k < 1. A
mapping U : C' — H is called a k-strict pseudo-contraction [5] if

Uz — Uyl* < |lo = yl* + k2 — Uz — (y = Uy)||?

for all z,y € C. If U is a k-strict pseudo-contraction and F(U) # 0, then U is
k-demimetric; see [26].

(2) Let H be a Hilbert space and let C' be a nonempty subset of H. A mapping
U :C — H is called generalized hybrid [10] if there exist «, 5 € R such that

a|Uz = Uyl? + (1 = a)llz = Uyl* < BIUz — y[* + (1 = B)llz -y

for all z,y € C. Such a mapping U is called («, ()-generalized hybrid. A (1,0)-
generalized hybrid mapping is nonexpansive. If U is generalized hybrid and F(U) #
(), then U is 0-demimetric; see [25].

(3) Let FE be a strictly convex, reflexive and smooth Banach space and let C' be
a nonempty, closed and convex subset of E. Let Po be the metric projection of E
onto C. Then P¢ is (—1)-demimetric; see [26].
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(4) Let E be a uniformly convex and smooth Banach space and let B be a
maximal monotone operator with B~10 # ). Let A > 0. Then the metric resolvent
Jy is (—1)-demimetric; see [26].

Lemma 2.5 ([26]). Let E be a smooth, strictly convex and reflexive Banach space
and let ) be a real number with n € (—oo,1). Let U be an n-demimetric mapping of
E into itself. Then F(U) is closed and convez.

We also know the following lemmas:

Lemma 2.6 ([2], [32]). Let {s,} be a sequence of nonnegative real numbers, let {ca,}
be a sequence in [0,1] with Y o7 | oy, = 00, let {B,} be a sequence of nonnegative
real numbers with Y 7 | B, < 0o, and let {7} be a sequence of real numbers with
limsup,, .o 7n < 0. Suppose that

Spt1 < (1 - an)sn + apyn + Bn
foralln=1,2,.... Then lim, o Sp, = 0.
Lemma 2.7 ([11]). Let {I,} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {I7,,} of {I,} which satisfies
Iy, < I'y,41 for all i € N. Define the sequence {T(n)}n>n, of integers as follows:
7(n) = max{k <n: I} < Ik},

where ng € N satisfies {k < ng: I'y < Ity1} # 0. Then, the following hold:

(i) 7(no) < 7(no+1) <--- and 7(n) — oo,
(ii) FT(n) < F‘r(n)—i—l and I, < F’r(n)-{-l: Vn > ny.

3. WEAK CONVERGENCE THEOREM

In this section, we prove a weak convergence theorem of Mann’s type iteration for
the split common fixed point problem in Banach spaces. Let E be a Banach space
and let D be a nonempty, closed and convex subset of E. A mapping U : D — F is
called demiclosed if for a sequence {z,} in D such that z,, — p and x,, — Uz,, — 0,
p = Up holds.

Theorem 3.1. Let H be a Hilbert space and let F' be a smooth, strictly convex
and reflexive Banach space. Let Jp be the duality mapping on F and let n be a
real number with n € (—oo,1). Let T : H — H be a nonexpansive mapping and
let U : F — F be an n-demimetric and demiclosed mapping with F(U) # (). Let
A: H — F be a bounded linear operator such that A # 0 and let A* be the adjoint
operator of A. Suppose that F(T) N A YF(U) # (. For any x1 = x € H, define

Tpt1 = Bnxn + (1 — 5n)T(I —rA*Jp(A — UA))acn, Vn € N,
where {B,} C [0,1] and r € (0,00) satisfy the following:
0<a<pB,<b<1l and 0<r||AA*||<1-—n

for some a,b € R. Then {x,} converges weakly to a point zog € F(T)N A~ F(U),
where zy = limy, 00 Pp(1)na-171U)%n-
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Proof. Since T is nonexpansive, F'(T') is closed and convex [21]. We also have from
Lemma 2.5 that F(U) is closed and convex. Then F(T) N A~'F(U) is closed and
convex. Since F(T) N A™'F(U) is nonempty, the metric projection Pp(yna-1p(1)
of H onto F(T)NA~LF(U) is well-defined. Let z € F(T)NA'F(U). Then z =Tz
and Az —UAz =0. Put y, = T(.Z‘n —rA*Jp(Ax, — UAl’n)) for all n € N. Since T

