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optimization are studied based on “multicriteria” evaluation like some partial or-
derings. For typical solution concepts, minimal and maximal notions like Pareto
optimal solution or efficient solution for given outcome sets are defined with respect
to reasonable ordering convex cones (that is, dominance cones) when the outcome
space is a real vector space; see [24] and [15].

The most practical method to approach this kind of problems is “scalarization,”
which is used in converting a given vector optimization problem to a scalar opti-
mization problem (or a family of such problems) such that the solutions of the latter
problem are also solutions of the former problem. The notion of “weighted sum” of
elements is a typical tool for the scalarization of vectors in multicriteria problems,
and it is regarded as a linear functional with the weight vector. A linear functional
on a vector space is a bilinear form as a function of two variables of the original
vector space X and its topological dual space X∗, which is the set of all bounded
linear functionals on X. Also it becomes the inner product of a given vector x and
the normal vector w in case of Euclidean spaces:∑

k

wkxk = ⟨w,x⟩ for w = (wk) and x = (xk).

It is one of the most useful tools for evaluation with respect to some index of
the adequacy of efficiency in multiobjective programming and vector optimization.
Moreover, the notion of average of n elements is regarded as a special case of the
weighted sum of a given vector in Rn with the weight vector w = (1/n, . . . , 1/n).
This scalarization technique is a method based on the linear operation, and then it
is called “linear scalarization,” and the following “order-monotone” (that is, order
preserving) property holds:

x1 ≤C x2 implies ⟨w,x1⟩ ≤ ⟨w,x2⟩

if the weight vectorw is chosen as an element of the dual cone C∗ in X∗ of the order-
ing convex cone C in a vector space X, where C∗ = {y ∈ X∗ : ⟨y,x⟩ ≥ 0 ∀x ∈ C},
and if we write x1 ≤C x2 when x2 −x1 ∈ C. Owing to this property, any minimal
or maximal element of a convex set in a vector optimization problem is character-
ized by optimal solutions of its scalarized problem with a certain nonzero weight
vector in C∗, which is guaranteed by separation theorems for two convex sets.

From the view-point of the advanced area of vector optimization and set opti-
mization, the linear scalarization can be regarded as a special case of the following
sublinear scalarization

(1.1) hC(x;k) = inf {t ∈ R |x ∈ tk − C }

when the ordering cone C is a half space in Rn, that is, C = {x ∈ X : ⟨k,x⟩ ≥ 0}
with normal vector k ∈ Rn satisfying ⟨k,k⟩ = 1. Indeed, we can verify that
hC(x;k) = ⟨k,x⟩ easily under the condition above. This scalarization method is
based on the sublinearity of hC(·;k) and hence it is called “sublinear scalarization.”
This approach is found in [2, 19, 20], and it was developed by Tammer ([3, 4])
and Luc ([14]). It is similar to the idea of Minkowski functional, which plays an
important key role on seminorm connected with a topology of a locally convex
topological vector space.
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On the other hand, if k ∈ C, the lower level set of hC(·;k) at each height t
coincides with a parallel translation of −C at offset tk, that is,

{x |hC(x;k) ≤ t} = tk − C,

and hence hC(·;k) is the smallest strictly monotonic function with respect to the
ordering cone C in case that k ∈ intC, which is the topological interior of C;
see page 21 in [14]. Hence, hC(·;k) has the order-monotone property. Also this
scalarization has a dual form as follows:

(1.2) −hC(−x;k) = sup {t ∈ R |x ∈ tk + C } .

When the ordering cone C is a half space as discussed above, both sublinear func-
tionals hC(x;k) and −hC(−x;k) of x are coincident with the value of ⟨k,x⟩.
Nishizawa and Tanaka ([17]) study certain characterizations of set-valued mappings
by using the inherited properties of hC(·;k) and −hC(−·;k) on cone-convexity and
cone-semicontinuity. These observations lead us into the work to study sublinear
scalarization methods for sets with respect to set-relations [9, 10] by using the ideas
on the sublinear scalarization [2] and some scalarizing functions in [7]. The aim of
this paper is to show a certain possibility to use sublinear scalarization methods for
sets in a real vector space proposed in [11, 12] in order to establish some kinds of
set-valued inequalities.

