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Theorem 1.2 ([18]). Let T be a mapping on a complete metric space (X, d). As-
sume that T satisfies Condition (B), that is, there exist r ∈ [0, 1), s, t ∈ (0, 1/2) and
η ∈ H

(
(r + s+ 2 t)/t

)
satisfying r + 2 s+ 2 t = 1 and

η
(
d(Tx, Ty)

)
≤ r η

(
d(x, y)

)
+ s η

(
d(x, Ty)

)
+ s η

(
d(Tx, y)

)
(1.1)

+ t η
(
d(x, Tx)

)
+ t η

(
d(y, Ty)

)
for any x, y ∈ X. Assume also that there exists u ∈ X satisfying the following:

(H3)
{
η
(
d(Tmu, Tnu)

)
: m,n ∈ N ∪ {0}

}
is bounded.

Then T has a unique fixed point z. Moreover {Tnu} converges to z.

In [17], we obtained that the following (H4) implies (H3).

(H4) For any β > 0 and ε > 0, there exists M > 0 such that η(a) < (1+ε) η(a+b)
holds for any a > 0 and b ∈ [−β,+β] satisfying η(a) > M and a+ b > 0.

We note that we need (H1), (H2:(r + s+ 2 t)/t) and (H4) for Bogin type.
In this paper, strongly inspired by Theorem 1.1, we will prove fixed point theo-

rems in complete metric spaces for Ćirić, Kannan and Chatterjea types of contrac-
tions.

2. Preliminaries

Throughout this paper we denote by N the set of all positive integers. For an
arbitrary set A, we denote by #A the cardinal number of A.

In this section, we give some preliminaries.

Lemma 2.1 ([18]). Let η be a function from [0,∞) into itself satisfying (H1). Let
{xn} be a sequence in a metric space (X, d) satisfying

(2.1) lim
n→∞

lim sup
m→∞

η
(
d(xn, xm)

)
= 0.

Then {xn} is Cauchy.

Lemma 2.2. Let η be a function from [0,∞) into itself satisfying (H1). Let {xn}
be a sequence in a metric space (X, d) satisfying

(2.2) lim
n→∞

sup
m>n

η
(
d(xn, xm)

)
= 0.

Then {xn} is Cauchy.

Proof. Since (2.2) is stronger than (2.1), we obtain the desired result by Lemma
2.1. □

The typical example of η belonging to H(τ) is the following:

Lemma 2.3 ([17]). Let η be a continuous function from [0,∞) into itself satisfying
η−1(0) = {0} and inf{η(a) : a ≥ α} > 0 for some α ∈ (0,∞). Then η ∈ H(τ) for
any τ ∈ (1,∞).

We introduce the following condition (H5). It is obvious that (H5) is strictly
weaker than (H4).
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(H5) There exists ε > 0 such that for any β > 0, there exists M > 0 such that

η(a) < (1 + ε) η(a+ b)

holds for any a > 0 and b ∈ [−β,+β] satisfying η(a) > M and a+ b > 0.

Lemma 2.4. Let η and h be functions from [0,∞) into itself. Assume that h
satisfies (H4) and that there exist s, t ∈ (0,∞) satisfying

s h(a) ≤ η(a) ≤ t h(a)

for any a ∈ [0,∞). Then η satisfies (H5).

Proof. Put ε = 2 t/s. Fix β > 0. Then by (H4), there exists M > 0 satisfying the
following:

• h(a) < 2h(a + b) holds for any a > 0 and b ∈ [−β,+β] with h(a) > M/t
and a+ b > 0.

Fix a > 0 and b ∈ [−β,+β] with η(a) > M and a+ b > 0. Then we have

η(a) ≤ t h(a) < 2 t h(a+ b) ≤ (2 t/s) η(a+ b) < (1 + ε) η(a+ b).

Therefore (H5) holds. □
Since a 7→ aq satisfies (H4), we obtain the following; see [17].

