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THE PROXIMAL POINT ALGORITHM IN GEODESIC SPACES
WITH CURVATURE BOUNDED ABOVE

YASUNORI KIMURA AND FUMIAKI KOHSAKA

ABSTRACT. We investigate the asymptotic behavior of sequences generated by
the proximal point algorithm for convex functions in complete geodesic spaces
with curvature bounded above. Using the notion of resolvents of such functions,
which was recently introduced by the authors, we show the existence of minimiz-
ers of convex functions under the boundedness assumptions on such sequences as
well as the convergence of such sequences to minimizers of given functions.

1. INTRODUCTION

The aim of this paper is to obtain the following two results on the asymptotic be-
havior of sequences generated by the proximal point algorithm for convex functions
in complete CAT(1) spaces.

Theorem 1.1. Let X be an admissible complete CAT(1) space, f a proper lower
semicontinuous convex function of X into |—oo, 00|, {\n,} a sequence of positive real
numbers such that Y > | A\, = 00, and {x,} a sequence defined by x1 € X and

1

(1.1) Tp41 = argmin {f(y) + — tand(y, x,) sind(y, a:n)}
yeX )\n

for alln € N. Then the set argminy f of all minimizers of f is nonempty if and

only if {x,} is spherically bounded and sup,, d(xpt1,T,) < 7/2.

Theorem 1.2. Let X, f, {\.}, and {x,} be the same as in Theorem 1.1 and
suppose that argminy f is nonempty. Then the following hold.

(i) There exists a positive real number C such that

flxpyr) —inf f(X) < (1 —cosd(u,z1))

C
22:1 Ak
for all w € argminy f and n € N;
(ii) {xn} is A-convergent to an element of argminy f.
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Key words and phrases. CAT(1) space, convex function, fixed point, geodesic space with curva-
ture bounded above, minimizer, proximal point algorithm, resolvent.
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It should be noted that, in this paper, we say that a CAT(1) space X is admissible
if d(v,v") < w/2 for all v,v" € X. We also say that a sequence {z,,} in a CAT(1)
space X is spherically bounded if

(1.2) inf limsup d(y, z,) < ul
y€EX n—oo 2
The proximal point algorithm, introduced by Martinet [22] and Rockafellar [24], is
an approximation method for finding a minimizer of a proper lower semicontinuous
convex function f of a real Hilbert space X into |—oo, 0o|. This algorithm generates
a sequence {x,} by x; € X and

. 1
(13) v = argain { 1) + 1 Iy~ 17}
yeX n
for all n € N, where {\,} is a sequence of positive real numbers. It is well known
that the right hand side of (1.3) consists of one point p € X. We identify the set
{p} with p in this case. Using the resolvent J; of f given by

(1.4) Iy = arguin { £5) + 3 Iy - 12}

yeX
for all z € X, we can write the scheme (1.3) as 11 = Jy, 2, for all n € N,
See [4,25] for more details on convex analysis in Hilbert spaces.

In 1976, Rockafellar [24, Theorem 1] showed that if inf,, A, > 0, then the set
argminy f is nonempty if and only if {z,} is bounded, and that if argminy f is
nonempty, then {z,} is weakly convergent to an element of argminy f. In 1978,
Brezis and Lions [5, Théoreme 9] showed the weak convergence of {z, } to an element
of argminy f under a weaker condition that argminy f is nonempty and > > A, =
oo. Later, Giiler [10, Corollary 5.1] found an example of {z,} in the Hilbert space
£? which does not converge strongly.

On the other hand, in 1995, Jost [11] generalized the concept of resolvent given
by (1.4) in Hilbert spaces to that in more general complete CAT(0) spaces. Accord-
ing to [3, Section 2.2], [11, Lemma 2], and [23, Section 1.3], if f is a proper lower
semicontinuous convex function of a complete CAT(0) space X into |—o0, oo], then
the resolvent Jy of f given by

(1.5) Jyx = argmin {f(y) + 1d(y, ac)z}
yeX 2

for all x € X is a well defined single valued nonexpansive mapping of X into itself.
We also know that its fixed point set F(J¢) is equal to argminy f. See [3,12,13]
for more details on this concept.

