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continuously differentiable maps defined on the unit interval [0, 1] in a similar way
to the case of Lip(K,E). In this paper we exhibit several sufficient conditions on the
Banach algebra E which ensure that every unital homomorphism on C1([0, 1], E)
is of type BJ. These results are similar in some part but different in the other to
results for algebras of vector-valued Lipschitz maps in [3]. We make use of results
in [3] for proofs of the main results in this paper. On the other hand some new idea
is needed for the case of C1([0, 1], E), it is worth publishing results for C1([0, 1], E)
in this paper.

2. Preliminary

Let E be a unital commutative Banach algebra. The maximal ideal space of E
is the set M(E) of all non-zero multiplicative linear functional with the Gelfand
topology; the relative topology of the weak-∗ topology of E∗. The maximal ideal
space is a compact Hausdorff space. The Gelfand transform of a ∈ E is denoted
by ΓE(a); ΓE(a) : M(E) → C, ΓE(a)(ϕ) = ϕ(a) for ϕ ∈ M(E). For simplicity
of notation, we sometimes denote the Gelfand transform of a by â. The Gelfand
topology on M(E) is the weakest topology that â is continuous for every a ∈ E.

For a subset S of E, the set {ΓE(a) : a ∈ S} is denoted by ΓE(S) or Ŝ . The set

Ŝ is also called the Gelfand transform of S. We denote the spectrum of a by σ(a),
the spectral radius by r(a), the group of all invertible elements by E−1 and the unit
element by 1E . The Jacobson radical, the intersection of all maximal ideals, of E
is denoted by rad(E). For a ∈ E, we have a ∈ rad(E) if and only if r(a) = 0 if
and only if σ(a) = {0} (cf. [5, Proposition 3.5.1, Theorem 3.5.1]). We say that E is
semisimple if rad(E) = {0}. Hence E is semisimple if and only if the Gelfand map

ΓE : E → Ê is an isomorphism. For the theory of commutative Banach algebras,
see e.g., [2, 4, 5, 8].

The algebra of all continuous maps from a compact Hausdorff space X into a
unital commutative Banach algebra E is denoted by C(X,E). For S ⊂ X the
supremum norm on S for f ∈ C(X,E) is defined as

∥f∥∞(S) = sup
x∈S

∥f(x)∥E .

With the supremum norm ∥ · ∥∞(X), the algebra C(X,E) is a unital commutative
Banach algebra.

Let E be a unital commutative Banach algebra. An E-valued function algebra
in the strong sense is as follows.

Definition 1. We say that A is an E-valued function algebra on a compact Haus-
dorff space X in the strong sense if A is a subalgebra of C(X,E) for a unital
commutative Banach algebra E such that the following conditions are satisfied.

(1.1) A is a Banach algebra under some norm ∥ · ∥A,
(1.2) A contains the constant maps,
(1.3) A separates the points of X, that is, for every pair x and y of different points

in X, there exists f in A such that f(x) ̸= f(y),
(1.4) for every x ∈ X the evaluation map ex : A → E defined by f 7→ f(x) is

continuous.
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The algebra C(X,E) is an E-valued function algebra on X in the strong sense
with the norm ∥ · ∥∞(X). Suppose that a subalgebra A of C(X,E) is a Banach
algebra under some norm. If E is semisimple, then ex : A → E is automatically
continuous for every x ∈ X by a theorem of Šilov (cf. [8, Theorem 3.1.11]).

Nikou and O’Farrell defined E-valued function algebra [6, Definition 1.1]. We
make a replace (1) of Definition 1.1 in [6] by (1.2) of Definition 1 in this paper, and
we define an E-valued function algebra in the strong sense. Note that a C-valued
function algebra in the sense of Nikou and O’Farrell is a C-valued function algebra
in the strong sense.

Let AC be a C-valued function algebra on a compact Hausdorff space X in the
strong sense and E a unital commutative Banach algebra. For a pair f ∈ AC and
b ∈ E, the map f ⊗ b ∈ C(X,E) is defined as (f ⊗ b)(x) = f(x)b for x ∈ X. We
denote

AC ⊗ E =


n∑

j=1

fj ⊗ bj : n ∈ N, fj ∈ AC, bj ∈ E (j = 1, 2, . . . , n)

 ,

where N is the set of all positive integers.
Let AC be a C-valued function algebra on X in the strong sense. Then we

have {ex : x ∈ X} ⊂ M(AC), and the map x 7→ ex from X into M(AC) is a
continuous injection. Hence X is embedded in M(AC) as a compact subset. We
call AC natural if the map x 7→ ex is a surjection, that is, if X is homeomorphic to
{ex : x ∈ X} =M(AC) through the map x 7→ ex.