Example 2.5. Let η be a function from [0,∞) into itself. Assume that there exist
q ∈ (0,∞) and s, t ∈ (0,∞) satisfying

s aq ≤ η(a) ≤ t aq

for any a ∈ [0,∞). Then η satisfies (H1) and (H5).

3. Fixed Point Theorems

We begin with Ćirić type. See [6, 12].

Theorem 3.1. Let T be a mapping on a complete metric space (X, d). Assume
that there exist r ∈ (0, 1) and η ∈ H(1/r) satisfying

η
(
d(Tx, Ty)

)
≤ r max

{
η
(
d(x, y)

)
, η

(
d(x, Ty)

)
, η

(
d(Tx, y)

)
,(3.1)

η
(
d(x, Tx)

)
, η

(
d(y, Ty)

)}
for any x, y ∈ X. Assume also that there exists u ∈ X satisfying (H3). Then T has
a unique fixed point z. Moreover {Tnu} converges to z.

Remark. See Example 4.1 below. In order to prove the existence of a fixed point,
we have to assume (H3) or something.

Proof. Put

A(m,n) =
{
T ju : j ∈ N ∪ {0}, m ≤ j ≤ n

}
,(3.2)

A(m,∞) =
{
T ju : j ∈ N ∪ {0}, m ≤ j

}
,(3.3)

D(m,n) = sup
{
η
(
d(x, y)

)
: x, y ∈ A(m,n)

}
(3.4)

and

D(m,∞) = sup
{
η
(
d(x, y)

)
: x, y ∈ A(m,∞)

}
(3.5)
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for m,n ∈ N ∪ {0} with m ≤ n, where T 0 is the identity mapping on X. By (3.1),
we note

(3.6) D(m,n) ≤ r D(m− 1, n)

for m,n ∈ N with m ≤ n. We also note by (3.1)

(3.7) max
{
η
(
d(u, T ju)

)
: 1 ≤ j ≤ n

}
= D(0, n)

for n ∈ N. By (H3), we note D(0,∞) < ∞. By (3.6), we have

D(m,∞) ≤ r D(m− 1,∞) ≤ · · · ≤ rmD(0,∞)

for m ∈ N. So, by Lemma 2.2, {Tnu} is Cauchy. Since X is complete, {Tnu}
converges to some z ∈ X. Arguing by contradiction, we assume Tz ̸= z. We
consider the following two cases:

• #
{
n ∈ N : η

(
d(Tn+1u, Tz)

)
≤ r η

(
d(z, Tz)

)}
= ∞

• #
{
n ∈ N : η

(
d(Tn+1u, Tz)

)
≤ r η

(
d(z, Tz)

)}
< ∞

In the first case, there exists a subsequence {f(n)} of the sequence {n} in N satis-
fying

η
(
d(T f(n)+1u, Tz)

)
≤ r η

(
d(z, Tz)

)
for n ∈ N. Since

lim
n→∞

d(T f(n)+1u, Tz) = d(z, Tz) > 0,

we have by (H2:1/r)

lim sup
n→∞

η
(
d(T f(n)+1u, Tz)

)
≤ r η

(
d(z, Tz)

)
< r

1

r
lim sup
n→∞

η
(
d(T f(n)+1u, Tz)

)
= lim sup

n→∞
η
(
d(T f(n)+1u, Tz)

)
,

which implies a contradiction. In the second case, since

lim
n→∞

max
{
η
(
d(Tnu, z)

)
, η
(
d(Tn+1u, z)

)
, η
(
d(Tnu, Tn+1u)

)}
= 0,

we have

max
{
η
(
d(Tnu, z)

)
, η
(
d(Tn+1u, z)

)
, η
(
d(Tnu, Tn+1u)

)}
< η

(
d(z, Tz)

)
for sufficiently large n ∈ N. Thus, the following hold:

#
{
n ∈ N : η

(
d(Tn+1u, Tz)

)
≤ r η

(
d(Tnu, z)

)}
< ∞,

#
{
n ∈ N : η

(
d(Tn+1u, Tz)

)
≤ r η

(
d(Tn+1u, z)

)}
< ∞,

#
{
n ∈ N : η

(
d(Tn+1u, Tz)

)
≤ r η

(
d(Tnu, Tn+1u)

)}
< ∞.