In 2013, Ba¢ék [2, Theorem 1.4 and Remark 1.6] generalized the result by Brezis
and Lions [5, Théoreme 9] to the complete CAT(0) space setting as follows. Note
that A-convergence is called weak convergence in [2].

Theorem 1.3 ([2, Theorem 1.4 and Remark 1.6]). Let X be a complete CAT(0)
space, f a proper lower semicontinuous convex function of X into |—o0, 00| such
that argminy f is nonempty, Jxy the resolvent of \f for each A > 0, {\,} a sequence
of positive real numbers such that > >° | Ay = 00, and {x,} a sequence defined by
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1 € X and xp1 = Jy, fxn for alln € N. Then {x,} is A-convergent to an element
of argminy f and

f(zn41) — inf f(X) d(u, 1)

< - -
T2 M
for all u € argminy f and n € N.

Recently, the authors [15] introduced the concept of resolvents of convex func-
tions in complete CAT(1) spaces and studied the existence and approximation of
fixed points of mappings related to this concept. Considering the geometric differ-
ence between CAT(0) and CAT(1) spaces, they replaced d(y,z)?/2 in (1.5) with
tand(y,x)sind(y,z) in the definition of resolvent below. According to [15, The-
orems 4.2 and 4.6], if f is a proper lower semicontinuous convex function of an
admissible complete CAT(1) space X into |—00,00], then the resolvent Ry of f
given by

(1.6) Rx = argmin{f(y) + tand(y, x) sind(y, :r:)}
yeX

for all x € X is a well defined single valued mapping of X into itself such that
(1.7) F(Ry) = argmin f
X

and
(05(1 + C’;)Cy + C’;(l + Cﬁ)Cx) cosd(Ryx, Ryy)

(1.8)
> C3(1+ CS) cosd(Ryx,y) + Cg(l + C2)cosd(Ryy, z)

for all z,y € X, where C, = cosd(Ryz,z) for all z € X. Using this concept, we can
write the scheme (1.1) as

Tyl = Ry, fon

for all n € N. The function ¢ — tantsint used in (1.6) is obviously a strictly
increasing, continuous, and convex function on [0, 7/2[ such that tan0sin0 = 0 and
tantsint — oo as t T m/2. These properties are similar to those of the function
t + t2 on [0, 00[ used in (1.5). Note that the diameters of the model spaces S? and
R? of CAT(1) and CAT(0) spaces coincide with 7 and oo, respectively and that
the second order Maclaurin approximation of the function ¢ — tan¢sint is equal to
t t2

This paper is organized as follows. In Section 2, we recall some definitions and
results needed in this paper. In Section 3, we obtain some fundamental properties
of resolvents of convex functions in CAT(1) spaces. In Section 4, after obtaining
Theorem 4.1, a maximization theorem in CAT(1) spaces, we give the proofs of
Theorems 1.1 and 1.2. In Section 5, we obtain three corollaries of Theorems 1.1
and 1.2.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of all positive integers, R the set
of all real numbers, and F(7T') the set of all fixed points of a mapping T'.
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A metric space X with metric d is said to be uniquely m-geodesic if for each
x,y € X with d(z,y) < 7, there exists a unique mapping ¢ of [0, ] into X such that
d(c(t),c(t')) = |t — ¢ for all ¢,t" € [0,1], ¢(0) = z, and ¢(l) = y, where | = d(,y).
The mapping c is called the geodesic from x to y and the set [z, y], which is defined
as the image of ¢, is called the geodesic segment between x and y. We also denote
by az @ (1 — a)y the point ¢((1 — a)d(z,y)) for each o € [0, 1].

Let H be a real Hilbert space with inner product (-, -) and the induced norm
| -|l. We know that the unit sphere Sy of H is a complete metric space with the
spherical metric pg,, defined by

psy (,y) = arccos (z,y)

for each x,y € Sy. It is also known that Sg is uniquely m-geodesic. For each
distinct z,y € Sy such that pg, (z,y) < 7, the unique geodesic ¢ from z to y is
given by

y—(yx)x

ly — (y, z) 2|
for all t € [0, ps,, (x,y)]. We denote by S? the unit sphere of the three dimensional
Euclidean space R3.