The organization of the paper is as follows. In Section 2, we introduce mathe-
matical methodology on comparison between two sets in an ordered vector space
proposed in [10] and unified nonlinear scalarizing functions for sets proposed in [11].
In Section 3, we investigate generalized results on Fan-Takahashi minimax inequal-
ity ([13, 21, 22]) and Gordan’s alternative theorem for set-valued maps ([18]) as
applications of sublinear scalarization methods for sets.

2. Scalarization methods for sets with respect to set-relations

Unless otherwise specified, we let X be a nonempty set, Y a real ordered topo-
logical vector space with partial order ≤C induced by a convex solid (that is, there
exists nonempty interior) pointed (C ∩ (−C) = {θY }) cone C, where θY is the
zero vector of Y , as follows: x ≤C y if y − x ∈ C for x, y ∈ Y . In case of lack
of pointedness, the binary relation induced by the cone is preorder (transitive and
reflexive). We denote the algebraic sum and difference of any subsets A and B in Y
by A+B := {a+b | a ∈ A, b ∈ B} and A−B := {a−b | a ∈ A, b ∈ B}, respectively.
Given A ⊂ Y , we write tA := {ta | a ∈ A} for t ∈ R and A+x := A+{x} for x ∈ Y .
Besides, for any A ⊂ Y we denote the topological interior, topological closure, com-
plement of A by intA, clA, Ac, respectively. Also, we denote the composition of
two functions f and g by g ◦ f .

Moreover, we recall some definitions of C–notions which are referred in [14]. A
subset A in Y is said to be C–convex (resp., C–closed) if A + C is convex (resp.,
closed); C–proper if A + C ̸= Y . Moreover, A is said to be C–bounded if for each
open neighborhood U of θY there exists t ≥ 0 such that A ⊂ tU +C. Furthermore,
we say that F is each C–notion mentioned above if the set F (x) for each x ∈ E has
the property of the corresponding C–notion.



124 Y. OGATA, Y. SAITO, T. TANAKA, AND S. YAMADA

We review the basic concepts of set-relation and nonlinear scalarization method
based on sublinear-like functions with respect to each set-relation.

Definition 2.1 (Kuroiwa, Tanaka, Ha (1997), [10]). Let A,B ∈ 2Y \{∅}.

(i) A ≤(1)
C B

def⇐⇒ A ⊂
∩

b∈B(b− C) ⇔ B ⊂
∩

a∈A(a+ C);

(ii) A ≤(2)
C B

def⇐⇒ A ∩
∩

b∈B(b− C) ̸= ∅;
(iii) A ≤(3)

C B
def⇐⇒ B ⊂ (A+ C);

(iv) A ≤(4)
C B

def⇐⇒
∩

a∈A(a+ C) ∩B ̸= ∅;
(v) A ≤(5)

C B
def⇐⇒ A ⊂ (B − C);

(vi) A ≤(6)
C B

def⇐⇒ A ∩ (B − C) ̸= ∅ ⇔ (A+ C) ∩B ̸= ∅.

Proposition 2.2 (Proposition 2.1 in [10]). For nonempty sets A,B ⊂ Y , the fol-
lowing statements hold.

A ≤(1)
C B implies A ≤(2)

C B; A ≤(1)
C B implies A ≤(4)

C B;

A ≤(2)
C B implies A ≤(3)

C B; A ≤(4)
C B implies A ≤(5)

C B;

A ≤(3)
C B implies A ≤(6)

C B; A ≤(5)
C B implies A ≤(6)

C B.

Proposition 2.3 (Proposition 2.3 in [11]). For A,B,D ∈ 2Y \{∅}, the following
statements hold.