An admissible quadruple was defined by Nikou and O’Farrell in [6].

Definition 2 (cf. [6]). Let X be a compact Hausdorff space and E a commuta-
tive Banach algebra with unit. By an admissible quadruple we mean a quadruple

(X,E,B, B̃), where

(2.1) B ⊂ C(X) is a natural C-valued function algebra on X,

(2.2) B̃ ⊂ C(X,E) is an E-valued function algebra on X in the strong sense,

(2.3) B ⊗ E ⊂ B̃ and

(2.4) {λ ◦ f : f ∈ B̃, λ ∈M(E)} ⊂ B.

Note that two definitions of an admissible quadruple by Definition 2.1 in [6]

and Definition 2 are formally different since B̃ ⊂ C(X,E) is an E-valued function

algebra on X in the strong sense in the above definition while B̃ ⊂ C(X,E) is an
E-valued function algebra in the sense of Nikou and O’Farrell in [6]. But due to the

condition (5) in Definition 2.1 in [6], B̃ in Definition 2.1 in [6] automatically satisfies
(1.2) of Definition 1. Therefore an admissible quadruple defined by Definition 2.1
in [6] and one defined by Definition 2 in this paper are equivalent. Let X be
a compact Hausdorff space and E a unital commutative Banach algebra. Then
(X,E,C(X), C(X,E)) is an admissible quadruple.

Let K be a compact metric space with metric d(·, ·). Let E be a unital commuta-
tive Banach algebra. We say that a function F : K → E is a Lipschitz map from K

into E if the Lipschitz constant L(F ) = supx ̸=y
∥F (x)−F (y)∥E

d(x,y) is finite. The algebra

of all Lipschitz maps from K into E is denoted by Lip(K,E). Then Lip(K,E) is a
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unital commutative Banach algebra with the norm ∥ · ∥L = L(·) + ∥ · ∥∞(K). Then
(K,E,Lip(K,C),Lip(K,E)) is an admissible quadruple. Conditions which ensure
that every unital homomorphism on Lip(K,E) is of type BJ were studied in [3].

Let C1([0, 1]) be the algebra of all continuously differentiable complex-valued
functions on the unit interval [0, 1]. It is well known that C1([0, 1]) is a Banach al-
gebra with respect to the norm ∥f∥C1 = ∥f ′∥∞([0,1]) + ∥f∥∞([0,1]) for f ∈ C1([0, 1]).
Let E be a unital commutative Banach algebra. The algebra of all continuously
differentiable maps from [0, 1] to E is denoted by C1([0, 1], E). With the norm
∥f∥C1 = ∥f ′∥∞([0,1]) + ∥f∥∞([0,1]) for f ∈ C1([0, 1], E) C1([0, 1], E) is a unital com-

mutative Banach algebra. Then ([0, 1], E, C1([0, 1]), C1([0, 1], E)) is an admissible
quadruple.

Due to Nikou and O’Farrell [6] we define as follows.

Definition 3. Let (X,E,B, B̃) be an admissible quadruple. Let π : X ×M(E) →
M(B̃) be given by π(x, ϕ) = ϕ ◦ ex, where ϕ ◦ ex(F ) = ϕ(F (x)) for every F ∈ B̃.
Then by a routine argument π is a continuous injection. We say that an admissible

quadruple (X,E,B, B̃) is natural if the associated map π is bijective.

If an admissible quadruple (X,E,B, B̃) is natural, then the map π is a home-

omorphism since X ×M(E) is compact and M(B̃) is Hausdorff. In this case the

maximal ideal space of B̃ coincides with {ϕ ◦ ex : x ∈ X, ϕ ∈ M(E)}, and it is
homeomorphic to X ×M(E). Hence we may suppose that

(2.1)
̂̃
B ⊂ C(X ×M(E))

by identifying (x, ϕ) and ϕ◦ex through π. The following proposition is proved in [3].

Proposition 4. Let (X,E,B, B̃) be an admissible quadruple. Suppose that B is

dense in C(X). Suppose also that B̃ is inverse-closed; F ∈ B̃ with Γ
B̃
(F )(ϕ◦ex) ̸= 0

for every pair x ∈ X and ϕ ∈M(E) implies F−1 ∈ B̃. Then (X,E,B, B̃) is natural.