It is known [6, Lemma 2.14 in Chapter 1.2] that if X is a uniquely m-geodesic

space and x1,x2,x3 are points in X satisfying

(2.1) d(x1, ) + d(x2, x3) + d(23,21) < 27,

c(t) = (cost)x + (sint) -

then there exist 1, Z9, Z3 € S? such that
d(z, z5) = ps2(Zi, T5)
for all 4,5 € {1,2,3}. The sets A and A given by
A= [1’1,1’2] U [$2,l’3] U [:ﬂg, $1] and A= [i’l,i'g] U [fg,fg] U [3_5'3, :fl]
are called the geodesic triangle with vertices z1, z2, x3 and a comparison triangle for
A, respectively. A point p € A is called a comparison point for p € A if p € [z, x],
D € [Zi, %], and d(z;, p) = ps2(Zs, p) for some distinct 4, j € {1,2,3}.
A uniquely 7-geodesic space X is called a CAT(1) space if
d(p,q) < ps2(p, Q)

whenever A is a geodesic triangle with vertices x1,x2,23 € X satisfying (2.1), A
is a comparison triangle for A, and p,§ € A are comparison points for p,q € A,
respectively. We know that all nonempty closed convex subsets of a real Hilbert
space H, the space (Sy, ps,, ), and all complete CAT(0) spaces are complete CAT(1)
spaces. The complete CAT (1) space (S, ps,, ) is particularly called a Hilbert sphere.
See [6] for more details on geodesic spaces.

The following lemma plays a fundamental role in the study of CAT(1) spaces.

Lemma 2.1 ([18, Corollary 2.2]). Let X be a CAT(1) space and x1,x2,x3 points
of X such that (2.1) holds. If a € [0,1], then

cos d(aacl ® (1 — a)xy, acg) sind(z1, z2)

> cosd(z1, x3) sin(ad(z1, 32)) + cosd(za, z3)sin((1 — a)d(z1, z2)).
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We also know the following.

Lemma 2.2 (See the proof of [19, Lemma 4.1]). Let X, x1, x2, and x3 be the same
as in Lemma 2.1. Then

1 1 1 1 1
cos d(ixl &) 5.%'2, x3> cos(id(ml,x2)> > 5 cosd(x1,x3) + 3 cosd(xa,x3).

Lemma 2.3 (See, for instance, [15, Lemma 2.3]). Let X, x1, x2, and x3 be the
same as in Lemma 2.1. If d(z1,x3) < 7/2, d(z2,23) < 7/2, and a € [0, 1], then

cosd(axy ® (1 — a)zg, x3) > acosd(z1,x3) + (1 — ) cos d(z2, 3).

Let X be a CAT(1) space and {z,} a sequence in X. The asymptotic center
A({z,}) of {z} is defined by

A({xn}) = {Z € X :limsupd(z,z,) = inf limsup d(y,:cn)} .

n—00 y€EX n—oco

The sequence {x,} is said to be A-convergent to an element p € X if

for each subsequence {x,,} of {x,,}. In this case, the point p is called the A-limit of
{zn}. If {x,} is A-convergent to p € X, then it is bounded and each subsequence
of {x,,} is A-convergent to p. For a sequence {z,,} in X, we denote by wa ({zn})
the set of all points ¢ € X such that there exists a subsequence of {z,} which
is A-convergent to ¢. It is known [8, Proposition 4.1 and Corollary 4.4] that if
X is a complete CAT(1) space and {z,} is a spherically bounded sequence in X,
that is, it satisfies (1.2), then A({zy}) is a singleton and {z,} has a A-convergent
subsequence. See [8,20] for more details on A-convergence. We know the following.

Lemma 2.4 ([17, Proposition 3.1]). Let X be a complete CAT(1) space and {z,} a
spherically bounded sequence in X . If {d(z,xy)} is convergent for all z € wa ({zn}),
then {x,} is A-convergent.