is nonexpansive, we have that
lyn—2|*> = HT(wn —rA*Jp(Az, — UAz,)) — T2H2
< |lwn — rA* Jp(Axy, — UAay,) — 2|7
= ||lzn — 2z — rA* Jp(Az, — UAz,)|?
= ||lzn — 2||* = 2(xp, — 2,74 Jp(Ax, — UAz,))
+ ||rA* Jp(Az, — UAz,)|?
<lan — 2||* = 2r(Az,, — Az, Jp(Az, — UAz,))
(3.1) + 12| AA*|||| Jr (Azy, — UAzy,)||?
<l = 2l = (1 = )| Azn — UAz,|?
+ 12| AA*|||| Azy, — U Az, ||?
= |z — 2|* +r(r AA"| = (1 = )| Azy — U Az, |2

From 0 < r||AA*|| < 1 —n we have that ||y, — 2| < ||zn — 2| for all n € N and
hence

[Zn41 — 2| = |Bpzn + (1 = Ba)yn — 2|
< B llen = 2l + (1 = Bn) llyn — 2|l
< Bullzn — 2l + (1 = Bn) |0 — 2|
<lzn — 2|

Then lim,,—,o ||z, — z|| exists. Thus {zy}, {Az,} and {y,} are bounded. Using the
equality (2.2), we have that for n € N and z € F(T)N A~ F(U)

|Zns1 = 21> = [|Bazn + (1 = Ba)yn — 2|1
= Bn llwn = 2I° + (1 = Ba) lgn — 2117 = Ba(1 = Bn) 120 — yall?
< Bpllzn — ZH2 + (1= Bn) lzn — ZH2
+ (1= Ba)r(rl| AA*| = (1 = m)|| Azy — UAzn|* = Ba(1 = Ba) |20 — ynl®
= llzn — 2|7 + (1 = B)r(r[|AA"|| = (1 = )| Az, — UAzy|?
= Bu(1 = Bn) |z — ynl*
Therefore, we have that 8,(1 — ) ||2n — ynll> < |2n — 2||* = |01 — 2||* and
(1= Bu)r(L = n — | AA* )| Azy — UAzn|? < ||z — 2[|* = [[@ns1 — 2.
Thus we have from 0 < a < 5, < b < 1 that
(3.2) nl1_>Holo |#n — yn|I* = 0 and nh_}rrolo | Az, — UAz,||* = 0.
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Since {x,} is bounded, there exists a subsequence {x,,} of {z,} converging weakly
to w. Since A is bounded and linear, we also have that {Ax,,} converges weakly to
Aw. Using lim,,_, ||Az,, — UAz,|| = 0 and the demiclosedness of U, we have that
Aw = UAw and hence w € A~'F(U). We also have that

|Zn — Txn| = |20 — yn + yn — Tan||
= Hxn —Yn + T(xn - TA*JF(ACCn - UAxn)) - Twn”
< lzn = ynll + l2n = rA*Jp(Azn — UAzy,) — 20|
= ||z — ynl|| + ||7A* Jp(Ax,, — UAzy)|| — 0.
Since x,, — w and a nonexpansive T' is demiclosed [19], we have w = Tw. This
implies that w € F(T) N A~1F(U).
We next show that if z,,, — z* and z,,; — y*, then z* = y*. We know x*,y* €

F(TYNA™'F(U) and hence lim,, .o, ||, —2*|| and lim,, oo ||, —y*|| exist. Suppose
x* £ y*. Since H satisfies Opial’s condition, we have that

lim ||z,—2*| = lim ||z, — 2| < lim ||z, —y"|
n—o00 1—00 1—00
= lim ||z, —y*| = lim ||£L‘n] — "
n—00 j—o00
< lim ||z, — 2% = lim |z, — 2™
J—00 n—oo

This is a contradiction. Then we have z* = y*. Therefore, x,, — z* € F(T) N
A~YF(U). Moreover, since for any z € F(T)NA~1F(U)

[#n41 — 2| < flzn — 2], Vn €N,
we have from Lemma 2.1 that Ppryna-1 g 2Zn — 20 for some zg € F(T)NAT'F(U).
The property of metric projection implies that
(2" = Pepryna-1F(U)Tns Tn — Preryna-1r@)Tn) < 0.
Therefore, we have
|lx* — Z()H2 = (z* — 29, 2" — 29) <0.