(i) For each j = 1, . . . , 6,

A ≤(j)
C B implies (A+ y) ≤(j)

C (B + y) for y ∈ Y , and

A ≤(j)
C B implies αA ≤(j)

C αB for α > 0;

(ii) For each j = 1, . . . , 5, ≤(j)
C is transitive, that is,

A ≤(j)
C B and B ≤(j)

C D implies A ≤(j)
C D;

(iii) For each j = 3, 5, 6, ≤(j)
C is reflexive, that is,

A ≤(j)
C A;

(iv) For each j = 1, . . . , 6,

A ≤(j)
C B and y1 ≤C y2 for y1, y2 ∈ Y imply A+ y1 ≤(j)

C B + y2;
(v) For each j = 1, . . . , 6,

A ≤(j)
C (te + B) implies A ≤(j)

C (se + B) for any e ∈ intC and s ≥ t,
and
(te+B) ≤(j)

C A implies (se+B) ≤(j)
A for any e ∈ intC and s ≤ t.

The six binary relations ≤(1)
C , . . . ,≤(6)

C are referred to as “set-relations” and they
are certain generalizations of a partial ordering for vectors induced by a convex

cone in a vector space. Especially, ≤(3)
C and ≤(5)

C are preorders for sets. If B is a

singleton set in Definition 2.1, set-relations ≤(2)
C ,≤(3)

C ,≤(6)
C are coincident with each

other, and the others ≤(1)
C ,≤(4)

C ,≤(5)
C coincide. Based on these binary relations, we

introduce the following scalarizing functions for sets in a vector space, which are
certain generalizations as unifications of several nonlinear scalarizations proposed
in [7, 25].
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Definition 2.4 (Kuwano, Tanaka, Yamada (2009), [11]). Let A,B ∈ 2Y \{∅} and

k ∈ intC. For each j = 1, ..., 6, scalarizing functions I
(j)
k,B and S

(j)
k,B from 2Y \{∅} to

R ∪ {±∞} are defined by

(2.1) I
(j)
k,B(A) := inf

{
t ∈ R

∣∣∣A ≤(j)
C (tk +B)

}
,

(2.2) S
(j)
k,B(A) := sup

{
t ∈ R

∣∣∣(tk +B) ≤(j)
C A

}
.

In the above definition, k and B play key roles as a “direction” and a “reference
set” as one kind of sublinear scalarization for a given set A. If B is a singleton set,

I
(2)
k,B(A) = I

(3)
k,B(A) = I

(6)
k,B(A), I

(1)
k,B(A) = I

(4)
k,B(A) = I

(5)
k,B(A), S

(1)
k,B(A) = S

(2)
k,B(A) =

S
(3)
k,B(A), and S

(4)
k,B(A) = S

(5)
k,B(A) = S

(6)
k,B(A). Especially, if B = {θY } in formu-

las (2.1) and (2.2), we get

(2.3) I
(j)
k,{θY }(A) =


inf
y∈A

hC(y; k) for each j = 2, 3, 6;

sup
y∈A

hC(y; k) for each j = 1, 4, 5,

and

(2.4) S
(j)
k,{θY }(A) =


inf
y∈A

(−hC(−y; k)) for each j = 1, 2, 3;

sup
y∈A

(−hC(−y; k)) for each j = 4, 5, 6.

They are certain generalizations of four types of scalarization for sets proposed in
[16]. These facts suggest a similar approach to characterize set-valued mappings in
the same way used in [17] as mentioned in Section 1 and also to apply it to establish
alternative theorems for set-valued maps without convexity assumptions.

For j = 1, . . . , 5, scalarizing functions I
(j)
k,V (·) and S

(j)
k,V (·) with direction k and

nonempty reference set V have the following monotonicity, which is referred to as

“j-monotone with respect to ≤(j)
C ” in [8]:

(2.5) A ≤(j)
C B implies I

(j)
k,V (A) ≤ I

(j)
k,V (B) and S

(j)
k,V (A) ≤ S

(j)
k,V (B).

Also, if k ∈ intC, the following certain properties hold, which are similar to con-
vexity and concavity.