Let X be an admissible CAT(1) space and f a function of X into |—o0, cc]. The
function f is said to be convex if

flax e (1-a)y) <af(@)+(1-a)f(y)

for all z,y € X and « € ]0, 1[. It is also said to be A-lower semicontinuous if
f(p) <liminf f(z,)
n—oo

whenever {z,} is a sequence in X which is A-convergent to p € X. We denote by
argminy f or argmin,¢ x f(y) the set of all minimizers of f. A function g of X into
[—00, 0] is said to be concave if —g is convex. We denote by argmaxy ¢ the set of
all maximizers of g. See [14,26] on some examples of convex functions in CAT(1)
spaces. We know the following.

Lemma 2.5 ([15, Lemma 3.1]). Let X be an admissible complete CAT(1) space
and f a proper lower semicontinuous convez function of X into |—oo,00]. Then f
is A-lower semicontinuous.
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It is clear that if A is a nonempty bounded subset of R, I is a closed subset of R
which contains A, and f is a continuous and nondecreasing real function on I, then
f(sup A) =sup f(A) and f(inf A) = inf f(A). This implies the following.

Lemma 2.6. Let I be a nonempty closed subset of R, {t,} a bounded sequence in
I, and f a continuous real function on I. Then the following hold.

(i) If f is nondecreasing, then f(limsup,, t,) = limsup,, f(t,);
(ii) of f is nonincreasing, then f(limsup, t,) = liminf, f(¢,).

3. FUNDAMENTAL PROPERTIES OF RESOLVENTS IN CAT(1) SPACES

Let X be an admissible complete CAT(1) space and f a proper lower semicon-
tinuous convex function of X into |—oo, 00]. It is known [15, Theorem 4.2] that for
each x € X, there exists a unique Z € X such that

f(&) + tand(Z, z)sind(&,z) = ylél)f({f(y) + tand(y, x) sind(y, :L‘)}

The resolvent Ry of f is defined by Ryx = % for all x € X. In other words, Ry is
given by (1.6) for all z € X. It is known [15, Theorems 4.2 and 4.6] that Ry is a
well defined single valued mapping of X into itself satisfying (1.7) and (1.8).

Using some techniques developed in the proof of [15, Theorem 4.6], we show the
following fundamental result. The inequality (3.2) is a generalization of (1.8) and
also a counterpart of [1, Lemma 3.1] in the CAT(1) space setting.

Lemma 3.1. Let X be an admissible complete CAT(1) space, f a proper lower
semicontinuous convex function of X into |—oo,00], R, the resolvent of nf for all
n > 0, and C, ., the real number given by C, . = cosd(Ryz,z) for all n > 0 and
zeX. If \,u>0 and z,y € X, then the inequalities

1
(3.1) (Cf + 1) d(Ryz, Ryy) (C)\@ cosd(Ryz, R,y) — cosd(R,y, w))

> /\(f(R,\:(:) — f(Ruy)) sind(Ryz, R,y)

and

52 (ACRo(1+ C2,)Chy + HC2,(1+ CF )Crs ) cos d(Raw, Ryy)
> )\Cix(l + Cﬁy) cosd(Ryz,y) + uCiy(l + Cfx) cosd(R,y, )

hold.

Proof. Let A, ;u > 0 and x,y € X be given. Set D = d(Ryz, R,y) and
2z =tR,y® (1 —t)Ryx
for all t € ]0,1[. By the definition of Ry and the convexity of f, we have
Af(Ryx) + tand(Ryz, z) sind(Ryx, x)
< Af(z) + tand(z¢, x) sind(z, )
<tAf(Ruy) + (1 —t)Af(Ryx) + tand(z, x) sind(z, x)
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and hence we have

tA(f(Raz) — f(Ruy))
< tand(z, x)sind(z, x) — tand(Ryz, z) sin d(Ryx, x)

1
N 1 — cosd .
(cos d(z¢,x) cos d(Ryz, ) + ) (cosd(Ryz, z) — cosd(z, x))

(3.3)

On the other hand, Lemma 2.1 implies that
cos d(z, ) sind(R,y, Ryx)
(3:4) > cosd(Ryy, z) sin(td(Ruy, Rax)) + cosd(Ryz, z)sin((1 — t)d(Ruy, Raz)).
Using (3.3) and (3.4), we have
tA(f(Ryz) — f(Ruy)) sin D