This means that x* = zg, i.e., T, — 2p. O

4. STRONG CONVERGENCE THEOREM

In this section, we prove a strong convergence theorem of Halpern’s type iteration
for the split common fixed point problem in Banach spaces.

Theorem 4.1. Let H be a Hilbert space and let F' be a smooth, strictly convex
and reflexive Banach space. Let Jp be the duality mapping on F and let n be a
real number with n € (—oo,1). Let T : H — H be a nonexpansive mapping and
let U : F — F be an n-demimetric and demiclosed mapping with F(U) # (. Let
A: H — F be a bounded linear operator such that A # 0 and let A* be the adjoint
operator of A. Suppose that F(T) N AT 1F(U) # 0. Let {u,} be a sequence in H
such that u, — u. For x1 =x € H, let {x,} C H be a sequence generated by

Tpy1 = BnZn + (1 = Bn) (anun + (1 —an)T(xn —rA"Jp(I — U)Axn))
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for alln € N, where r € (0,00), {an,} C (0,1) and {B,} C (0,1) satisfy

0<r|AA*||<1—7n, lim «a, =0,
n—oo
D
Zan:oo and 0<a<p,<b<1
n=1

where a,b € R. Then {x,} converges strongly to a point zy € F(T)N A1F(U),
where zo = Pp(p)na-1pu)U-

Proof. As in the proof of Theorem 3.1, F(T) N A~'F(U) is nonempty, closed and
convex and hence the metric projection Ppryna-1 ) of H onto F(T)NA™'F(U)
is well-defined. Put z, =T (I —rA*Jp(I — U)A)z, for all n € N. Let z € F(T)N
A7LF(U). We have that z = Tz and Az — UAz = 0. As in the proof of Theorem
3.1, we have that

20 — 2| = |T(I = rA*Jp(I — U)A)x, — Tz
< |lay — rA*Jp(I — U) Az, — 2|
(4.1) < lwn — 2| — 2r{Az, — Az, Jp(I — U)Azy)
+ 2| AAY|||(T - U) Az, |?
<l = 21 = r(1 = )| Azy = Uz, | + 7| AA¥| |(1 = U) Az |®
= llon — 2|7 + r(r|AA"| = (1 =) (I = U) Az,
From 0 < r||AA*|| < (1 —n) we have that ||z, — z|| < ||z, — 2] for all n € N. Put
Yn = Qpp + (1 — apn)T (g, — rA*Jp(I — U)Ax,). We have that
lyn — 21l = llan(un = 2) + (1 — o) (20 — 2|
< apllun — 2| + (1 — an)llzn — 2|
< |Jun — 2|+ (1 — ap) ||z — 2] -

Using this, we get that

[Zn1 = 2]l = [[Bn(zn = 2) + (1 = Bn)(yn — 2)

< B llzn — 2] + (1 = Bn) lyn — 2|

< Bpllzn — 2l + (1 = Bu)(an [lun — 2]l + (1 — an) |lzn — 2|))

= (1= an(l = Bp))llzn — 2l + an(l = Bn)[lun — 2.
Since {uy,} is bounded, there exists M > 0 such that sup,,¢y ||un — 2| < M. Putting
K = max{|lz1 — z||, M}, we have that ||z, — z|| < K for all n € N. In fact, it is
obvious that ||x; — z|| < K. Suppose that ||z — z|| < K for some k € N. Then we
have that

[wps1 — 2l < (1= (1 = Bi))llzk — 2[| + cw (1 — Br)[lux — =||
< (1= ol = Br)) K + ap(l = Bp) K = K.