Let E be a unital commutative Banach algebra. By the Stone-Weierstrass the-
orem C1([0, 1]) is dense in C([0, 1]), and C1([0, 1], E) is inverse-closed by the defi-
nition of a vector-valued continuously differentiable maps. Hence by Proposition 4
the maximal ideal space of C1([0, 1], E) is homeomorphic to [0, 1] ×M(E). Hence
the admissible quadruple ([0, 1], E, C1([0, 1]), C1([0, 1], E)) is natural and

(2.2) ̂C1([0, 1], E) ⊂ C([0, 1]×M(E)).

We say that (X,E,B, B̃) is semisimple if so is B̃.

Proposition 5. An admissible quadruple (X,E,B, B̃) is semisimple if and only if
E is semisimple.

A proof is given in [3] and is omitted. Suppose that E is semisimple and

(X,E,B, B̃) is natural. Then B̃ is semisimple by Proposition 5; we may identify B̃

and
̂̃
B. Hence we may suppose that

(2.3) B̃ ⊂ C(X ×M(E))
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by (2.1). In particular, we may suppose that

C1([0, 1], E) = ̂C1([0, 1], E).

In the following we write C1([0, 1], E) instead of ̂C1([0, 1], E). By (2.2) we may
suppose that

(2.4) C1([0, 1], E) ⊂ C([0, 1]×M(E))

if E is semisimple.
Since the maximal ideal space of C1([0, 1], E) is homeomorphic to [0, 1]×M(E)

and {ϕ ◦ ex : x ∈ [0, 1], ϕ ∈M(E)} respectively we may also suppose that

ΓC1([0,1],E)(C
1([0, 1])⊗E) ⊂ C1([0, 1], E) ⊂ C([0, 1]×M(E)).

3. Algebra homomorphisms and isomorphisms

In this section we study sufficient conditions on a Banach algebra of vector-valued
continuously differentiable maps which ensure that every unital homomorphism or
isomorphism on it is of type BJ. The following three lemmata are versions of [3,
Lemmata 12, 13 and 14].

Lemma 6. Suppose that G1, . . . , Gn are open sets with ∪n
j=1Gj = [0, 1]. Then there

exist f1, . . . , fn ∈ C1([0, 1]) such that 0 ≤ fj ≤ 1 on [0, 1] and fj = 0 on [0, 1] \ Gj

for j = 1, 2, . . . , n and
∑n

j=1 fj = 1 on [0, 1].

Lemma 6 is well known and we omit a proof.

Lemma 7. Let E be a unital semisimple commutative Banach algebra. Then we
have

C1([0, 1], E) ⊂ ΓC1([0,1],E)(C
1([0, 1])⊗ E)

where · denotes the uniform closure on [0, 1]×M(E).

Proof. Let F ∈ C1([0, 1], E). Let ε > 0 be arbitrary. Then there exists a finite
number of points x1, . . . , xn ∈ [0, 1] and open neighborhoods x1 ∈ G1, . . . , xn ∈ Gn

such that ∪n
j=1Gj = [0, 1] and

∥F (x)− F (xj)∥E ≤ ε, x ∈ Gj

for every j = 1, 2, . . . , n. Then we have by Lemma 6 that there exist Λ1,Λ2, . . . ,Λn ∈
C1([0, 1]) such that 0 ≤ Λj ≤ 1 on [0, 1], Λj = 0 on [0, 1] \ Gj for j = 1, 2, . . . , n,
and

∑n
j=1 Λj = 1 on [0, 1]. Put Fε =

∑n
j=1 ΛjF (xj) ∈ C1([0, 1]) ⊗ E. By some

calculation we obtain that ∥F − Fε∥∞([0,1]×M(E)) ≤ ε. As F ∈ C1([0, 1], E) and ε
are arbitrary, we have the conclusion. □
Lemma 8. The usual topology on [0, 1], the Gelfand topology induced by C1([0, 1]),
and the relative topology induced by the operator norm topology on the dual space of
C1([0, 1]) all coincide with each other.