1
= <cos d(z¢,x) cosd(Ryx, x) + 1)
X [cos d(Ryz, x) <sinD —sin((1 - t)D)) —cosd(Ruy, ) sin(tD)]

1 t
= 1) -2sin (=D
<cos d(z¢, ) cosd(Ryx, x) + ) - (2 )

cosd(Ryz, ) cos (<1 - ;) D) — cosd(R,y, z) cos (;D)]
and hence

A f(Raz) — f(Ruy)) sin D
<

X

! +1 sin ED
cosd(zt, x) cosd(Ryx, ) 2

v [cosd(RAx,x) cos ((1 - ;) D

Letting ¢t | 0, we obtain

M f(Raz) — f(Ruy))sinD < <C§ + 1> D(Cyzcos D — cosd(Rpy,x)).
A

5L

Thus (3.1) holds.
If D > 0, then (3.1) implies that

MCiy(l + C’fx) (CA@ cos D — cos d(Ry, :1:))
(3.5) )\,U,CQ C?

> 25 Y (f(Ry) — f(Ryy)) sin D

AC}Q\@ (1+ Ciy) (Cuy cos D — cosd(Ryz,y))
0 , MCR.Chy

> 5 mY (f(Ruy) - f(R,\x)) sin D.
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Adding (3.5) and (3.6), we obtain (3.2). It is obvious that the equality in (3.2) holds
in the case when D = 0. O

As a direct consequence of Lemma 3.1, we obtain the following.

Corollary 3.2. Let X, f, {R,}, and {C), .} be the same as in Lemma 3.1. If A > 0,
x € X, and y € argminy f, then the inequalities

(3.7) g <C§ + 1) (Crecosd(y, Ryz) — cosd(y, z)) > A(f(Razx) — f(y))

and
(3.8) Ch g cosd(y, Ryz) > cosd(y, x)
hold.

Proof. Let A\ > 0, x € X, and y € argminy f be given. Since f(Ryz) — f(y) > 0
and sint > 2t/m for all t € [0,7/2], it follows from (1.7) and (3.1) that

1
<C§$ + 1) d(y, Ryx) (C;Hw cosd(y, Ryx) — cosd(y, x))

> A(f(Rar) — f(y) - 200 T02)

™

This implies that (3.7) holds when d(y, Ryz) > 0. Note that the equality in (3.7)
clearly holds when d(y, Ryz) = 0. It then follows from (3.7) that

1
z —5— + 1] (Crzcosd(y, Raz) — cosd(y,z)) >0
2 CA,I ’

and hence (3.8) holds. O

4. THE PROXIMAL POINT ALGORITHM IN CAT(1) SPACES
We need the following maximization theorem in the proof of Theorem 1.1.

Theorem 4.1. Let X be an admissible complete CAT(1) space, {z,} a spheri-
cally bounded sequence in X, {B,} a sequence of positive real numbers such that
Yonly Bn =00, and g the real function on X defined by

1 n
4.1 g(y) = liminf ——— By cos d(y, zx)
(4.1 ) = lmint = >

for ally € X. Then g is a concave and nonexpansive function of X into [0,1] and
argmaxy g 1S a singleton.

Proof. Set 0, = Y-, 5 for all n € N. Since X is admissible, we know that

1 n
- > Brcosd(y, z) €10,1]
" k=1

and hence g(y) € [0, 1] for all y € X.
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We next show that g is concave and nonexpansive. If y1,y2 € X and « € ]0, 1],
then it follows from Lemma 2.3 that
cos d(ayl ® (1 - a)ys, zk) > acosd(yi, z) + (1 — «) cos d(yz, zk)
for all £ € N. This implies that