By induction, we obtain that ||z, — z|| < K for all n € N. Then {xz,} is bounded.
Furthermore, {Azy,}, {25} and {yn} are bounded. Take 20 = Pp()na-1p@)u. Since
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zn =TI —rA*Jp(I — U)A)x,, we have that
Tntl — T = Py + (1 = Bp){anun + (1 — an)zn} — zp
and hence
Tnt1 — Tn—(1 — Bn)anuy,
= Bnxn+ (1 = Bn)(1 — an)zn — xy,
= (1= Bn){(1 — an)zn — an}
= (1= Bn){zn — xn — anzpn}.
Thus we have that
(Tnt1—2n — (1 = Bn)nln, T, — 20)
(4.2) = (1= 6n){(zn — Tn,xn — 20) — (1 — Bn){@nzn, Tn — 20)
=—(1—=Bp){(Tn — 2nyxn — 20) — (1 — Bn)n{zn, Tn — 20)-
From (2.3) and (4.1), we have that
2(xp—2n, Ty — 20)
(43) = llzm — 207 + 120 — 2ll? = l2n — 201
> Jzm — 20l + 12 — 2ll? — ln — 202
= ||2n — $n||2
From (4.2) and (4.3), we have that
2 Xpp1— Ty Ty — 20)
=2(1 — Bp)an(un, Tn — 20)
(4.4) —2(1 = Bp){xn — znyxn — 20) — 2(1 = Bp)an(zn, Tn — 20)
< 2(1 — Bn)an{tn, Ty — 20)
— (1= Bn)llzn — $n||2 —2(1 = Bn)an{zn, Tn — 20)-
Furthermore, using (2.3) and (4.4), we have that
2041 = 20l = |20 = 241 ® = |20 — 20|
< 2(1 = Bp)an(un, xn — 20)
— (1= Bn)llzn — anz = 2(1 = Bn)an(zn, Tn — 20)-
Setting I}, = ||z, — 20|%, we have that
Dpv1 — Don—||zn — $n+1||2
(4.5) < 2(1 = Bn)an(un, Tn — 20)
— (1= Bu)llzn — fL‘nHQ —2(1 = Bn)an(zn, Tn — 20)-
Noting that
[Zn41 — znll = [Brn + (1 = Ba){anun + (1 — an)zn} — 24|
(4.6) = [|(1 = Bp)an(un — zn) + (1 = By) (2 — ) ||
<(1- an)(Hzn — || + anlup — Zn”)a



10 WATARU TAKAHASHI

we have that
|41 — mnHQ <(@1- Bn)z(Hzn — zn || + anllun — an)z
(4.7) = (1= Bn)?llzn — zal?
+ (1= Bn)? (202 — zallllun — zall + o} llun — 2al%).
Thus we have from (4.5) and (4.7) that
Fot1 — I < e — @ag ||+ 2(1 = Ba)an (un, 20 — 20)
~ (L= Ba)llzn = @nll* = 2(1 — Bu)an(zn, Tn — 20)
< (1= Bn)?llzn — zal?
+ (1~ Bn)? (20|20 — @allllun — zall + of llun — 2a]?)
+ 2(1 = Bp)an (tn, Tp — 20) — (1 = Bn)|l2n — an2
—2(1 = Bn)an(zn, tn — 20)
and hence
Lop1=Dn+ Bu(1 = Bo)ll2n — 2
(4.8) <(1- ﬁn>2(2anHzn — zn|[|un — zal + a%H“n - ZnH2)
+2(1 — Bn)an (un, xn, — 20) — 2(1 — Bn)an(zn, Tn — 20).

We will divide the proof into two cases.

Case 1: Suppose that there exists a natural number N such that I, < I, for
all n > N. In this case, lim,_,o I}, exists and then lim, oo (/7,41 — I3) = 0. Using
lim,, 00 @y, =0 and 0 < a < 3, < b < 1, we have from (4.8) that

(4.9) lim ||z, —z,| = 0.

n—oo
From (4.6) we have that
(4.10) lim ||@p41 — 2n]] = 0.

n—00

We also have that
(4.11) [yn — znll = [lanun + (1 — an)zn — 20|

= ap|lun — 2] = 0.
Furthermore, from [y, — @n|| < [lyn — 2|l + |20 — znll, we have that
(4.12) lim ||y, — zn| = 0.

