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FIXED POINT THEOREMS FOR CIRIC TYPE CONTRACTIONS
AND OTHERS IN COMPLETE METRIC SPACES
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Dedicated to the memory of Professor Ljubomir Ciri¢

ABSTRACT. Inspired by Jachymski’s fixed point theorem for integral type of con-
tractions, we prove fixed point theorems in complete metric spaces for Cirié,
Kannan and Chatterjea types of contractions.

1. INTRODUCTION

Jachymski in [7] proved splendid fixed point theorems. The following is a corollary
of Theorem 9 in [7].

Theorem 1.1 (Jachymski [7]). Let T be a mapping on a complete metric space
(X,d). Assume that there exist r € [0,1) and a function n from [0,00) into itself
satisfying
n(d(Tx,Ty)) < ro(d(z,y))
for any x,y € X and the following (H1):
(H1) For any sequence {a,} in [0,00), limy, n(a,) = 0 iff lim, a, = 0.
Then T has a unique fized point z. Moreover {T"x} converges to z for any x € X.

See [3, 8, 13, 15, 16, 19] and others. Considering the case where n = (t — t), we
understand that Theorem 1.1 is one of generalizations of the Banach contraction
principle [1, 4]. We note that the assumption on 7 is only (H1) in Theorem 1.1. So
the authors think that we have completed the Banach type of this study.

Recently, in [18] we obtained the following Bogin type fixed point theorem [2].
See also [10, 11, 14].

For 7 € (1,00), we define a set H(7) as follows: nn € H(7) iff n is a function from
[0, 00) into itself satisfying (H1) and the following:

(H2:7) For any sequence {a,} in [0, c0) which converges to some « € (0, 00),

n(a) < 7 limsup n(ay,)

n—00

holds.
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Theorem 1.2 ([18]). Let T be a mapping on a complete metric space (X,d). As-
sume that T' satisfies Condition (B), that is, there exist r € [0,1), s,t € (0,1/2) and
ne H((r+s+2t)/t) satisfying r +2s+2t =1 and

(1.1) n(d(Tz,Ty)) <rn(d(z,y)) + sn(d(z, Ty)) + sn(d(Tz,y))
+tn(d(z, Tx)) + tn(d(y, Ty))
for any x,y € X. Assume also that there exists u € X satisfying the following:
(H3) {n(d(T™u,T"u)) : m,n € NU{0}} is bounded.
Then T has a unique fized point z. Moreover {T™u} converges to z.

In [17], we obtained that the following (H4) implies (H3).

(H4) For any 8 > 0 and € > 0, there exists M > 0 such that n(a) < (1+¢)n(a+0b)
holds for any a > 0 and b € [—f3, +/] satisfying n(a) > M and a + b > 0.

We note that we need (H1), (H2:(r + s+ 2t)/t) and (H4) for Bogin type.

In this paper, strongly inspired by Theorem 1.1, we will prove fixed point theo-
rems in complete metric spaces for Ciri¢, Kannan and Chatterjea types of contrac-
tions.

2. PRELIMINARIES

Throughout this paper we denote by N the set of all positive integers. For an
arbitrary set A, we denote by #A the cardinal number of A.
In this section, we give some preliminaries.

Lemma 2.1 ([18]). Let n be a function from [0,00) into itself satisfying (H1). Let
{zn} be a sequence in a metric space (X,d) satisfying

(2.1) Jim limsupn(d(n, 7)) = 0.
Then {x,} is Cauchy.

Lemma 2.2. Let n be a function from [0,00) into itself satisfying (H1). Let {x,}
be a sequence in a metric space (X,d) satisfying

(2.2) lim sup 7(d(zn, zm)) = 0.

n—oo m>n
Then {x,} is Cauchy.

Proof. Since (2.2) is stronger than (2.1), we obtain the desired result by Lemma
2.1. U

The typical example of i belonging to H(7) is the following:

Lemma 2.3 ([17]). Let n be a continuous function from [0, 00) into itself satisfying
n~1(0) = {0} and inf{n(a) : a > a} > 0 for some a € (0,00). Then n € H(T) for
any T € (1,00).

We introduce the following condition (H5). It is obvious that (H5) is strictly
weaker than (H4).
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(H5) There exists € > 0 such that for any 8 > 0, there exists M > 0 such that
n(a) < (1+¢)nla+0b)
holds for any a > 0 and b € [—f3, +/] satisfying n(a) > M and a + b > 0.