— Z/Bk cos d(ay1 @ (1 - a)ys, zk)
" k=1

> — Z By, cos d(yn, 21)

a.
" k=1 k=1

Zk)

for all n € N. Taking the lower limit, we obtain

g(ay1 @ (1 - a)yz) > ag(yr) + (1 — a)g(y2)
and hence g is concave. The nonexpansiveness of ¢ — cost and the triangle inequal-
ity imply that
cosd(y1, zk) < d(y1,y2) + cos d(ys, 2i)

for all £ € N and hence we have

9(y1) = 9(y2) < d(y1,42)
Similarly, we can see that g(y2) — g(y1) < d(y1,y2). Thus g is nonexpansive.
We next show that argmaxy f is nonempty. The spherical boundedness of {z,}
implies that

s
0 < inf limsupd(y, z,) < —.
T yeX n—>oop (y n) 2

Since ¢ — cost is continuous and decreasing on [0, 7/2], Lemma 2.6 implies that

0 < cos (inf lim sup d(y, zn)>
y€X n—oo
(4.2)
= sup cos <lim sup d(y, zn)> = sup liminf cos d(y, zy,).
yeX n—00 yeX M=

On the other hand, we can see that

(4.3) liminf cosd(y, z,,) < liminf — Z B cos d(y, k)

n—o0 n—oo o Py

for all y € X. In fact, setting v, = cosd(y, z,,) for all n € N, we know that, for each
~v < liminf,, y,, there exists ng € N such that v < ~; for all k > ng. Thus, if p € N,
then we have

no+p 1 no+p

> B = Zﬁmk + Y Bne
Tnotr 5 Tnotp k=no+1
1 no+p

Zﬁk’)’k‘i‘ > By

o
no+p k=ng+1
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Zﬁk% + (1 - ) v
Ono+p

" Tnoty k=1

Since o, — 00 as n — oo, we have

no+p
lim 1nf — = lim inf
im in Zﬁk’m L ’; Bl

" k=1
> liminf Brve + <1 — > v | =n.
p—oo <0n0+13 ; Ono+p

Since «y < liminf,, v, is arbitrary, we know that (4.3) holds.
By (4.2) and (4.3), we have

(4.4) 0 < sup liminf cos d(y, z,) < sup g(y) =: [.
yex N—xo yeX

By the definition of [, there exists a sequence {y,} in X such that g(y,) < g(yn+1)
for all n € N and ¢g(y,) — [ as n — oo. If m > n, then Lemma 2.2 implies that

1 1 1 1 1
cos d(iyn &) 5 Ym: zk) cos(id(yn, ym)) 5 cos d(yn, zx) + 5 cos Ad(Ym, 2k)
for all k£ € N. This gives us that

0(50m @ gum) cos(5Alwnum)) = Solun) + 2 o(m).

2 2
Since [ = sup g(X) and g(yn) < g(ym), we then obtain

1 1
(4.5) lCOS(§d(ymym)) Z 59(m) + 59(Um) = 9(yn)-
Noting that (4.4) implies that 0 <[ <1, we have
(4.6) d(Yn,Ym) < 2arccos 9(n)

whenever m > n. Since ¢g(yn)/l — 1 as n — oo, the right hand side of (4.6)
converges to 0. Thus {y,} is a Cauchy sequence in X. Since X is complete, the
sequence {y,} converges to some p € X. By the continuity of g and the choice of
{yn}, we obtain

9(p) = lim_g(yn) = L.

Thus p is an element of argmaxy g.
We finally show that argmaxy g consists of one point. Suppose that p and ¢ are
elements of argmaxy g. As in the proof of (4.5), we can see that

teos(34(0,0)) 2 59(0) + 30() = 1.

Since [ > 0, we then obtain cos (d(p, q)/Z) = 1. Consequently, we have p = q. O

Now, we are ready to give the proofs of Theorems 1.1 and 1.2. In these proofs,
we denote by R, and C,, . the resolvent of nf for all n > 0 and the real number
given by C,, . = cosd(Ryz,z) for all n > 0 and z € X, respectively.
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The proof of Theorem 1.1. We first show the if part. Suppose that {x,} is spheri-
cally bounded and

(4.7) sup d(xp+1, Tn) < g

Set

AHC§ . n
6HZI—|—T and Un:Zﬁk:

n;Tn k=1

for all n € N. It is obvious that 3, > 0 for all n € N. It also follows from (4.7) that

0 < cos <sup d(xn41, xn)> = inf cos d(xp41,zy) = inf Cy, 4,
n n n

and hence it follows from
2

A C e
Bn > % and Z Ap = 00
n=1

that > > | B, = co. Thus Theorem 4.1 ensures that the real function g on X, which
is defined by

