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that if every 2-dimensional subspace of a given Banach space is the range of a
contractive projection, then the Banach space is isometric to Hilbert space. This
easily implies (as observed in [36]) that if such an extension operator exists for every
subspace M of X, then X needs to be a Hilbert space.

One of the best known results about large families of projections on non-Hilbert
spaces, more precisely long sequences of projections, is the Amir-Lindenstrauss The-
orem [3] concerning weakly compactly generated spaces. These are Banach spaces
containing a weakly compact subset, whose linear span is dense. We will not state
their results here, but emphasize that the weak compactness of this subset was used
in an essential way, via an ingenious application of Tikhonov’s theorem.

Tacon [38] attempted to apply the Amir-Lindenstrauss techniques to other Ba-
nach spaces, replacing the weak compactness of a generating set by weak* com-
pactness of the unit ball of the dual. This meant that the projections could only
be constructed in the dual space, not in the original space. In view of Lemma 10,
it is not surprising that his proof proceeded by finding subspaces of the original
space admitting linear extension operators. This is not possible in every Banach
space, and shortly we will discuss the technical obstacles to doing this, and the
extra assumptions made to overcome them.

As announced in Part 1, there is always another subspace, close to the given
subspace in some sense, which admits such a linear extension operator. The case
F = {0} of the following result is due to Heinrich and Mankiewicz [19], and was
already stated as Theorem 9 in Part 1. A simpler proof was given later by Sims and
Yost [36], and subsequently generalised [35, Proposition 2] to involve the subspace
of X∗. But the first result of this sort is due to Tacon [38, Lemma 5]. Indeed
the only essential difference between his result and Theorem 11 is his extraneous
hypothesis that X is smooth (i.e. that for every norm one x ∈ X, there is a unique
support functional fx ∈ X∗ with ∥fx∥ = fx(x) = 1).

Theorem 11. If M is a separable subspace of a Banach space X, and F is a
separable subspace of X∗, then there is another separable subspace N of X, which
contains M , and a linear mapping L : N∗ → X∗ such that Lf is a norm preserving
extension of f for each f ∈ N∗, and L(N∗) contains F .

Abrahamsen [1] has recently offered another improvement, showing that L can
also be chosen to be an almost isometric Hahn-Banach extension operator. We refer
to [1] for the definition of this interesting concept, and to the references therein for
its applications.

Heinrich and Mankiewicz proved Theorem 9 as a tool for the non-linear classifi-
cation of Banach spaces. For example, they showed that if two Banach spaces are
Lipschitz homeomorphic, then each is (linearly) isomorphic to a subspace of the
bidual of the other. For recent developments in this area, see [18] and [4, Chapters
7 to 10]. Here we will pursue a different application.

But first, let us mention another extension result, due to Lindenstrauss [25],
which is also relevant to the non-linear classification of Banach spaces. A simpler
proof of this, based on the existence of invariant means on abelian semigroups,
was given later by Pe lczyński [30, pp. 61-62]. (We note that [30] also contains a
comprehensive study of results related to the Borsuk-Dugundji Theorem ([5, 13];
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Theorem 8 in Part 1). Another proof of the Borsuk-Dugundji Theorem is given in
[20], and some interesting recent developments can be found in [9].)

Theorem 12. Suppose that a closed subspace M of a Banach space X has the
property that there exists a retract R : X → M and ε > 0, δ > 0 so that for all
x, y ∈ X we have ∥Rx− Ry∥ < ε whenever ∥x− y∥ < δ. (In particular, this holds
if M is the range of a uniformly continuous retract.) Then there is a continuous
linear extension operator (not necessarily norm preserving) L : M∗ → X∗.

As an example of this phenomenon, Lindenstrauss showed that c0 is the range of
a Lipschitz retract on ℓ∞. It remains unknown whether every Banach space is the
range of a uniform or Lipschitz retract on its bidual.

Returning to Theorem 11: finding one extension as just described opens the
possibility of repeating this procedure again and again. It is noteworthy that Tacon
was doing this with linear extension operators a full decade before the appearance
of [19]. Without loss of generality, we may suppose that N strictly contains M , and
that L(N∗) strictly contains F . Denote our original subspaces by M0 and F0, the
new subspace N given by this theorem as M1, the extension operator as L1, and
set F1 = L1(M

∗
1 ). Trying to apply the theorem again gives us another separable

subspace M2 strictly containing M1, and an extension operator L2 : M∗
2 → X∗.