Since

η
(
d(Tn+1u, Tz)

)
≤ r max

{
η
(
d(Tnu, z)

)
, η
(
d(Tnu, Tz)

)
, η
(
d(Tn+1u, z)

)
,

η
(
d(Tnu, Tn+1u)

)
, η
(
d(z, Tz)

)}
for n ∈ N, there exists ν ∈ N satisfying

η
(
d(Tn+1u, Tz)

)
≤ r η

(
d(Tnu, Tz)

)
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for n ≥ ν. Then we have limn η
(
d(Tnu, Tz)

)
= 0, thus, Tz = limn T

nu = z holds.
This is a contradiction. We have obtained a contradiction in all cases. Therefore
we have shown Tz = z. Let us prove that the fixed point z is unique. Let w ∈ X
be a fixed point of T . Then we have

η
(
d(z, w)

)
= η

(
d(Tz, Tw)

)
≤ r max

{
η
(
d(z, w)

)
, η
(
d(z, Tw)

)
, η
(
d(Tz,w)

)
,

η
(
d(z, Tz)

)
, η
(
d(w, Tw)

)}
= r max

{
η
(
d(z, w)

)
, η
(
d(z, w)

)
, η
(
d(z, w)

)
,

η
(
d(z, z)

)
, η
(
d(w,w)

)}
= r η

(
d(z, w)

)
and hence η

(
d(z, w)

)
= 0. Hence by (H1), we obtain z = w. We have shown that

the fixed point is unique. □
If we replace the assumption (H3) by (H5), we can also prove a fixed point

theorem as Theorem 3.1.

Theorem 3.2. Let T be a mapping on a complete metric space (X, d). Assume
that there exist r ∈ (0, 1) and η ∈ H(1/r) satisfying (3.1). Assume also (H5). Then
T has a unique fixed point z. Moreover {Tnx} converges to z for any x ∈ X.

Remark. We need (H1), (H2:1/r) and (H5) for Ćirić type.

Proof. Fix u ∈ X. Choose ε > 0 appearing in (H5). We can choose κ ∈ N satisfying

(3.8) (1 + ε) rκ < 1.

Put A(m,n), A(m,∞), D(m,n) and D(m,∞) by (3.2)–(3.5), respectively. Arguing
by contradiction, we assume that (H3) does not hold. Thus,

(3.9) D(0,∞) = ∞
holds. Then we note that Tnu (n ∈ N ∪ {0}) are all different. Put β = d(u, T κu).
Then we can choose M > 0 appearing in (H5). By (3.7) and (3.9), we can choose
ℓ ∈ N satisfying ℓ > κ,

η
(
d(u, T ℓu)

)
= D(0, ℓ)

and

η
(
d(u, T ℓu)

)
> M.

Then since
|d(u, T ℓu)− d(T κu, T ℓu)| ≤ d(u, T κu) = β,

we have by (H5), (3.6) and (3.8)

D(0, ℓ) = η
(
d(u, T ℓu)

)
< (1 + ε) η

(
d(T κu, T ℓu)

)
≤ (1 + ε)D(κ, ℓ)

≤ (1 + ε) r D(κ− 1, ℓ)
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≤ (1 + ε) r2D(κ− 2, ℓ)

≤ · · · ≤ (1 + ε) rκD(0, ℓ)

< D(0, ℓ),

which implies a contradiction. Thus, (H3) holds. So by Theorem 3.1, we obtain the
desired result. □

Next we will prove a fixed point theorem for Kannan type contractions. See [9].

Theorem 3.3. Let T be a mapping on a complete metric space (X, d). Assume
that there exist α ∈ (0, 1/2) and η ∈ H(1/α) satisfying

(3.10) η
(
d(Tx, Ty)

)
≤ αη

(
d(x, Tx)

)
+ αη

(
d(y, Ty)

)
for any x, y ∈ X. Then T has a unique fixed point z. Moreover {Tnx} converges to
z for any x ∈ X.