Proposition 2.5 (Propositions 2.14 and 2.15 in [8]). For nonempty subsets A, B
in Y , λ ∈ (0, 1) and k ∈ intC, the following statements hold:

(i) For each j = 1, 2, 3, I
(j)
k,V (λA+ (1− λ)B) ≤ λI

(j)
k,V (A) + (1− λ)I

(j)
k,V (B);

(ii) For each j = 4, 5, 6, I
(j)
k,V (λA+ (1− λ)B) ≤ λI

(j)
k,V (A) + (1− λ)I

(j)
k,V (B) if V

is (−C)–convex;
(iii) For each j = 1, 4, 5, λS

(j)
k,V (A) + (1− λ)S

(j)
k,V (B) ≤ S

(j)
k,V (λA+ (1− λ)B);

(iv) For each j = 2, 3, 6, λS
(j)
k,V (A) + (1− λ)S

(j)
k,V (B) ≤ S

(j)
k,V (λA+ (1− λ)B) if

V is C–convex.

with the agreement that +∞ − ∞ = +∞ and α(+∞) = +∞, α(−∞) = −∞ for
α > 0.
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Besides, it is easily seen that

(2.6) I
(j)
k,V (αA) = αI

(j)

k,( 1
α
V )

(A), S
(j)
k,V (αA) = αS

(j)

k,( 1
α
V )

(A) for all α > 0

and then

I
(j)
k,V (A+B) ≤ I

(j)

k,( 1
2
V )

(A) + I
(j)

k,( 1
2
V )

(B),(2.7)

S
(j)
k,V (A+B) ≥ S

(j)

k,( 1
2
V )

(A) + S
(j)

k,( 1
2
V )

(B).(2.8)

If V is a cone, then these properties (2.6)–(2.8) can be regarded as “positively
homogeneous,” “subadditive” and “superadditive,” and hence they suggest that

I
(j)
k,V (·) and S

(j)
k,V (·) have sublinear-like and superlinear-like properties, respectively.

Moreover, we would remark that these scalarizing functions have an important
merit on the inherited properties on several types of cone-convexity (cone-concavity)
/ cone-continuity for parent set-valued map F : X → 2Y to convexity or quasicon-
vexity (concavity or quasiconcavity) / semicontinuity of the composite functions

(I
(j)
k,V ◦ F )(x) := I

(j)
k,V (F (x)) and (S

(j)
k,V ◦ F )(x) := S

(j)
k,V (F (x))

for each j = 1, . . . , 6 in an analogous fashion to linear scalarizing function like
inner product; general results for several types of convexity and quasiconvexity are
summarized in [8] and useful results and examples for cone-continuity are in [23].

Definition 2.6 (cone-convexity, [10]). For each j = 1, . . . , 6,

(i) A map F is said to be type (j) C-convex if for each x1, x2 ∈ X and λ ∈
(0, 1),

F (λx1 + (1− λ)x2) ≤(j)
C λF (x1) + (1− λ)F (x2);

(ii) A map F is said to be type (j) properly quasi C-convex if for each x1, x2 ∈
X and λ ∈ (0, 1),

F (λx1 + (1− λ)x2) ≤(j)
C F (x1) or F (λx1 + (1− λ)x2) ≤(j)

C F (x2);

(iii) A map F is said to be type (j) naturally quasi C-convex if for each x1, x2 ∈
X and λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

F (λx1 + (1− λ)x2) ≤(j)
C µF (x1) + (1− µ)F (x2).

Definition 2.7 (cone-concavity, [13]). For each j = 1, . . . , 6,

(i) A map F is said to be type (j) C-concave if for each x1, x2 ∈ X and
λ ∈ (0, 1),

λF (x1) + (1− λ)F (x2) ≤(j)
C F (λx1 + (1− λ)x2);

(ii) A map F is said to be type (j) properly quasi C-concave if for each x1, x2 ∈
X and λ ∈ (0, 1),

F (x1) ≤(j)
C F (λx1 + (1− λ)x2) or F (x2) ≤(j)

C F (λx1 + (1− λ)x2);

(iii) A map F is said to be type (j) naturally quasi C-concave if for each x1, x2 ∈
X and λ ∈ (0, 1), there exists µ ∈ [0, 1] such that

µF (x1) + (1− µ)F (x2) ≤(j)
C F (λx1 + (1− λ)x2).
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Table 1. Inherited properties on convexity and concavity.