Lemma 2.4. Let n and h be functions from [0,00) into itself. Assume that h
satisfies (H4) and that there exist s,t € (0,00) satisfying

sh(a) <n(a) <th(a)
for any a € [0,00). Then n satisfies (H5).

Proof. Put e = 2t/s. Fix f > 0. Then by (H4), there exists M > 0 satisfying the
following;:

e h(a) < 2h(a + b) holds for any a > 0 and b € [-3,+/5] with h(a) > M/t
and a + b > 0.

Fix a > 0 and b € [, +f] with n(a) > M and a + b > 0. Then we have
n(a) <th(a) <2th(a+0b) < (2t/s)nla+b) < (1+¢e)n(a+Db).
Therefore (H5) holds. O
Since a — a? satisfies (H4), we obtain the following; see [17].

Example 2.5. Let n be a function from [0, c0) into itself. Assume that there exist
q € (0,00) and s,t € (0,00) satisfying

sa? <n(a) <tal
for any a € [0,00). Then n satisfies (H1) and (H5).
3. FIXED POINT THEOREMS
We begin with Ciri¢ type. See [6, 12].

Theorem 3.1. Let T' be a mapping on a complete metric space (X,d). Assume
that there exist r € (0,1) and n € H(1/r) satisfying

(3.1) n(d(Tz,Ty)) < r max{n(d(z,y)), n(d(z,Ty)), n(d(Tz,y)),

n(d(z, Tx)), n(d(y,Ty))}

for any x,y € X. Assume also that there exists u € X satisfying (H3). Then T has
a unique fixed point z. Moreover {T"u} converges to z.

Remark. See Example 4.1 below. In order to prove the existence of a fixed point,
we have to assume (H3) or something.

Proof. Put

(3.2) A(m,n) ={Tu: j e NU{0}, m < j <n},
(3.3) A(m,o0) = {T7u: j e NU{0}, m < j},
(3.4) D(m,n) =sup {n(d(z,y)) : =,y € A(m,n)}
and

(3.5) D(m, 00) = sup {n(d(z,y)) : z,y € A(m,c0)}
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for m,n € NU {0} with m < n, where T is the identity mapping on X. By (3.1),
we note
(3.6) D(m,n) <rD(m —1,n)
for m,n € N with m < n. We also note by (3.1)
(3.7) max {n(d(u, T7u)) : 1< j<n}=D(0,n)
for n € N. By (H3), we note D(0,00) < co. By (3.6), we have
D(m,o00) <rD(m—1,00) <--- < 7™ D(0,00)

for m € N. So, by Lemma 2.2, {T"u} is Cauchy. Since X is complete, {T"u}
converges to some z € X. Arguing by contradiction, we assume Tz # z. We
consider the following two cases:

} < o0

o #{n e N:n(d(T"u,Tz)) <rn(d(z,Tz))
o #{neN:n(d(T" ', Tz)) <rn(d(z,Tz))
In the first case, there exists a subsequence {f(n)} of the sequence {n} in N satis-
fying
n(d(Tf(”)Hu,Tz)) <rn(d(z,Tz))
for n € N. Since
nh_)rgo d(TF 1y, T2) = d(2,Tz) > 0,

we have by (H2:1/r)
lim sup n(d(Tf(")Hu, Tz)) <rn(d(z,T%))

n—oo

1
< r—limsup n(d(Tf(")Hu, Tz))
T

n—oQ

= limsup n(d(Tf(")“u, Tz)),

n—oo

which implies a contradiction. In the second case, since
nlg]go max {n(d(T"u, z)),n(d(T" " u, 2)),n(d(T"u, T" 'u)) } =0,
we have
max {n(d(T"u, z)),n(d(T" " u, 2)),n(d(T"u, T" ) } < n(d(z,Tz))

for sufficiently large n € N. Thus, the following hold:

#{neN: n(d(T”“u,Tz)) <rn(d(T"u,2))} < oo,

#{neN: n(d(T"‘Hu, Tz)) < rn(d(T"+1u, z))} < oo,

#{neN: n(d(T"+1u, Tz)) < rn(d(T"u,T”‘Hu))} < 0.
Since

n(d(T"u,Tz)) < r max {n(d(T™u, z)),n(d(T"u,Tz)),n(d(T"Hu, 2)),
n(d(T™u, ")), n(d(z,Tz))}
for n € N| there exists v € N satisfying
n(d(T”+1u, Tz)) <rn(d(T"u,Tz))
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for n > v. Then we have lim, n(d(T"u,Tz)) = 0, thus, Tz = lim,, T7"u = z holds.
This is a contradiction. We have obtained a contradiction in all cases. Therefore
we have shown Tz = z. Let us prove that the fixed point z is unique. Let w € X
be a fixed point of T. Then we have