Proof. It is well known that the maximal ideal spaceM(C1([0, 1])) with the Gelfand
topology is homeomorphic to [0, 1] with the usual topology. In fact, x 7→ ex defines a
homeomorphism from [0, 1] ontoM(C1([0, 1])). We prove that the Gelfand topology
of M(C1([0, 1])), which is the topology induced by the weak-∗ topology inherited
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from the dual space of C1([0, 1]), is homeomorphic to the topology induced by
the metric inherited from the dual space of C1([0, 1]). Just for the simplicity we
denote M(C1([0, 1])) with the Gelfand topology by Mw and M(C1([0, 1])) with the
topology induced by the metric inherited from the dual space of C1([0, 1]) by Ms.
Let Id : Ms → Mw be the identity map. Since the topology induced by the metric
inherited from the dual space of C1([0, 1]) is stronger than the Gelfand topology, the
map Id is continuous. For x ∈ [0, 1], ex denotes the point evaluation on C1([0, 1]) at
x. We denote the norm of the dual space of C1([0, 1]) by ∥ · ∥∗. Let f ∈ C1([0, 1]).

Recall that the Lipschitz constant of f is L(f) = supt ̸=s
|f(t)−f(s)|

|t−s| . It is easy to see

that ∥f ′∥∞([0,1]) ≤ L(f). By the mean value theorem we have

|f(s)− f(t)|
|s− t|

≤ |Re f(s)− Re f(t)|
|s− t|

+
| Im f(s)− Im f(t)|

|s− t|
≤ ∥Re f ′∥∞([0,1]) + ∥ Im f ′∥∞([0,1]) ≤ 2∥f ′∥∞([0,1])

for every s, t ∈ [0, 1] with s ̸= t. Thus L(f) ≤ 2∥f ′∥∞([0,1]). Hence we have

∥ex − ey∥∗ = sup
∥f∥C1≤1

|f(x)− f(y)| ≤ sup
∥f ′∥∞([0,1])≤1

|f(x)− f(y)| ≤ 2|x− y|.

Since the usual topology and the Gelfand topology on [0, 1] coincide we infer that
Id−1 is continuous. We conclude that Id is a homeomorphism. □

We proved the following two theorems in [3].

Theorem 9. Let Ej be a unital commutative Banach algebra and (Xj , Ej , Bj , B̃j)

an admissible quadruple for j = 1, 2. Suppose that
̂̃
B1 ⊂ Γ

B̃1
(B1 ⊗ E1), where ·̄

denotes the uniform closure on M(B̃1). Suppose that X2 is connected with respect
to the relative topology induced by the metric inherited from the dual space of B2

and that M(E1) is totally disconnected with respect to the relative topology induced

by the metric inherited from the dual space of E1. Let ψ : B̃1 → B̃2 be a unital
homomorphism. Then there exist a continuous map τ : M(E2) → M(E1) and a
continuous map φ : X2 ×M(E2) → X1 which satisfy that

Γ
B̃2

(ψ(F ))(ϕ ◦ ex) = Γ
B̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1.

Theorem 10. Let Ej be a unital commutative Banach algebra and (Xj , Ej , Bj , B̃j)

an admissible quadruple for j = 1, 2. Suppose that
̂̃
B1 ⊂ Γ

B̃1
(B1 ⊗ E1), where ·̄

denotes the uniform closure on M(B̃1). Suppose that X2 is connected. Suppose that

M(E1) is totally disconnected with respect to the Gelfand topology. Let ψ : B̃1 → B̃2

be a unital homomorphism. Then there exist a continuous map τ :M(E2) →M(E1)
and a continuous map φ : X2 ×M(E2) → X1 which satisfy that

Γ
B̃2

(ψ(F ))(ϕ ◦ ex) = Γ
B̃1

(F )(τ(ϕ) ◦ eφ(x,ϕ)), (x, ϕ) ∈ X2 ×M(E2)

for every F ∈ B̃1.
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Applying Theorems 9 or 10 for ([0, 1], Ej , C
1([0, 1]), C1([0, 1], Ej)) we obtain the

following.

Corollary 11. Suppose that Ej is a unital semisimple commutative Banach alge-
bra for j = 1, 2. Let ψ : C1([0, 1], E1) → C1([0, 1], E2) be a unital homomorphism.
Suppose that M(E1) is totally disconnected with respect to either the Gelfand topol-
ogy or the relative topology induced by the metric inherited from the dual space
of E1. Then there exist a continuous map τ : M(E2) → M(E1) and a contin-
uous map φ : [0, 1] × M(E2) → [0, 1] such that for each ϕ ∈ M(E2) the map
φ(·, ϕ) : [0, 1] → [0, 1] is continuously differentiable, which satisfy that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ [0, 1]×M(E2)

for every F ∈ C1([0, 1], E1).

