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POINTWISE MULTIPLIERS ON SEVERAL FUNCTION SPACES
— A SURVEY -

EIICHI NAKAI

Dedicated to Professor Mikio Kato on his 68th birthday

ABSTRACT. This is a survey for pointwise multipliers on function spaces. We
present a description on basic properties of pointwise multipliers and give the
characterization of pointwise multipliers on Lorentz, Orlicz, Musielak-Orlicz,
Morrey, BMO and Campanato spaces together with several examples. More-
over, we give some applications of pointwise multipliers on BMO.

1. INTRODUCTION

The pointwise multiplication (product) of two functions is a basic operation. In
this survey we focus the characterization of functions g which are operators from
a function space to another function space as maps f — fg. More precisely, let
Q = (9, 1) be a complete o-finite measure space. We denote by L°(Q) the set of
all measurable functions from Q to R or C. Then LY(2) is a linear space under
the usual sum and scalar multiplication. Let Ey, Fy C L°(Q) be subspaces. We say
that a function g € L°() is a pointwise multiplier from Ej to FEs, if the pointwise
multiplication fg is in Fs for any f € F;. We denote by PWM(E, Es) the set of
all pointwise multipliers from E; to E3. We abbreviate PWM(E, E) to PWM(E).
For example,

PWM(L’(Q)) = L°(Q).
The pointwise multipliers are basic operators on function spaces and thus the char-
acterization of pointwise multipliers is not only interesting itself but also sometimes
very useful to other study.

The space of pointwise multipliers between function spaces is natural to consider
between Banach or quasi-Banach ideal spaces (i.e. complete quasi-normed spaces
with the lattice property, see (2.8) for its definition), but there are natural spaces
like BMO spaces and Campanato spaces which are not Banach ideal spaces. In
our considerations we want to cover also these spaces. To do this we give basic
properties on pointwise multipliers in the second section in which we do not always
assume the lattice property.
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For p € (0, 00|, LP(£2) denotes the usual Lebesgue space equipped with the norm

1/p
sy = ([ £GP duto)) it £ .
[f1lLee () = esssup | f(z)].
e
Then LP(2) is a complete quasi-normed space (quasi-Banach space). If p € [1, o0],
then it is a Banach space. It is well known as Holder’s inequality that
1fallzez () < 1 llzer (@) ll9ll Lrs (@),
for 1/pa = 1/p1 + 1/ps with p; € (0,00], i = 1,2, 3. This shows that
PWM(LP*(QQ), LP?(Q2)) D LP3(Q).
Conversely, we can show the reverse inclusion by using the uniform boundedness
theorem or the closed graph theorem. That is,

(1.1) PWM(LP(Q), LP?(Q2)) = LP3(Q).
If p1 = po = p, then
(1.2) PWM(LP(Q)) = L>=(9Q).

Proofs of (1.1) and (1.2) are in Maligranda and Persson [35, Proposition 3 and
Theorem 1]. See Theorem 3.1 in Section 3 for (1.2).

In this paper we give proofs of (1.1), (1.2) and their generalization, see Section 3.
By the generalization we have, for example,

PWM(LP1(Q), LP2°(Q)) = LP#(Q),

for 1/ps = 1/p1 + 1/ps with p; € (0,00], i = 1,2,3, where LP"*°(Q) are the weak
Lebesgue spaces.

On the other hand, the results in Section 3 cannot be applied to BMO(Q2). In
1976 Stegenga [64] and Janson [15] gave the characterization of PWM(BMO(2))
for Q =T and €2 = T"™, respectively. After then the history is the following:

e Nakai and Yabuta [55] (1985) for Q = R".

e Nakai and Yabuta [56] (1997) and Nakai [41] (1997) for spaces of homoge-
neous type (2, d, ).

e Liu and Da. Yang [29] (2014) for (R", 1) with the Gauss measure.

e Nakai and Sadasue [51] (2014) for probability spaces (2, F, P).

e Li, Nakai and Do. Yang [26] (preprint) for (R™, i) with non-doubling mea-
sures.