n—oo

We show that limsup,,_,..(u — 20,yn — 20) < 0, where 20 = Pp)na-1p@)u-

Put [ = limsup,,_,. (v — 20,Yn — 20). Then without loss of generality, there exists
a subsequence {y,,} of {yn} such that | = lim; ,o(u — 20,yn, — 20) and {yn,}
converges weakly to some point w € H. From ||z, — yn|| — 0, {zn,} converges

weakly to w € H. Since ||z, — z,|| = 0, we also have that {z,,} converges weakly
to w € H. On the other hand, from (4.1) we have that

r(L—n —rAA* ) I = U)Azal® < llzn — 2]* = llz0 = 2II?
(4.13) = (len = 2l = llzn = 2D (l#n = 2l + 20 — 21)
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< l@n = znll (len = 2|l + [lz0 = 2]
Then we get from ||x, — z,|| — 0 that
(4.14) nh—>Holo |Azy, — UAz,| = 0.
Since {x,,} converges weakly to w € H and A is bounded and linear, we also have

that {Ax,,} converges weakly to Aw. Using lim,_, ||Az, — UAz,|| = 0 and the
demiclosedness of U, we have that Aw = UAw. We also have that

[#n = Tan| = [|#n — 2n + 2n — Tan||
= |l@p — 2n + T(xn — rA* Jp(Azy — UAzy)) — Ty ||
< | @n, — 2| + |20 — rA*Jp(Az, — UAx,) — xy]|
= |lxn — 20|l + ||rA* Jp(Az,, — UAzy,)|| — 0.

Since z,, — w and a nonexpansive T" is demiclosed [19], we have w = T'w. This
implies that w € F(T) N A~'F(U). Since {yn,} converges weakly to w € F(T) N
A~YF(U), we have that
I = lim (u — 20, Yn, — 20) = (u — 20, w — 29) < 0.
1—00
Since yp, — 20 = o (un — 20) + (1 — ap)(T'(zp, — 7A*Jp(I — U)Ax,) — 20), we have
from (2.1) that

lyn = 20l1* < (1 = an)?| Tz — rA*Jp(I — U)Azy) — 2|
+ 20, (upn, — 20, Yn — 20)-
From (4.1), we have
lyn = 20l1* < (1= an)? [l = 20/1* + 2000 (un — 20, yn — 20)-
This implies that
|1Zn+1=2001% < Ba |z — 20lI” + (1 = Bn) llyn — 20|
< B ll2n = 20/
+ (1= ) (1= @)l = 20l + 200 (un = 20,4 = 20))
= (671 + (1= 8n)(1 - an)z) |zn — ZOH2 +2(1 = Bn)an(un — 20, Yn — 20)
< B+ (1= B) (1 = an)) 2 — 20]* + 2(1 = Bu)an (tn — 20, yn — 20)
= (1= (1 = Bn)am) lzn — 20]1* + 2(1 = Bp)n (un — 20, yn — 20)
= (1= (1 = Ba)am) [lzn — 20>
+ 2(1 = Bn)an((un — u,yn — 20) + (u — 20, Yn — 20))-

Since Y7 (1 — B,)ay, = 00, by Lemma 2.6 we obtain that x, — zo.
Case 2: Suppose that there exists a subsequence {I},, } of the sequence {I},} such
that I},, < I}, 41 for all ¢ € N. In this case, we define 7 : N = N by

T(n) =max{k <mn: [} < Ik}
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Then we have from Lemma 2.7 that I,y < ;)41 Thus we have from (4.8) that
for all n € N,

Br) 1=Brm) N 2r(n) — Trmy I
< (1= Brn) 20yl 2r () — Trmy e (n) = 2r ()l
(4.15) + (1= Br(m) @ (o [tr(n) = 22y 12
+ 2(1 = Br(n))0r(n) (Ur(n)s Tr(n) — 20)
—2(1 = Brn))Qr(n) (Zr(n)s Tr(n) — 20)-
Using lim;, o0y =0 and 0 < a < 3, < b < 1, we have from (4.15) that

(4.16) Jim |27 () = 2r(m)[| = 0.

As in the proof of Case 1 we have that

(4.17) Jm |27 )41 = 27l = 0.

and

(4.18) Jmlyr ) = 2l = 0.

Since [|Yrn) = Trm)l < 1Yr(n) = 2e@)ll + [12r(m) = Tr(m) I, we have that
(4.19) Iy ) = 27l = 0.