n(d(z,w)) =n(d(Tz,Tw))
< r max {n(d(z,w)),n(d(z, Tw)),n(d(Tz,w)),
n(d(z,Tz)),n(d(w, Tw))}
=r max {n(d(z,w)),n(d(z,w)),n(d(z,w)),
1(d(z, ), n(dw, )}
=rn(d(z,w))

and hence 7(d(z,w)) = 0. Hence by (H1), we obtain z = w. We have shown that
the fixed point is unique. O

If we replace the assumption (H3) by (H5), we can also prove a fixed point
theorem as Theorem 3.1.

Theorem 3.2. Let T' be a mapping on a complete metric space (X,d). Assume
that there exist v € (0,1) and n € H(1/r) satisfying (3.1). Assume also (H5). Then
T has a unique fizved point z. Moreover {T"x} converges to z for any x € X.

Remark. We need (H1), (H2:1/r) and (H5) for Cirié type.
Proof. Fix u € X. Choose € > 0 appearing in (H5). We can choose x € N satisfying
(3.8) (I1+e)r" < 1.

Put A(m,n), A(m,o00), D(m,n) and D(m,o0) by (3.2)—(3.5), respectively. Arguing
by contradiction, we assume that (H3) does not hold. Thus,

(3.9) D(0,00) = o0

holds. Then we note that T"u (n € NU {0}) are all different. Put 5 = d(u, T"u).
Then we can choose M > 0 appearing in (H5). By (3.7) and (3.9), we can choose
¢ € N satisfying £ > &,

n(d(u,Téu)) = D(0,¢)
and
n(d(u,Teu)) > M.
Then since
|d(u, T®) — d(T"u, T )| < d(u, T"u) = 3,
we have by (H5), (3.6) and (3.8)
D(0,4) = n(d(u, Tfu))
< (1+¢)n(d(T"u, Téu))
< (1+¢)D(k,?)
<(14¢e)rD(k—1,¢)
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< (1+e) 2D(k —2,0)
<< (14¢)r"D(0,£)
(0, 0),
which implies a contradiction. Thus, (H3) holds. So by Theorem 3.1, we obtain the
desired result. O

Next we will prove a fixed point theorem for Kannan type contractions. See [9].

Theorem 3.3. Let T be a mapping on a complete metric space (X,d). Assume
that there exist o € (0,1/2) and n € H(1/«a) satisfying

(3.10) n(d(Tz,Ty)) < an(d(z, Tz)) + an(d(y, Ty))

for any x,y € X. Then T has a unique fized point z. Moreover {T™x} converges to
z for any x € X.

Remark. We need (H1) and (H2:1/«) for Kannan type. We need neither (H3) nor
(H5).

Proof. Fix v € X. Since
n(d(T"u, T ) < an(d(T" tu, T"u)) + an(d(T™u, T" )

for n € N, we have
«
11—«

<. < <1 fo)n n(d(u, Tw))

and hence limy, n(d(T"u, T"*'u)) = 0 because /(1 — a) € (0,1) holds. Using this,
we have

n(d(T"u, T" ) < n(d(T"  u, T™u))

lim sup n(d(T"u,T™u))

n—00 m>n

< lim sup (a n(d(T"  u, ")) + an(d(Tm_lu,Tmu))>

n—00 m>n

< lim 2a77(d(T"_1u,T”u)) =0.

~ n—oo

So by Lemma 2.2, {T"u} is Cauchy. Since X is complete, {T"u} converges to some
z € X. Arguing by contradiction, we assume Tz # z. By (H2:1/«a), we have

lirrisipn(d(T”'Hu,Tz)) < aJi_}rgon(d(T"u,T”Hu)) + an(d(z,Tz))
= an(d(z,Tz))
<« B lim sup n(d(T”Hu, T=z))
& n—oo

= limsupn(d(T""'u, T2)).
n—oQ
This is a contradiction. So, we have z = Tz. Noting that (3.10) is stronger than
(3.1), we can prove the uniqueness of z as in the proof of Theorem 1.2. O
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Next we will prove a fixed point theorem for Chatterjea type contractions. See
[5].