The result of PWM(BMO(R™)) was used by Lerner [23] to show the boundedness of
the Hardy-Littlewood maximal operator on generalized Lebesgue spaces Lp(’)(]R”)
with variable exponent.

To characterize the pointwise multipliers on BMO(R") in [55] we introduced the
function space BMOy(R™) with

1
) = gl 1+ o)

This function space was extended to generalized Morrey-Campanato spaces with
variable growth condition, see [37,38,41-44,46,47,56], etc.

x € R™ re(0,00).
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The paper is organized as follows. In Section 2 we give basic properties of point-
wise multipliers in which we do not always assume the lattice property. In Section 3
we give the characterization of pointwise multipliers on function spaces with the
lattice property. We state the results on pointwise multipliers on Lorentz, Orlicz,
Musielak-Orlicz and Morrey spaces in Sections 4 and BMO and Campanato spaces
in Section 5. Then we give some applications of pointwise multipliers on BMO in
Section 6. Finally, we give some results for Besov and Triebel-Lizorkin spaces in Sec-
tion 7 with the definition of pointwise multiplication fg for tempered distributions
f and g.

2. BASIC PROPERTIES OF POINTWISE MULTIPLIERS

In this paper we always assume that the function spaces E C L%(Q) have the
following property, see Kantorovich and Akilov’s book [18, pages 94] in which this
property is referred to as supp £ = 2:

(2.1) If a measurable subset 1 C {2 satisfies that
uw{x e Q: f(x) #0}\ Q1) =0 for every f € E,
then p(Q2\ Q1) = 0.

Recall that a subspace E C L°() (which is not necessary to be equipped with a
norm or quasi-norm) is an ideal space if

(2.2) feEB, heL'Q), |h <|flae. = hecE.
The following is a basic property of ideal spaces.

Proposition 2.1 ([18, Corollary 2 on page 95|). If E is an ideal space, then from
the assumption (2.1) it follows that there exists a partition {Qy,} of Q such that
each ., is a measurable set with finite measure and that the characteristic function
of Qp, isin F.

For pointwise multipliers on ideal spaces we have the following simple proposi-
tions.

Proposition 2.2. Let E C L%(Q) be a subspace. Then E is an ideal space if and
only if L>(Q) C PWM(E).

Proof. Let L>=(Q2) C PWM(E). If f € E, h € L°(Q), |h| < |f] a.e., then
_ @)/ f(x), if f(z) #0,
9lw) = {o, it f(z) =0

isin L*>°(2) and h = fg € E. Conversely, let E be an ideal space. If g € L*>()
and a = [|g|[ < (q), then, for all f € E, |fg| < |af| a.e. and af € E. Hence fg € E.
That is, L>(Q2) C PWM(E). O

Proposition 2.3. Let E C L°(Q) be a subspace. If E is an ideal space, then
PWM(L®(Q), E) = E.
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Proof. Let g € PWM(L>*(Q2), E). Then g = 1g € E, since the constant function 1
is in L>°(£2). Conversely, let g € E. Then, for all f € L*(Q2) with a = || f||ze(q),
|fg9] < |lag| a.e. and ag € E. Hence fg € E by the ideal property. That is,
g € PWM(L®(Q), E). 0

Next, recall that | || is a quasi-norm on a linear space FE if there exists k € [1, 00)
such that, for all f,g € FE and scalars «,

(i) [l =0, [If] =0 if and only if f =0,

(i) [lafl = lof].
(iii) [[f +gll < &£l + [lgl)-

If K =1, then || - || is a norm. For any quasi-norm || - ||, there exists a metric d(f, g)

depending only on f — g such that

(2.3) d(f,g) < IIf —gl” < 2d(f,9),

where 0 < p < 1, k = 2(/P)=1 Actually, letting

(2.4) do(f) =1inf S |7 f = f;(finite sum)
J J

and d(f,g) = do(f — g), we have that

(2.5) do(f) < IFIIP < 2do(f)

and (2.3). See for example [21, Theorem 1.12 on page 12] and [17, Theorem 1.2 on
page 5]. If we take