Remark. We need (H1) and (H2:1/α) for Kannan type. We need neither (H3) nor
(H5).

Proof. Fix u ∈ X. Since

η
(
d(Tnu, Tn+1u)

)
≤ αη

(
d(Tn−1u, Tnu)

)
+ αη

(
d(Tnu, Tn+1u)

)
for n ∈ N, we have

η
(
d(Tnu, Tn+1u)

)
≤ α

1− α
η
(
d(Tn−1u, Tnu)

)
≤ · · · ≤

(
α

1− α

)n

η
(
d(u, Tu)

)
and hence limn η

(
d(Tnu, Tn+1u)

)
= 0 because α/(1− α) ∈ (0, 1) holds. Using this,

we have

lim
n→∞

sup
m>n

η
(
d(Tnu, Tmu)

)
≤ lim

n→∞
sup
m>n

(
αη

(
d(Tn−1u, Tnu)

)
+ αη

(
d(Tm−1u, Tmu)

))
≤ lim

n→∞
2αη

(
d(Tn−1u, Tnu)

)
= 0.

So by Lemma 2.2, {Tnu} is Cauchy. Since X is complete, {Tnu} converges to some
z ∈ X. Arguing by contradiction, we assume Tz ̸= z. By (H2:1/α), we have

lim sup
n→∞

η
(
d(Tn+1u, Tz)

)
≤ α lim

n→∞
η
(
d(Tnu, Tn+1u)

)
+ αη

(
d(z, Tz)

)
= αη

(
d(z, Tz)

)
< α

1

α
lim sup
n→∞

η
(
d(Tn+1u, Tz)

)
= lim sup

n→∞
η
(
d(Tn+1u, Tz)

)
.

This is a contradiction. So, we have z = Tz. Noting that (3.10) is stronger than
(3.1), we can prove the uniqueness of z as in the proof of Theorem 1.2. □
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Next we will prove a fixed point theorem for Chatterjea type contractions. See
[5].

Theorem 3.4. Let T be a mapping on a complete metric space (X, d). Assume
that there exist α ∈ [0, 1/2) and a function η from [0,∞) into itself satisfying (H1)
and

(3.11) η
(
d(Tx, Ty)

)
≤ αη

(
d(x, Ty)

)
+ αη

(
d(Tx, y)

)
for any x, y ∈ X. Assume also that there exists u ∈ X satisfying (H3). Then T has
a unique fixed point z. Moreover {Tnu} converges to z.

Proof. Define a function f from N into [0,∞) by

f(n) = sup
m>n

η
(
d(Tnu, Tmu)

)
.

Then by (H3), f is well defined. For n ∈ N, we have

f(n+ 1) = sup
m>n

η
(
d(Tn+1u, Tm+1u)

)
≤ sup

m>n

(
αη

(
d(Tnu, Tm+1u)

)
+ αη

(
d(Tn+1u, Tmu)

))
≤ α sup

m>n
η
(
d(Tnu, Tm+1u)

)
+ α sup

m>n
η
(
d(Tn+1u, Tmu)

)
= α sup

m>n
η
(
d(Tnu, Tm+1u)

)
+ α sup

m>n+1
η
(
d(Tn+1u, Tmu)

)
≤ α f(n) + αf(n+ 1)

and hence

f(n+ 1) ≤ α

1− α
f(n).

Since α/(1 − α) ∈ [0, 1), we obtain limn f(n) = 0. So by Lemma 2.2, {Tnu} is
Cauchy. Since X is complete, {Tnu} converges to some z ∈ X. Since

lim sup
n→∞

η
(
d(Tn+1u, Tz)

)
≤ lim sup

n→∞

(
αη

(
d(Tnu, Tz)

)
+ αη

(
d(Tn+1u, z)

))
= lim sup

n→∞
αη

(
d(Tnu, Tz)

)
,

we can prove that
{
η
(
d(Tnu, Tz)

)}
is bounded. So, we have limn η

(
d(Tnu, Tz)

)
=

0. Therefore we have z = Tz by (H1). Noting that (3.11) is stronger than (3.1), we
can prove the uniqueness of z as in the proof of Theorem 1.2. □

Since (3.11) is stronger than (3.1), we obtain the following by the proof of The-
orem 3.2 and Theorem 3.4.