T
g(y) = liminf — ) "~ By cos d(y, xx11)
k=1

n—0oo Op

for all y € X, has a unique maximizer p on X.
Let u be a positive real number. By (3.2), we have

()\kcik,xk (1 + Cz,p) + Mcz,p(l + Cik,mk)> Co8 d(xk+17 R,up)
> )\kC,Q\k@k (1+ Cﬁ’p) cosd(xg+1,p) + /LC’ip(l + C’fkmk) cosd(R,p, xi)

and hence
AeC3
g ;xk cos d(zg+1, Rup)
( ) Ak Tk
)\kC§ MC2
> 0 ATk d + _TTep d(R _ d(R 7
2 1+C}2\k,xk cos d(zgy1,p) 1402, (cos d(Ryp, xy) — cos d(Rup, T41))

for all £ € N. Summing up (4.8) with respect to k € {1,2,...,n}, we have

1 n
. Z B cos d(x41, Rup)
" k=1

1 & nC? cosd(R,p,x1) — cosd(R,p, Tn
> — " Brcosd(zyi1,p) . (B, 21) B Z1)
In 121

+
1+ Cﬁ’p on

for all n € N. Since 0,, — 00 as n — 0o, we obtain

R
9(Ryp) = liminf kz By, cos d(zx11, Ryp)
=1
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R
> liminf — Zﬂk CoS d($k+1ap) = g(p)-

n—oo (.
" k=1

Then it follows from argmaxy g = {p} that R,p = p. By (1.7), we know that
F(R,) = argmin pf = argmin f
X X

and hence we conclude that p is an element of argminy f.
We next show the only if part. Suppose that argminy f is nonempty and let «
be an element of argminy f. It follows from (3.8) that

min{cos d(Xpt1,Tn),cosd(u, xn+1)} > cos d(Tp41,%n) cosd(u, Tpi1)
(4.9)

> cosd(u, xy).

The admissibility of X and (4.9) imply that

T

(4.10) max{d(zn41,Tn), d(u, Tny1) } < d(u, zn) < d(u, 1) < 3

and hence {z,} is spherically bounded and sup,, d(zp41,2,) < 7/2. O

The proof of Theorem 1.2. We first show (i). Set | = sup,, d(zn+1,%n). By Theo-

rem 1.1, we know that {z,} is spherically bounded and | < 7/2. Letting
R

cos?l 7’

we have

1

4.11
(4.11) cos? d(Tp 41, Tn)

+1<K

for all n € N. Let u be an element of argminy f. By the definitions of Ry, and
{zn}, we know that

f(u) < flent)
(4.12) < f(xpyr) + )\171 tan d(zp41, Tn) sind(zp41, Tn)
< f(xn)
for all n € N. On the other hand, it follows from (3.7) that

A (F(@ns1) — f(u))
<

-2
foralln € N. If n € Nand k € {1,2,...,n}, then it follows from (4.11), (4.12),
and (4.13) that

Ak (f(xng1) = fw) < Xe(f(zhe1) — flu))

(cosd(u, zp41) — cosd(u, zy)).
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Hence we obtain
n

(f(xny1) —inf F(X)) > Mg <
k=1

(cosd(u, xp41) — cosd(u,z1))

<

1\3‘51 w‘s

(1 — cosd(u,z1)).
Letting C' = Km/2, we obtain the desired inequality.

We finally show (ii). Since ) >, Ay, = 00, it follows from (i) that
(4.14) lim f(z,)=inf f(X).

n—oo

We then show that {d(z, )} is convergent for all z € wa ({zn}). If 2 is an element
of wa ({z,}), then we have a subsequence {zn,} of {z,} which is A-convergent to
z. By Lemma 2.5 and (4.14), we obtain

F(z) < liminf f(n,) = T f(en) = inf f(X)

and hence z is an element of argminy f. Thus wa ({azn}) is a subset of argminy f.
It also follows from (4.10) that {d(z,x,)} is convergent. Thus, Lemma 2.4 implies
that {z,} is A-convergent to some z, € X. This gives us that