Assumptions (j = 1, . . . , 6) on Conclusions
ψ F ψ ◦ F

cv type (j) C-convex cv
cv type (j) naturally quasi C-convex
qcv type (j) C-convex qcv
qcv type (j) naturally quasi C-convex

j-monotone type (j) properly quasi C-convex

with respect to ≤(j)
C cc type (j) C-concave cc

cc type (j) naturally quasi C-concave
qcc type (j) C-concave qcc
qcc type (j) naturally quasi C-concave

type (j) properly quasi C-concave

Theorem 2.8 ([8]). Let ψ : 2Y \{∅} → R ∪ {±∞} and F : X → 2Y . If ψ and F
satisfy each assumption in Table 1, then its correspondent conclusion holds.

In Table 1, we denote “convex”, “quasiconvex”, “concave”, and “quasiconcave”
by “cv”, “qcv”, “cc”, and “qcc” for short in Table 1, respectively. From prop-

erty (2.5) and Proposition 2.5, Theorem 2.8 guarantees that I
(j)
k,V ◦ F and S

(j)
k,V ◦ F

(j = 1, . . . , 5) possibly become to be cv or qcv / cc or qcc under some suitable
cone-convexity / cone-concavity assumptions on F , respectively.

On the other hand, we find useful inherited results in [23] on cone-continuity of
parent set-valued map which are summarized in Table 2; each cell with symbol (∗)
has counter examples and suitable sufficient conditions are open questions. Also
cones C and (−C) for cone-continuity of the set-valued map play certain roles for
“l.s.c.” and “u.s.c.” of each composite function, respectively.

Definition 2.9 (lower continuity and upper continuity, [4]).

(i) A map F is said to be lower continuous (l.c., for short) at x̄ if for every
open set W ⊂ Y with F (x̄) ∩W ̸= ∅, there exists an open neighborhood
U of x̄ such that F (x) ∩W ̸= ∅ for all x ∈ U . We say that F is lower
continuous on X if F is l.c. at every point x ∈ X.

(ii) A map F is said to be upper continuous (u.c., for short) at x̄ if for every
open set W ⊂ Y with F (x̄) ⊂ W , there exists an open neighborhood U of
x̄ such that F (x) ⊂ W for all x ∈ U . We say that F is upper continuous
on X if F is u.c. at every point x ∈ X.

Definition 2.10 (cone-lower continuity and cone-upper continuity, [4]).

(i) A map F is said to be C–lower continuous (C–l.c., for short) at x̄ if for every
open set W ⊂ Y with F (x̄) ∩W ̸= ∅, there exists an open neighborhood
U of x̄ such that F (x) ∩ (W + C) ̸= ∅ for all x ∈ U . We say that F is
C–lower continuous on X if F is C–l.c. at every point x ∈ X.

(ii) A map F is said to be C–upper continuous (C–u.c., for short) at x̄ if for
every open set W ⊂ Y with F (x̄) ⊂W , there exists an open neighborhood



128 Y. OGATA, Y. SAITO, T. TANAKA, AND S. YAMADA

U of x̄ such that F (x) ⊂ (W + C) for all x ∈ U . We say that F is C–
upper continuous on X if F is C–u.c. at every point x ∈ X.

Theorem 2.11 ([23]). If F : X → 2Y satisfies each assumption in Table 2, then

the composite functions I
(j)
k,V ◦ F and S

(j)
k,V ◦ F (j = 1, . . . , 6) have correspondent

properties.

Table 2. Inherited properties on semicontinuity.