Theorem 3.4. Let T' be a mapping on a complete metric space (X,d). Assume
that there exist o € [0,1/2) and a function n from [0, 00) into itself satisfying (H1)
and

(3.11) n(d(Tz,Ty)) < an(d(z,Ty)) +an(d(Tz,y))
for any x,y € X. Assume also that there exists u € X satisfying (H3). Then T has

a unique fived point z. Moreover {T"u} converges to z.

Proof. Define a function f from N into [0, c0) by
f(n) = sup n(d(T"u, T™"u)).
Then by (H3), f is well defined. For n € N, we have
fln+1) = Sl;p n(d(T”Hu, Terlu))

< sup (an(d(T”u,TmHu)) + an(d(T”Hu,Tmu)))
m>n

< a sup n(d(T™u, Tm+1u)) +a sip n(d(T”'HU, "))
m>n

m>n

= asup n(d(T"u, T ) + o sup n(d(T" u, T™u))

m>n m>n—+1

<af(n)+af(n+l)
and hence
fn+1) < = f(n).

Since a/(1 — a) € [0,1), we obtain lim,, f(n) = 0. So by Lemma 2.2, {T"u} is
Cauchy. Since X is complete, {T"u} converges to some z € X. Since

lim supn(d(T”+1u, Tz)) < limsup (an(d(T”u, Tz)) + an(d(T"“u, z)))
n—o0

n—00
= limsup an(d(T"u, Tz)),
n—oo
we can prove that {n(d(T"u,Tz))} is bounded. So, we have lim, n(d(T"u,Tz)) =
0. Therefore we have z = Tz by (H1). Noting that (3.11) is stronger than (3.1), we
can prove the uniqueness of z as in the proof of Theorem 1.2. O

Since (3.11) is stronger than (3.1), we obtain the following by the proof of The-
orem 3.2 and Theorem 3.4.

Corollary 3.5. Let T' be a mapping on a complete metric space (X,d). Assume
that there exist o € [0,1/2) and a function n from [0,00) into itself satisfying (H1),
(H5) and (3.11). Then T has a unique fized point z. Moreover {T™x} converges to
z for any x € X.

Remark. We need (H1) and (H5) for Chatterjea type.
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4. EXAMPLES
Rhoades in [12] gave the following example.

Example 4.1 (Example 3 in [12]). Let X = N and let d be as usual. Define a

mapping T on X by Tx = x + 1. Define a function 7 from [0, co) into itself by
n(a) = exp(a) — 1.

Then the following hold:

(i) (X,d) is a complete metric space.
(ii) (3.11) holds for any z,y € X, where o := exp(—1) = 0.37--- € (0,1/2).
(iii) (1.1) holds for any x,y € X, where t := exp(—1) € (0,1/2), s :==1/2 -t €
(0,1/2) and r = 0.
(iv) (3.1) holds for any x,y € X, where r := exp(—1) € (0, 1).
(v) T does not have a fixed point.
(vi) n € H(7) holds for any 7 € (1, c0).
(vii) n does not satisfy (H5).

Remark. Example 4.1 give a negative answer to the second problem raised in [17].

Proof. (i) is obvious. Fix z,y € X with < y. Then we have
n(d(Tx,Ty)) = exp(y — x) — 1
< exp(y —x) — exp(—1)
= exp(—1) (exp(y+1—=z) — 1)
Using this, we can prove (ii). (iii) and (iv) follow from (ii). (v) is obvious. By
Lemma 2.3, (vi) holds. By Theorem 3.2, we can prove (vii). O

We finally give an example of a function n, which satisfies (H5) and does not
satisfy (H4).

Example 4.2. Fix g € (0,00) and define a continuous function f from [0,00) into
[1,2] by
f(a) =2—min{|a—2n|:n € NU{0}}.
Define a continuous function 7 from [0, co) into itself by
n(a) = f(a)a’.

Then the following hold:

(i) n € H(7) holds for any 7 € (1,00) and 7 satisfies (H5).

(ii) n does not satisfy (H4).

Proof. It is obvious that f and n are continuous. It is also obvious that
a? <nla) <2a?

holds for any a € [0,00). By Lemma 2.3, n € H(7) for any 7 € (1,00). By Example
2.5, n satisfies (H5). We have shown (i). Let us prove (ii). We have

n2n)=202n)1>22n—-1)9=(1+1)n2n—-1)
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for n € N. We note

So

sup{n(2n) :n €N} =00 and (2n)—(2n—-1)=1.

for f:=1>0and € :=1 > 0, we cannot choose M > 0 appearing (H4). O
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