{2} =wa({zn}) C arg)r(nin I
Consequently, {z,} is A-convergent to an element of argminy f. O

5. THREE COROLLARIES OF THEOREMS 1.1 AND 1.2
Using Theorems 1.1 and 1.2, we obtain the following three corollaries.

Corollary 5.1. Let X be an admissible complete CAT(1) space, f a proper lower
semicontinuous convex function of X into |—o0,00], Ry the resolvent of f, and x
an element of X. Then the following hold.
(i) The set argminy f is nonempty if and only if {Rjx} is spherically bounded
and sup,, d(R;}Hm, Rix) <m/2;
(ii) of argminy f is nonempty, then {R?m} is A-convergent to an element of
argminy f and there exists a positive real number C such that

f(Ryx) —inf f(X) < g(l — cosd(u,z1))
n
for all u € argminy f and n € N.

Proof. Set A\, =1 for all n € N and let {x,} be a sequence defined by x1 = x and
Tnt1 = Ry, pxy for all n € N. Then we have z,, = R?ilx and >}, A\ = n for all
n € N. Thus Theorems 1.1 and 1.2 imply the conclusion. O

Remark 5.2. The part (i) of Corollary 5.1 is related to [15, (i) of Theorem 7.1],
where it is shown that argminy f is nonempty if and only if there exists w € X
such that

limsup d(Ryy, Rjw) <

n—o0

v 3
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for all y € X. On the other hand, the former part of (ii) is a refinement of [15, (ii)
of Theorem 7.1], where it is additionally assumed that

limsup d(Ryry, yn) < T

n—o0 2

whenever {y,} is a sequence in X which is A-convergent to y € X.

Corollary 5.3. Let X be a nonempty closed conver admissible subset of a Hilbert
sphere (Sw, ps,, ), both f and {\,} the same as in Theorem 1.1, and {xy} a sequence
defined by 1 € X and

. 1 .
ZTpt1 = argmin {f(y) + o tan ps,, (v, zp) sin ps,, (v, xn)}
yeX n

for all n € N. Then the following hold.
(i) The set argminy f is nonempty if and only if {z,} is spherically bounded
and SUPp, PSu (xn-‘rlu fEn) < 77/27'

(ii) of argminy f is nonempty, then {x,} is A-convergent to an element of
argminy f and there exists a positive real number C' such that

f(@ns1) — inf f(X) < Zim(l — o8 psy (1, 21))

for all u € argminy f and n € N.

Proof. Since (X, ps, |xxx) is an admissible complete CAT(1) space, Theorems 1.1
and 1.2 imply the conclusion. O

Corollary 5.4. Let k be a positive real number, X a complete CAT(k) space such
that d(v,v") < 7/(2y/K) for all v,v' € X, f a proper lower semicontinuous convex
function of X into |—o00,00], {A\n} a sequence of positive real numbers such that
Yoo A =00, and {z,} a sequence defined by x1 € X and

. 1 .
v = angain { 75) + 5 tan (VR 2,)) sV ) |
yeX n
for all n € N. Then the following hold.
(i) The set argminy f is nonempty if and only if
™ ™
inf li d — —
Jok e dly, am) < 5 70 2
(ii) of argminy f is nonempty, then {x,} is A-convergent to an element of
argminy f and there exists a positive real number C' such that

and  supd(Tp41,2n) <
n

f(wni1) — inf f(X) < z,:xk (1 cos(v/md(u,21)))
for all u € argminy f and n € N.

Proof. Since (X, d) is a complete CAT(x) space if and only if (X, /kd) is a complete
CAT(1) space, Theorems 1.1 and 1.2 imply the conclusion. O
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NOTE ADDED IN PROOF

We finally note that Theorem 1.1 and the part (ii) of Theorem 1.2 were announced
in the talk [21] based on [15,16] and the present paper. On the other hand, Espinola
and Nicolae [9] studied the proximal point algorithm and the splitting proximal
point algorithm for convex functions in CAT(k) spaces with positive k. The A-
convergence result in the part (ii) of Corollary 5.4 was also found in [9]. In [7], the
authors in this paper and the authors in [9] confirmed that there is the overlapping
stated above and that these two papers were independently written.
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