1/p

Il =it ¢ { DO IA07 : f = fifinite sum) ¢,
i i

then | f|1 is p-subadditive and this is just the Aoki-Rolewicz theorem (see [59,
pages 92-93], [17, page 7], [60, pages 95-96], [32, page 86] and [33, pages 6-8]. In
the last two publications it is even written history of this theorem). We also note
the following properties on dy in (2.4):
(i) do(f) >0,do(f) =0« f=0.
(i) do(f) = do(—[)-
(m; do(f +9) < do(f) + do(9)-

(iv hm do(anf) =0, T hﬁn do(afy,) =0.

Let By, B> C LY(2) be quasi-normed spaces. Then we say that g € PWM(FE1, E»)
is a bounded operator if there exists a positive constant 8 such that

1f9llz, < Bl fllz, for all f € Ey.
In this case, we define the operator norm of g € PWM(E, Es) as

lgllop = nf{B > 0: [|fgllz, < Bl fllz forall fe Er}.

Note that g € PWM(E}, E») is a bounded operator if and only if g is a continuous
operator from F; to Es.



POINTWISE MULTIPLIERS 31

Let E C L%) be a quasi-normed space, which is not necessary to be an ideal
space. In this paper we say that F has the subsequence property if

(26) fj—=>finE(j—>o00) =
Hfja} (subsequence) s.t. fxy — f a.e. (k— 00).
The following is a basic property of the pointwise multipliers.

Theorem 2.4. Let By, By C L°(Q) be complete quasi-normed spaces, which are not
necessary to be ideal spaces. If both E1 and Ey have the subsequence property (2.6),
then each g € PWM(E1, E») is a bounded operator.

Proof. Let g € PWM(E4, E»), and let f; — f in Ey and f;g — hin E5. Then there
exists a subsequence {f;x)} such that f;;y — f a.e. Moreover, since fj)g — h in
Es, there exists a subsequence {f; ()9} such that fj))g — h a.e. On the other
hand, fjx)g — fg a.e. Then h = fg a.e. That is, g has a closed graph. Hence it is
a bounded operator by the closed graph theorem. See for example [72, Theorem 1
on page 79| for the closed graph theorem. O

Let A C €2 be a measurable set. Recall that f; — f in measure on A if, for all
e >0,

p{z e A:|fj(x) = f(z)] > €}) =0 (j = o0).

Let Q =, Qm with u(,) < oo, m=1,2,...,and let f; € L%(Q), j =1,2,....
It is known from the measure theory that, if f; — f in measure on £, for each m,
then there exists a subsequence f;() such that fj;) — f a.e. Hence, we have the
following theorem which doesn’t use the ideal property.

Theorem 2.5. Let E C L°(Q) be a quasi-normed space. Assume that there exists
a sequence of subsets 0y, C Q with Q = |J,, Qm and p(Qy) < 0o, m = 1,2,...,
such that, for any sequence of functions f; € £, j =1,2,...,

(2.7) fi—=0imE = f; — 0 in measure on )y, for each m.

Then E has the subsequence property (2.6).

Corollary 2.6. Let E; ¢ L°(Q2), i = 1,2, be complete quasi-normed spaces. Assume
that there exists a sequence of subsets 0y, C Q with Q = J,, Y and p(Qp,) < 0o,
m = 1,2,..., such that both Ey and Eo have the property (2.7). Then all g €
PWM(E1, E3) are bounded operators.