Proof. The maximal ideal space of C1([0, 1], Ej) is homeomorphic to [0, 1]×M(Ej)
by Proposition 4. We have the inclusion

C1([0, 1], E1) ⊂ ΓC1([0,1],E)(C
1([0, 1])⊗ E)

by Lemma 7. Since [0, 1] is connected we have that [0, 1] is also connected with
respect to the relative topology induced by the metric inherited from the dual space
of C1([0, 1]) by Lemma 8. By Theorems 9 or 10 there exist a continuous map
τ :M(E2) →M(E1) and a continuous map φ : [0, 1]×M(E2) → [0, 1] which satisfy
that

(3.1) (ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ [0, 1]×M(E2)

for every F ∈ C1([0, 1], E1). To prove that the map φ(·, ϕ) : [0, 1] → [0, 1] is

continuously differentiable for each ϕ ∈ M(E2), define ψ̃ϕ : C1([0, 1]) → C1([0, 1])

by ψ̃ϕ(f)(x) = ϕ(ψ(f⊗1E1)(x)), f ∈ C1([0, 1]). Then ψ̃ϕ is a unital homomorphism

from C1([0, 1]) into C1([0, 1]). Then ψ̃ϕ is continuous by a theorem of Šilov (cf. [8,

Theorem 3.1.11]). On the other hand we have by (3.1) that ψ̃ϕ(f) = f(φ(·, ϕ)),
f ∈ C1([0, 1]). Letting f the identity function we have that φ(·, ϕ) : [0, 1] → [0, 1] is
continuously differentiable. □

The following theorem is proved in [3, Theorem 19].

Theorem 12. Let Aj be a uniform algebra and (Xj , Aj , Bj , B̃j) an admissible

quadruple for j = 1, 2. Suppose that B̃j is natural for j = 1, 2. Suppose that Ch(B2)
is connected with respect to the relative topology induced by the metric inherited from

the dual space of B2. Let ψ : B̃1 → B̃2 be an isomorphism. Then there exist a home-
omorphism τ :M(A2) →M(A1) and a continuous map φ : X2×M(A2) → X1 such
that the map φ(·, ϕ) : X2 → X1 is a homeomorphism for each ϕ ∈ M(A2) which
satisfy that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ X2 ×M(A2)

for every F ∈ B̃1. In particular, A1 is isomorphic to A2 and B1 is isomorphic to
B2.

Applying Theorem 12 we obtain the following.
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Corollary 13. Let Aj be a uniform algebra for j = 1, 2. Suppose that ψ :
C1([0, 1], A1) → C1([0, 1], A2) is an algebra isomorphism. Then there exist a home-
omorphism τ : M(A2) → M(A1) and a continuous map φ : [0, 1] × M(A2) →
[0, 1] such that for each ϕ ∈ M(A2), the map φ(·, ϕ) : [0, 1] → [0, 1] is a C1-
diffeomorphism which satisfy that

(ψ(F ))(x, ϕ) = F (φ(x, ϕ), τ(ϕ)), (x, ϕ) ∈ [0, 1]×M(A2)

for every F ∈ C1([0, 1], A1). In particular, A1 is algebraically isomorphic to A2.

Proof. The Choquet boundary for C1([0, 1]) is [0, 1]. By Lemma 8, [0, 1] is connected
with respect to the relative topology induced by the metric inherited from the dual
space of C1([0, 1]). Applying Theorem 12 we can prove Corollary 13 as in the
proof of Corollary 11 except that the map φ(·, ϕ) is a C1-diffeomorphism for every
ϕ ∈ M(A2). Let ϕ ∈ M(A2) be fixed. By Theorem 12 and Corollary 11 we see
that φ(·, ϕ) is continuouly differentiable, and is a homeomorphsim. Applying the
equation (12) in the proof of [3, Theorem 19] we see that φ(·, ϕ)−1 is continuouly
differentiable. It follows that φ(·, ϕ) is C1-diffeomorphism. □

Note that an algebraic isomorphism between uniform algebra is automatically
isometric.

Several examples of unital semisimple commutative Banach algebras E such that
the maximal ideal space are discrete with respect to the relative topology induced
by the metric inherited from the dual space of E are exhibited in [3]. Examples
of unital semisimple commutative Banach algebras whose maximal ideal spaces are
totally disconnected is also exhibited in [3].
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