Assumptions Conclusions on I
(j)
k,V ◦ F Conclusions on S

(j)
k,V ◦ F

on F j = 1, 4, 5 j = 2, 3, 6 j = 4, 5, 6 j = 1, 2, 3

l.c. l.s.c. u.s.c. l.s.c. u.s.c.
u.c. u.s.c. l.s.c. u.s.c. l.s.c.
C-l.c. l.s.c. (∗) l.s.c. (∗)
C-u.c. (∗) l.s.c. (∗) l.s.c.

(−C)-l.c. (∗) u.s.c. (∗) u.s.c.
(−C)-u.c. u.s.c. (∗) u.s.c. (∗)

3. Applications

3.1. Set-valued Fan-Takahashi minimax inequality. The following theorem is
equivalent to Theorem 1 in [1] of Fan-Takahashi minimax inequality; this equiva-
lence was proved by Takahashi firstly in 1976.

Theorem 3.1 ([26]). Let X be a nonempty compact convex subset of a topological
vector space and f : X ×X → R. If f satisfies the following conditions:

(i) for each fixed y ∈ X, f(·, y) is lower semicontinuous,
(ii) for each fixed x ∈ X, f(x, ·) is quasi concave,
(iii) for all x ∈ X, f(x, x) ≤ 0,

then there exists x̄ ∈ X such that f(x̄, y) ≤ 0 for all y ∈ Y .

Based on the above theorem, we shall show four kinds of Fan-Takahashi minimax
inequality for set-valued maps as applications of sublinear scalarization methods for
sets by using several results in Section 2. Each proof can be referred to [13].

Theorem 3.2 ([13]). Let X be a nonempty compact convex subset of a topological
vector space, Y a real topological vector space, C a proper closed convex cone in Y
with intC ̸= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:

(i) F is (−C)-bounded on X ×X,
(ii) for each fixed y ∈ X, F (·, y) is C-lower continuous,
(iii) for each fixed x ∈ X, F (x, ·) is type (5) properly quasi C-concave,
(iv) for all x ∈ X, F (x, x) ⊂ −C,

then there exists x̄ ∈ X such that F (x̄, y) ⊂ −C for all y ∈ Y .

Theorem 3.3 ([13]). Let X be a nonempty compact convex subset of a topological
vector space, Y a real topological vector space, C a proper closed convex cone in Y
with intC ̸= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:
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(i) F is C-proper and C-closed on X ×X,
(ii) for each fixed y ∈ X, F (·, y) is C-upper continuous,
(iii) for each fixed x ∈ X, F (x, ·) is type (3) properly quasi C-concave,
(iv) for all x ∈ X, F (x, x) ∩ (−C) ̸= ∅,

then there exists x̄ ∈ X such that F (x̄, y) ∩ (−C) ̸= ∅ for all y ∈ Y .

Theorem 3.4 ([13]). Let X be a nonempty compact convex subset of a topological
vector space, Y a real topological vector space, C a proper closed convex cone in Y
with intC ̸= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:

(i) F is (−C)-proper on X ×X,
(ii) for each fixed y ∈ X, F (·, y) is C-lower continuous,
(iii) for each fixed x ∈ X, F (x, ·) is type (5) naturally quasi C-concave,
(iv) for all x ∈ X, F (x, x) ∩ intC = ∅,

then there exists x̄ ∈ X such that F (x̄, y) ∩ intC = ∅ for all y ∈ Y .

Theorem 3.5 ([13]). Let X be a nonempty compact convex subset of a topological
vector space, Y a real topological vector space, C a proper closed convex cone in Y
with intC ̸= ∅ and F : X ×X → 2Y \ {∅}. If F satisfies the following conditions:

(i) F is compact-valued on X ×X,
(ii) for each fixed y ∈ X, F (·, y) is C-upper continuous,
(iii) for each fixed x ∈ X, F (x, ·) is type (3) naturally quasi C-concave,
(iv) for all x ∈ X, F (x, x) ̸⊂ intC,

then there exists x̄ ∈ X such that F (x̄, y) ̸⊂ intC for all y ∈ Y .