For 20 = Pp(r)na-1p)u, let us show that limsup,, (20 — ©, Yr(n) — 20) > 0. Put

I = limsup(20 — U, Yr(n) — 20)-
n—oo

Without loss of generality, there exists a subsequence {y-(,,,)} of {y-(5,)} such that
= 1im; 00 (20 = U, Yr(n;) — 20) and {Yr(n,)} converges weakly to some point w € H.
From [|Yr(n) — 7|l = 0, {%r(n,)} converges weakly to w € H. Furthermore, since
|27(n) — Tr(m)ll = 0, we also have that {z;(,,)} converges weakly to w € H. As in
the proof of Case 1 we have that w € F(T) N A~'F(U). Then we have

L= lim (20 = u, Yr(n,) = 20) = (20 — v, w = 20) > 0.
As in the proof of Case 1, we also have that
19700y = 201" < (1 = et |r7my = 20" + 200y () = 20, Yy = 20)
and then
12241 = 2001 < Brny [@omy = 20]1” + (1 = Briwy) [[prmy — 20|’

2
< (1= (1= Brm)arm) [[2rm) = 20|
+ 2(1 - /B‘r(n))af(n) <u7‘(n) — 20 Yr(n) — ZO>'
From I7.(,,) < I’ (n)41, We have that

2
(1 - BT(n))aT(n) HxT(n) - ZOH < 2(1 - ﬁT(n))aT(n) <u7'(n) = 205 Yr(n) — Z0>'
Since (1 — Br(n))r(n) > 0, we have that

Hx‘r(n) - ZOH2 < 2(“’7‘(11) = 205 Yr(n) — ZO>
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= 2(“7(71) — U Yr(n) — ZO> + 2<’LL = 205 Yr(n) — Z0>.
Thus we have that

lim sup HxT(n) — ZOHQ <0
n—oo

and hence ||z,(,) — 20/ — 0. From (4.17), we have also that z,(,) — Z()+1 — 0.
Thus ||7-(,)41 — 20]| = 0 as n — co. Using Lemma 2.7 again, we obtain that

[#n = 20| < |lZr(m)+1 — 20ll = 0
as n — oo. This completes the proof. O

5. APPLICATIONS

In this section, using Theorem 3.1, we first get well-known and new weak conver-
gence theorems which are connected with the split common fixed point problems in
Banach spaces. We know the following result obtained by Marino and Xu [13]; see
also [29].

Lemma 5.1 ([13, 29]). Let H be a Hilbert space, let C' be a nonempty, closed and
convex subset of H and let k be a real number with 0 < k < 1. LetU : C — H be a
k-strict pseudo-contraction. If x, — z and x,, — Ux,, — 0, then z € F(U).

We also know the following result from Kocourek, Takahashi and Yao [10]; see
also [31].

Lemma 5.2 ([10, 31]). Let H be a Hilbert space, let C' be a nonempty, closed and
conver subset of H and let U : C' — H be generalized hybrid. If x, — z and
Ty — Uxy — 0, then z € F(U).
Theorem 5.3. Let Hy and Hs be Hilbert spaces. Let k be a real number with
k € [0,1). Let T : Hi — Hy be a nonexpansive mapping with F(T) # ( and let
U : Hy — Hy be a k-strict pseudo-contraction with F(U) # 0. Let A : Hy — Ho be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that F(T)N A YF(U) # 0. For any 1 = x € Hy, define
Tpt1 = Bnn + (1 — ﬁn)T(I —rA*(A— UA))xn, Vn € N,

where {B,} C [0,1] and r € (0,00) satisfy the following:

0<a<pB,<b<l and 0<r|AA*||<1—k

for some a,b € R. Then {x,} converges weakly to a point zy € F(T) N A~LF(U),
where zo = limp—00 Pp(7)na-1Fu)Tn-
Proof. Since U is a k-strict pseudo-contraction of Hy into Hs such that F(U) # 0,

from (1) in Examples, U is k-demimetric. Furthermore, from Lemma 5.1, U is
demiclosed. Therefore, we have the desired result from Theorem 3.1. U

Theorem 5.4. Let Hy and Ho be Hilbert spaces. LetT : Hi — Hy be a nonexpan-
sive mapping with F(T) # 0 and let U : Hy — Hy be a generalized hybrid mapping
with F(U) # 0. Let A : Hy — Hs be a bounded linear operator such that A # 0 and
let A* be the adjoint operator of A. Suppose that F(T) N A=YF(U) # (). For any
x1 =x € Hy, define

Tnt1 = Bnan + (1 — ﬁn)T(I —rA*(A - UA))xn, Vn € N,
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where {By} C [0,1] and r € (0,00) satisfy the following:
0<a<pB,<b<1l and 0<r||AA"]| <1

for some a,b € R. Then {x,} converges weakly to a point 2o € F(T) N A*F(U),
where zg = limy, o0 PF(T)QA—IF(U)I}L.