However, we have an obstacle: we cannot ensure that the range of L2 contains F1,
because we do not know whether F1 is separable. We do care about the subspace
F1, because we want to apply Lemma 10 later on to obtain projections. Separability
is used in an essential way in the proof of Theorem 11.

The simplest way around this difficulty is to assume that every separable subspace
of X has separable dual. (Tacon made a slightly stronger assumption, which we
will discuss shortly.) This is equivalent to assuming that X is an Asplund space,
i.e. that every continuous convex function X → R is Frechet differentiable on a
dense Gδ set. This defines an important class of Banach spaces; for an introduction
to them, see [11, §1.5], [14] or [40]. It is routine to check that any subspace of an
Asplund space is also an Asplund space. It is also known that the density character
(i.e. the minimum cardinality of a dense subset) of any Asplund space is equal to
the density character of its dual.

So we assume now that X is an Asplund space, and carry on. Since M∗
1 is separa-

ble, so is its continuous image F1. Theorem 11 ensures that M2 and L2 also satisfy
F2 = L2(M

∗
2 ) ⊃ F1. The Asplund assumption now guarantees separability of F2, so

we can do it again. We get another separable subspace M3 strictly containing M2,
and an extension operator L3 : M∗

3 → X∗, whose range F3 is separable. Continu-
ing, we find nice strictly increasing sequences of separable subspaces Mn ⊂ X and
Fn ⊂ X∗, and extension operators Ln : M∗

n → X∗ with range Fn.

What next? It is natural to put Mω =
∪∞

n=0Mn and Fω =
∪∞

n=0 Fn. It is not
necessary to apply Theorem 11 at this stage. Since the unit ball of B(M∗

ω, X
∗) is

compact in the weak* operator topology, we may take Lω to be any limit point of
the sequence LnRn.

Keep going: we get further subspaces Mω+1,Mω+2,Mω+3 . . . and extension op-
erators Lω+1, Lω+2, Lω+3 . . .. Applying the observation in the preceding paragraph
at limit ordinals and the theorem at successor ordinals gives a long sequence of
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subspaces Mα and extension operators Lα, for 0 ≤ α ≤ ω1, all but the last ones
being separable/having separable range.

But Mω1 might not be separable; can we continue to apply the theorem? Yes,
once we notice that the full strength of the separability hypothesis was not really
used. The word “separable” can be replaced by “of density character at most κ” for
any infinite cardinal κ. No essential changes are required for the proof. For clarity,
we state explicitly this general version of Theorem 11 [36, Lemma 3].

Proposition 13. Let κ be any infinite cardinal. If M is a subspace, with density
character at most κ, of a Banach space X, and F is a subspace, with density char-
acter at most κ, of X∗, then there is another subspace N of space X, with density
character at most κ, which contains M , and a linear norm preserving extension
mapping L : N∗ → X∗ whose range L(N∗) contains F .

We have thus sketched the essential ideas of the proof of the following result
[36, Theorem 4]. Some detailed, but not too onerous, book-keeping is required. It
must be noted that this result is only informative for non-separable spaces. If X is
separable, we can always take M1 = X and L1 = I.

Proposition 14. Let X be an Asplund space. Then there is a long sequence of
subspaces Mα and linear extension mappings Lα : M∗

α → X∗, indexed by ordinal
numbers α ≤ µ, where µ is the density character of X, so that

(i) Mα ⊂ Mβ whenever α < β,
(ii) Mα contains a dense subset no larger than α,

(iii) Lα(M∗
α) ⊂ Lβ(M∗

β) whenever α < β,

(iv) Mα = ∪β<αMβ whenever α is a limit ordinal,
(v) Mµ = X and Lµ is the identity operator.

This result might look good, but it is actually quite unsatisfactory. The next
thing we want to do is to construct projections on the dual space, and for this we
consider the restriction mappings Rα : X∗ → M∗

α. From Lemma 10, Pα = LαRα

is a contractive projection. However, serious applications of the preceding theorem
require the mapping α 7→ Pα to be continuous, at least from the ordinal topology to
the weak operator topology. This is equivalent to requiring Lα(M∗

α) = ∪β<αLβ(M∗
β)

whenever α is a limit ordinal, and this does not follow routinely from previous
arguments. Tacon [38] showed that this is true, when X has the property that is
now referred to as very smooth. This means not only that X is smooth, but also
that the support mapping x 7→ fx is continuous, from the norm topology on X to
the weak topology on X∗. He effectively showed that such spaces are Asplund [38,
Lemma 6].