We say that a quasi-normed space E has the lattice property if the following
holds:

(2.8) feE hel’(Q), |h| <|flae. = hekE, |hle<|fle

We don’t use the lattice property in Theorem 2.5 or Corollary 2.6. On the other
hand, using the lattice property, we have the following theorem which is an extension
of [18, Theorem 1 on page 96] which is for normed spaces, see at the end of this
section for the proof.

Theorem 2.7. Let a quasi-normed space E C L°(Q) have the lattice property (2.8).
For any sequence of functions f; € E, j =1,2,...,if f; = 0 in E, then f; — 0 in
measure on every measurable set with finite measure.
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Corollary 2.8. If Ey and E5 are quasi-Banach ideal spaces (that is, complete quasi-
normed spaces with the lattice property), then all g € PWM(E1, E2) are bounded
operators.

Remark 2.1. Theorems 2.5 and 2.7 and Corollaries 2.6 and 2.8 are all applicable
to Lebesgue, Orlicz, Musielak-Orlicz, Lorentz and Morrey spaces, etc. However,
for BMO and Campanato spaces, we can use only Theorem 2.5 and Corollary 2.6.
Actually, BMO and Campanato spaces don’t have the lattice property (2.8), while
they have the property (2.7), see Proposition 5.5 in which we can take balls with
radius 2™ as ,,.

For a quasi-normed space E C L°(Q2) with the lattice property and for a positive
constant 6, let B = {f € LO(Q) : |f|® € E} and || f||ge = (|||f|°||£)"/?. Then E? is
a quasi-normed space with the lattice property. If E is a normed space and 6 > 1,
then EY is also a normed space. It is easy to show that the following proposition
holds.

Proposition 2.9 ([35, (g) on page 326)). Let E; C L°(Q) (i = 1,2,3) be quasi-
normed spaces with the lattice property. If PWM(Ey, E2) = E3 and 0 < 6 < oo,
then PWM(EY, EY) = EY.

At the end of this section we prove Theorem 2.7. The proof is almost same as
Kantorovich and Akilov’s book [18, page 96].

Proof of Theorem 2.7. By Proposition 2.1 there exists a partition {2, },, of Q such
that pu(Qy) < oo and xq,, € E. If f; = f in measure on 2, for each m, then,
for any measurable set A with finite measure, f; — f in measure on A. Actually,
p(A) =5 (AN Q,) < oo implies that, for each € > 0 and 6 > 0, there exists
mg € N such that
D> uANQ) <,
m>m

and there exists jo € N such that, if j > jo then
1({x € Ut 1f5(2) = F@)| > €}) < 0/my m =1,2,....m.

Therefore,

p{z e A:fj(x) - f(2)] > €})
< Y p{z € |fi(@) = fl@) > )+ D wAN Q) < 2.

m<mo m>mg

Moreover, since f; — f in E implies fjxq,, = fxq, in E, we may assume that
1(£2) < oo and the function 1 is in E.

In the following, we prove that f; — f in F and f; /4 f in measure on € yield a
contradiction. By passing to a subsequence if necessary, we may also assume that
there exist numbers €,6 > 0 such that the following conditions are satisfied for all
jeN:

(2.9) n(fe € Q: [f5(2) — f@)] > e}) 2 6,
(2.10) 15— £l < /27,
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Write
(2.11) Bi={zecQ:|fj(z)— f(x)| >e}, B=() |J B
Jj=1k=j+1

By (2.9) we have
(2.12) u(Bj) =26 (j €N), u(B)=0.
By (2.10), bearing in mind that exp, < |f; — f|, we have

(2.13) s, Il < 1/2.
We now introduce the sets
Jjts
Cis= |J (BinB)CB.
k=j+1

Then for every j € N the sequence {C}s}s is non-decreasing and, by (2.11),

o0
B=]JC;.