Proof. Since U is a generalized hybrid mapping of Hs into Hs such that F(U) # 0,
from (2) in Examples, U is 0-demimetric. Furthermore, from Lemma 5.2, U is
demiclosed. Therefore, we have the desired result from Theorem 3.1. O

Theorem 5.5. Let H be a Hilbert space and let F' be a smooth, strictly conver
and reflexive Banach space. Let Jp be the duality mapping on F. Let C and D be
nonempty, closed and convex subsets of H and F', respectively. Let Po and Pp be
the metric projections of H onto C' and F onto D, respectively. Let A: H — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that C N A™'D # (. For any x1 = x € H, define

Tnt1 = Baxn + (1 = Bp)Po(I —rA*Jp(A — PpA))z,, Vn €N,
where {B,} C [0,1] and r € (0,00) satisfy the following:
0<a<pB,<b<1l and 0<r|AA"] <2

for some a,b € R. Then {x,} converges weakly to a point 2o € C N A™1D, where
zo = limy 00 Pona-1pTn-

Proof. Since P¢ is the metric projection of H onto C, P is nonexpansive. Further-
more, since Pp is the metric projection of F' onto D, from (3) in Examples, Pp is
(—1)-demimetric. We also have that if {x,} is a sequence in F' such that x,, — p and
Ty, — Ppx, — 0, then p = Ppp. In fact, assume that x, — p and x,, — Ppx, — 0.
It is clear that Ppx, — p and ||Jp(z, — Ppzy)|| = ||xn — Ppxy,|| — 0. Since Pp is
the metric projection of F' onto D, we have that

(Ppxyp — Ppp, Jp(xn — Ppxy) — Jp(p — Ppp)) > 0.

Therefore, —||p — Pppl||?> = (p — Ppp, —Jr(p — Ppp)) > 0 and hence p = Ppp. This
implies that Pp is demiclosed. Therefore, we have the desired result from Theorem
3.1. d

Theorem 5.6. Let H be a Hilbert space and let F be a uniformly conver and
smooth Banach space. Let Jp be the duality mapping on F. Let T and B be
mazximal monotone operators of H into H and F' into F™*, respectively. Let Q,, be
the resolvent of T for u > 0 and let Jy be the metric resolvent of B for A > 0,
respectively. Let A : H — F be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that T=10N A=Y(B~10) # (. For any
x1=x € H, define

Tnt1 = Bpan + (1= Bn)Qu(I — rA* Jp(A — JzA))z,, Vn €N,
where {B,} C [0,1] and r € (0,00) satisfy the following:
0<a<pB,<b<1l and 0<r|AA"] <2

for some a,b € R. Then {x,} converges weakly to a point zo € T~10N A~1(B~10),
where zo = limy 00 Pr-10na-1(B-10)Zn-
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Proof. Since @, is the resolvent of T' on H, (), is nonexpansive. Furthermore,
since Jy is the metric resolvent of B for A > 0, from (4) in Examples, J) is (—1)-
demimetric. We also have that if {z,} is a sequence in F' such that x,, — p and
Ty — Jxxn — 0, then p = Jyp. In fact, assume that z, — p and z,, — Jyz, — 0. It
is clear that Jyz, — p and ||Jp(z, — Jazy)|| = ||xn — Jazn| — 0. Since Jy is the
metric resolvent of B, we have from [3] that

(nxn — I\p, Jr(zn — Iazn) — Jr(p — Jap)) > 0.

Therefore, —|p — Jap||* = (p — Jap, —Jr(p — Jxp)) > 0 and hence p = Jyp. This
implies that J) is demiclosed. Therefore, we have the desired result from Theorem
3.1. O

Similarly, using Theorem 4.1, we have the following strong convergence theorems.