Fabian and Godefroy [15] finally proved the desired conclusion, only assuming
that X is an Asplund space. Their argument depended on work of Jayne and
Rogers [22, Theorem 8] and Simons [34, Lemma 2]; the latter is rather deep. We
present the result with slightly informal but hopefully more suggestive notation.

Theorem 15. Supppose Y is a dual space with the Radon-Nikodým Property, i.e.
Y = X∗ for some Asplund space X. Then Y can be expressed as a transfinite direct
sum

Y = ⊕α(Pα+1 − Pα)(Y ),
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where each summand (Pα+1−Pα)(Y ) has strictly smaller density character than Y .

This provides a powerful tool for extending results about separable spaces to
non-separable spaces, by transfinite induction on the density character. Applica-
tions include renorming theorems, the existence of uncountable bases, the Mazur
intersection property and the relationship between norm and Borel structures [14,
Chapters 6 and 8], [11, Chapter 6]. In particular, it was shown in [15] that every
dual space with the Radon-Nikodým Property has an equivalent locally uniformly
convex norm.

The assumption that Y is a dual space is essential in Theorem 15. It was shown in
[32] that there is a Banach space with the Radon-Nikodým Property, and a separable
subspace which is not contained in any complemented separable subspace. As far
as we know, the following questions are still open.

Problem 16. Does there exist a Banach space with Radon-Nikodým Property but
without any complemented infinite-dimensional separable subspaces, or without an
equivalent locally uniformly convex norm?

The strongest conclusions in this area are obtained when the assumption of weak
compact generating is also made. Much work has been done to understand the
minimal structure which will guarantee the existence of these long sequences of
projections, leading to the concepts of projectional generator [14, Chapter 6] and
projectional skeleton [23].

Stegall [37, p. 270 ff] found a more elementary proof of Theorem 15, avoiding
the use of Simons’ Lemma. For a modern viewpoint on this, using the idea of
projectional skeleton, see [10].

p-summing operators

In this brief section, we highlight two more interesting extension theorems [28, 31].
Although they have no relationship with the preceding discussion, we believe they
should be better known. They depend on the concepts of type, cotype and p-
summing, which arise naturally in many situations. We then present some imme-
diate applications to the geometry of Banach spaces.

Recall that: a sequence (xn) in a Banach space
is called p-summable if

∑
∥xn∥p is finite; and

it is called weakly p-summable if
∑

|f(xn)|p is finite for every f ∈ X∗.
An operator is called p-summing if it sends every weakly p-summable sequence to
a p-summable sequence.

This concept originated with Pietsch [31]; for a comprehensive account of their
theory, see [21] or [12]. In Part 1, we were interested in replacing R by a Banach
space in the statement of the Hahn-Banach Theorem; we needed to have some
restriction on the new range space in order to have a valid theorem. The next
result, the 2-Summing Extension Theorem, imposes no restriction at all on the
range space; instead we need a strong restriction on the operator itself.

Theorem 17. If t : M → Y is a 2-summing operator defined on a linear subspace
M of a normed space X, then there exists a 2-summing linear extension T : X → Y
of t to the whole space X, with the same 2-summing norm.
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The p-summing norm of an operator T is defined in the natural way, as

inf{
∑

∥Txn∥p :
∑

|f(xn)|p ≤ 1 for every f ∈ X∗with ∥f∥ ≤ 1}.

Theorem 17 is not stated explicitly in [31], although it is attributed to Pietsch in
[29]. It is a reasonably straightforward consequence of the arguments in [31, Satz
16]; see either [12, Theorem 4.15] or [21, Theorem 5.9] for details. The proof of this
result relies (amongst other things) on the fact that subspaces of Hilbert spaces are
complemented, and so does not work for p-summing operators for other values of p.

We present just two applications of this, to the relationships between classical
function spaces. The first is included in [29, Proposition 3].

Corollary 18. If a Banach space X contains ℓ1(Γ) as a subspace, then it has ℓ2(Γ)
as a quotient space.

Sketch Proof. There is a quotient mapping q : ℓ1(Γ) → ℓ2(Γ); send the collection
of basis vectors eγ to a dense subset of the unit ball of ℓ2(Γ) and extend by linearity.
A reformulation of Grothendieck’s inequality [12, Theorem 1.13] ensures that q is
1-summing. Since 1 < 2, we see that q is 2-summing, [31, Satz 5] or [21, 3.3], and
so admits an extension Q : X → ℓ2(Γ), which is clearly also a quotient mapping.

The next result was first proved by different methods by Rosenthal [33, p. 203,
Remark].

Corollary 19. The Banach space ℓ∞ has a non-separable Hilbert space as a quo-
tient.