Corollary 3.5. Let T be a mapping on a complete metric space (X, d). Assume
that there exist α ∈ [0, 1/2) and a function η from [0,∞) into itself satisfying (H1),
(H5) and (3.11). Then T has a unique fixed point z. Moreover {Tnx} converges to
z for any x ∈ X.

Remark. We need (H1) and (H5) for Chatterjea type.
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4. Examples

Rhoades in [12] gave the following example.

Example 4.1 (Example 3 in [12]). Let X = N and let d be as usual. Define a
mapping T on X by Tx = x+ 1. Define a function η from [0,∞) into itself by

η(a) = exp(a)− 1.

Then the following hold:

(i) (X, d) is a complete metric space.
(ii) (3.11) holds for any x, y ∈ X, where α := exp(−1) = 0.37 · · · ∈ (0, 1/2).
(iii) (1.1) holds for any x, y ∈ X, where t := exp(−1) ∈ (0, 1/2), s := 1/2 − t ∈

(0, 1/2) and r = 0.
(iv) (3.1) holds for any x, y ∈ X, where r := exp(−1) ∈ (0, 1).
(v) T does not have a fixed point.
(vi) η ∈ H(τ) holds for any τ ∈ (1,∞).
(vii) η does not satisfy (H5).

Remark. Example 4.1 give a negative answer to the second problem raised in [17].

Proof. (i) is obvious. Fix x, y ∈ X with x < y. Then we have

η
(
d(Tx, Ty)

)
= exp(y − x)− 1

< exp(y − x)− exp(−1)

= exp(−1)
(
exp(y + 1− x)− 1

)
= exp(−1) η

(
d(x, Ty)

)
.

Using this, we can prove (ii). (iii) and (iv) follow from (ii). (v) is obvious. By
Lemma 2.3, (vi) holds. By Theorem 3.2, we can prove (vii). □

We finally give an example of a function η, which satisfies (H5) and does not
satisfy (H4).

Example 4.2. Fix q ∈ (0,∞) and define a continuous function f from [0,∞) into
[1, 2] by

f(a) = 2−min
{
|a− 2n| : n ∈ N ∪ {0}

}
.

Define a continuous function η from [0,∞) into itself by

η(a) = f(a) aq.

Then the following hold:

(i) η ∈ H(τ) holds for any τ ∈ (1,∞) and η satisfies (H5).
(ii) η does not satisfy (H4).

Proof. It is obvious that f and η are continuous. It is also obvious that

aq ≤ η(a) ≤ 2 aq

holds for any a ∈ [0,∞). By Lemma 2.3, η ∈ H(τ) for any τ ∈ (1,∞). By Example
2.5, η satisfies (H5). We have shown (i). Let us prove (ii). We have

η(2n) = 2 (2n)q > 2 (2n− 1)q = (1 + 1) η(2n− 1)
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for n ∈ N. We note

sup{η(2n) : n ∈ N} = ∞ and (2n)− (2n− 1) = 1.

So for β := 1 > 0 and ε := 1 > 0, we cannot choose M > 0 appearing (H4). □
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[8] J. Jachymski, J. Matkowski and T. Świa̧tkowski, Nonlinear contractions on semimetric spaces,
J. Appl. Anal. 1 (1995), 125–134.

[9] R. Kannan, Some results on fixed points – II, Amer. Math. Monthly 76 (1969), 405–408.
[10] M. Kikkawa and T. Suzuki, Fixed point theorems for new nonlinear mappings satisfying Con-

dition (CC), Linear Nonlinear Anal. 1 (2015), 37–52.

[11] M. Kikkawa and T. Suzuki, A direct proof of some resent generalization of both Ćirić’s and
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