Theorem 5.7. Let Hy and Hs be Hilbert spaces. Let k be a real number with
k € [0,1). Let T : Hi — Hy be a nonexpansive mapping with F(T) # ( and let
U : Hy — Hs be a k-strict pseudo-contraction with F(U) # (. Let A : Hy — Ho
be a bounded linear operator such that A # 0 and let A* be the adjoint operator of
A. Suppose that F(T) N A™YF(U) # 0. Let {u,} be a sequence in Hy such that
Up — u. For x1 =z € Hy, let {x,} C Hy be a sequence generated by
Tpt1 = Bnon + (1 — Bn)(anun + (1 —an)T(xy — rA*(I — U)Amn))
for alln € N, where r € (0,00), {an} C (0,1) and {B,} C (0,1) satisfy

0<r||AA"|<1—Fk, lim o, =0,
n—oo
o
Zan:oo and 0<a<p,<b<1
n=1

where a,b € R. Then {x,} converges strongly to a point zy € F(T)N A~1F(U),
where zo = Pp(ryna-1p ) U-
Theorem 5.8. Let Hi and Ho be Hilbert spaces. LetT : Hi — Hi be a nonexpan-
sive mapping with F(T) # 0 and let U : Hy — Hy be a generalized hybrid mapping
with F(U) # 0. Let A : Hi — Hs be a bounded linear operator such that A # 0
and let A* be the adjoint operator of A. Suppose that F(T) N A~YF(U) # (. Let
{un} be a sequence in Hy such that u, — u. For x1 = x € Hy, let {z,} C H be a
sequence generated by

Tpt1 = Bnon + (1 — 5n)(anun + (1 —an)T(xy —rA* (I — U)Amn))
for alln € N, where r € (0,00), {an} C (0,1) and {B,} C (0,1) satisfy

0<rl|AA*|| <1, lim a, =0,
n—oo
D
Zan:oo and 0<a<p,<b<1
n=1

where a,b € R. Then {x,} converges strongly to a point zg € F(T) N A~ F(U),
where zy = Pp(ryna-1pu)U-
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Theorem 5.9. Let H be a Hilbert space and let F' be a smooth, strictly convex
and reflexive Banach space. Let Jp be the duality mapping on F'. Let C and D be
nonempty, closed and convex subsets of H and F', respectively. Let Po and Pp be
the metric projections of H onto C and F onto D, respectively. Let A: H — F be
a bounded linear operator such that A # 0 and let A* be the adjoint operator of A.
Suppose that C N A~'D # (). Let {u,} be a sequence in H such that w, — u. For
x1=x € H, let {x,} C H be a sequence generated by

Tn+l = ann + (1 - /Bn) (anun + (1 - an)PC'<xn - TA*JF(I - PD)Axn))
for alln € N, where r € (0,00), {an} C (0,1) and {B,} C (0,1) satisfy
0<r||AAY|| < 2, ILm ap =0,

Zan:oo and 0<a<p,<b<«l1
n=1

where a,b € R. Then {x,} converges strongly to a point zo € C N A~'D, where
zZ0 — PCQA—lD’LL.

Theorem 5.10. Let H be a Hilbert space and let F be a uniformly convex and
smooth Banach space. Let Jg be the duality mapping on F. Let T and B be
maximal monotone operators of H into H and F into F*, respectively. Let Q,, be
the resolvent of T for p > 0 and let Jy be the metric resolvent of B for A > 0,
respectively. Let A : H — F be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that T-10N A=Y (B710) # 0. Let {u,} be
a sequence in H such that u, — u. For x1 = x € H, let {x,} C H be a sequence
generated by

Tpt1 = Pntn + (1 — Bn)(oznun + (1 — an)Qu(xy —rA*Jp(I — J,\)A:z:n))
for alln € N, where r € (0,00), {an} C (0,1) and {B,} C (0,1) satisfy
0 <r||AAY|| < 2, ILm an =0,

Zan:oo and 0<a<p,<b<«l1
n=1

where a,b € R. Then {x,} converges strongly to a point zo € T~'0N A~Y(B~10),
where zo = Pr-1pna-1(p-10)U-
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