Proof. There is a quotient map ℓ1 → C[0, 1], hence C[0, 1]∗ is isometric to a
subspace of ℓ∞. Considering the point evaluations on elements of [0, 1], we see that
C[0, 1]∗ contains ℓ1(Γ) as a subspace, where Γ = [0, 1]. So ℓ∞ also contains ℓ1(Γ)
and the previous result is applicable.

Finally we present a result of Maurey [28], where an extension is guaranteed by
imposing a condition also on the domain space.

Recall that a Banach space X has type 2 if there is a constant C such that, for
any finite collection x1, . . . , xn, we have

Ave±

∥∥∥∥∥
n∑

i=1

±xi

∥∥∥∥∥
2

≤ C

n∑
i=1

∥xi∥2.

Here Ave± denotes the average over all 2n choices of sign. Likewise, a Banach
space X has cotype 2 if there is a constant C such that, for any finite collection
x1, . . . , xn, we have

Ave±

∥∥∥∥∥
n∑

i=1

±xi

∥∥∥∥∥
2

≥ C
n∑

i=1

∥xi∥2.

Clearly both properties pass to subspaces. It is of course useful to define type
and cotype p for other values of p; we refer to [12, Chapter 11] for the extensive
theory. Here we just recall that an Lp space has type 2 if and only if 2 ≤ p < ∞;
and it has cotype 2 if and only if 1 ≤ p ≤ 2. Now we can state Maurey’s Extension
Theorem [28].
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Theorem 20. Let X be a Banach space with type 2, and Y a Banach space with
cotype 2. If t : M → Y is an operator defined on a linear subspace M of X, then
there exists an extension T : X → Y of t to the whole space X, and which factors
through a Hilbert space. More precisely, there is a Hilbert space H, and operators
U : X → H, V : H → Y , with T = V U and ∥U∥∥V ∥ ≤ C∥t∥, where C is a constant
depending only on X and Y .

This is a generalisation of Kwapień’s Theorem [24], which asserts that any oper-
ator from a type 2 space to a cotype 2 space factors through a Hilbert space. An
immediate consequence of that and the Lindenstrauss-Tzafriri Theorem [26] is that
(isomorphically) only Hilbert spaces can have both type 2 and cotype 2.

An interesting direct consequence of Maurey’s Theorem is that a Hilbert space
is complemented in any superspace of type 2.
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[30] A. Pe lczyński, Linear extensions, linear averagings, and their applications to linear topological
classification of spaces of continuous functions, vol. 58 Disser. Math. Rozprawy Mat. 1968.

[31] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28
(1966/1967), 333–353.

[32] A.M. Plichko and D. Yost, The Radon-Nikodm property does not imply the separable comple-
mentation property, J. Funct. Anal. 180 (2001), 481–487.

[33] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on
compactness of operators from Lp(µ) → Lr(ν), J. Functional Analysis 4 (1969), 176–214.

[34] S. Simons, A convergence theorem with boundary, Pacific J. Math. 40 (1972), 703–708.
[35] B. Sims and D. Yost, Banach spaces with many projections, Proc. Centre Math. Anal. Austral.

Nat. Univ. 14 (1986) 335–342.
[36] B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc.

(2) 32 (1989), 53–57.
[37] C. Stegall, Spaces of Lipschitz functions on Banach spaces, in: Functional analysis (Essen,

1991), Lecture Notes in Pure and Appl. Math., 150, Dekker, New York, 1994, pp. 265–278.
[38] D. G. Tacon, The conjugate of a smooth Banach space, Bull. Austral. Math. Soc. 2 (1970),

415–425.
[39] M. Tarbard, Hereditarily indecomposable, separable L∞ Banach spaces with ℓ1 dual having few

but not very few operators, J. Lond. Math. Soc. (2) 85 (2012), 737–764.
[40] D. Yost, Asplund spaces for beginners, Acta. Univ. Carolinae Math.Phys. 34 (1993), 159–177.
[41] D. Yost, Linear Extension Mappings 1, in: Proceedings of NACA 2015, (The 9 International

Conf. on Nonlinear Convex Analysis, Chiang Rai, January 21–25, 2015), S. Dhompongsa, N.
Petrot, S. Plubtieng, S. Suanthai (eds),Yokohama pu blishers, Yokohama, 2016, pp. 333–340.

Manuscript received 1 April 2016
revised 21 December 2016

David Yost
Centre for Informatics & Applied Optimization, Federation University, PO Box 663, Ballarat, Vic.
3353, Australia

E-mail address: d.yost@federation.edu.au