Remark 3.6. It is easy to check that if F is a single-valued function into the real
numbers then Theorems 3.2–3.5 are reduced to Theorem 3.1.

3.2. Set-valued alternative theorems. As another application of sublinear
scalarization methods for sets, we provide 12 kinds of Gordan-type alternative theo-
rems. If the reference set V consists of the origin, they are reduced to those in [16],
which are generalizations of the following Gordan-type alternative theorem with
non-negative orthant Rm

+ as the ordering cone.

Theorem 3.7 ([5]). Let A be an m×n matrix and then exactly one of the following
systems has a solution:

(i) there exists x ∈ Rn such that Ax > θRm,
(ii) there exists y ∈ Rm such that ATy = θRn and y ≥ θRm , y ̸= θRm,

where z2 ≥ z1 and z2 > z1 in Ri when z1 ≤Ri
+
z2 and z1 ≤intRi

+
z2, that is,

z2 − z1 ∈ Ri
+ and z2 − z1 ∈ intRi

+, respectively for i = m,n.

This theorem focuses on geometry of finitely many vectors and the origin. In
[16], Nishizawa, Onodsuka, and Tanaka gave generalized forms by using sublinear
scalarizaions in formulas (2.3) and (2.4) without any convexity assumption.

Let X be a nonempty set, Y a topological vector space, C a convex solid cone
in Y , F : X → 2Y a set-valued map, and V a nonempty subset of Y . By using
several results in Section 2, we show the following generalizations of the alternative
theorems in [16]; each proof can be referred to [18].
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Theorem 3.8 ([18]). Assume that

• F is compact-valued on X and V is compact in case of j = 1;
• V is compact in case of j = 2, 3;
• F is compact-valued on X in case of j = 4, 5;
• no compactness assumption on F nor V in case of j = 6,

then exactly one of the following two systems is consistent for j = 1, . . . , 6:

(i) there exists x ∈ X such that F (x) ≤(j)
intC V ,

(ii) there exists k ∈ intC such that (I
(j)
k,V ◦ F )(x) ≥ 0 for all x ∈ X.

Theorem 3.9 ([18]). Assume that

• F is compact-valued on X and V is compact in case of j = 1;
• V is compact in case of j = 2, 3;
• F is compact-valued on X in case of j = 4, 5;
• no compactness assumption on F nor V in case of j = 6,

then exactly one of the following two systems is consistent for j = 1, . . . , 6:

(i) there exists x ∈ X such that V ≤(j)
intC F (x),

(ii) there exists k ∈ intC such that (S
(j)
k,V ◦ F )(x) ≤ 0 for all x ∈ X.

Remark 3.10. For j = 1, we let S :=
∩

v∈V (v − C). Then S + (−C) ⊂ S
so that for all x ∈ X, y ∈ F (x), and k ∈ intC, there exists ty > 0

such that y ∈
∩

v∈tyk+V (v − C). Thus, there exists t̄ ≥ 0 such that (I
(1)
k,V ◦ F )(x) =

inf {t ∈ R | F (x) ⊂
∩

v∈tk+V (v − C)} ≤ t̄ < +∞. In a similar way, we can prove the
finiteness of each composite function in the second system.

Remark 3.11. In Theorem 3.9, we set X = Rn, Y = Rm, F (x) = {Ax} (A is an
m×n matrix), V = {θRm} and hence F is compact-valued on X and V is a compact
set. Choose a direction vector k ∈ intRm

+ and let C = {y ∈ Rm | ⟨k, y⟩ ≥ 0} (Rm
+ ⊂

C). If we consider {Ax} instead of A in formula (2.4), all cases in the assumption
of Theorem 3.9 hold automatically and then they are reduced to Theorem 3.7.
Similarly, we can check that Theorem 3.8 is another generalization of the classical
one.
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[6] A. H. Hamel, F. Heyde, A. Löhne, B. Rudloff and C. Schrage, Set Optimization and Applica-
tions – The State of the Art, Springer Proc. Math. Stat., 151, Springer, Heidelberg, 2015.
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