s=1
Hence for each j € N there exists a suffix s; such that
(2.14) 1(B\ Cjs,) < 1/2771
Write

oo

Dj= () Chs,-
k=j+1

Then D; C B and the sequence {D;}; is clearly non-decreasing. Since

B\Dj =B\ ﬂ Ch,sy, = U (B\C’ﬁsk)v
k=jt1 k=j+1
we see from (2.14) that
B\ Dj) = > u(B\Crg,) <1/2.
k=j+1

Therefore p(B \ (U;2; Dj)) = 0. Let do and p be as in (2.4) and (2.5). By (2.13),
when k£ > j we have

» k+sy, p k+sg
o lP < x| < || S xe <zdo<z X)
i=k+1 i=k+1
k“rsk k—l—sk 2 1
< ) < 1P
<23 dolwn) <2 Y IalP < =g
i=k+1 i=k+1

so that xp, = 0, that is, u(D;) = 0. Therefore u(B) = 0, contradicting (2.12). O
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3. POINTWISE MULTIPLIERS ON FUNCTION SPACES WITH THE LATTICE PROPERTY

Recall that F is a Banach (or quasi-Banach) ideal space if F is a complete normed
(or quasi-normed) space with the lattice property (2.8).

General properties of the space of pointwise multipliers PWM(E}, E5) for Banach
ideal spaces F, Eo were studied by Maligranda and Persson [35, pp. 326-330], and
Kolwicz, Le$nik and Maligranda [19, pp. 879-880]. For symmetric Banach spaces
(that is, rearrangement invariant spaces) Fp, Es they were proved by Kolwicz,
Lesnik and Maligranda [19, pp. 881-887]. For ideal Banach spaces, the following
result is known and it was proved by Maligranda and Persson [35].

Theorem 3.1 ([35]). If E C L°(2) is a Banach ideal space, then
PWM(E) = L¥(Q).
Remark 3.1. (i) In [35] they also proved that PWM(E, [E]) = L*°(Q2), where [E] is

the maximal normed extension of F in the sense of Abramovi¢. That is,

5= {1 € L) |l = sup{lgll s g € B0 < g < |f]} < o0}
(ii) The proof of Theorem 3.1 adapts to ideal quasi-Banach spaces.
As mentioned in Section 1, Hélder’s inequality
1 f9llzez () < I fllzer @ 19l Lrs (@)
implies
PWM(LP (), L7 () > L7 (Q),
for 1/pa = 1/p1 + 1/ps with p; € (0,00], i = 1,2,3. The reverse inclusion can be

shown by using the uniform boundedness theorem or the closed graph theorem. The
following theorem is an extension of

PWN(LP (Q), L(2)) = L7 ()
for general quasi-normed spaces by using the uniform boundedness theorem.

Theorem 3.2 (cf. [39]). Let E; C L%(Q), i = 1,2,3. Suppose that Ey is a complete
quasi-normed space with the lattice property, that FEo is a quasi-normed space with
the lattice property, that E5 is a quasi-normed space with the monotone completeness

property;
(B.1) feE(G=L2...), f;>0, f; /' f ae. and sup| fj||lp < oo,
j

= fe ks
Suppose also that there exists 0, CQ, m=1,2,..., such that
(3.2) () <00, Q CU, C ...y Q={JQn,
and that
(3.3) {f € L™(Q) : {f #0} C Qy, for some m} C Es.
If

PWM(Ey, E) O Es,
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and if all g € E3 are bounded operators as elements in PWM(E1, Ey) and

CHglles < llgllop < Cliglle,
holds for all g € FE3 and some positive constant C independent of g, then
PWM(E, Ey) = Es.

Remark 3.2. (i) If E5 has the lattice property, then by Proposition 2.1 we can take
Qm, m=1,2,..., which satisfy (3.2) and (3.3).

(ii) From the conclusion of Theorem 3.2 it follows that, for every g € PWM(E}, E»),
its operator norm is equivalent to ||g|| g,-

Proof of Theorem 3.2. Let g € PWM(E1, F3). By the lattice property of Fs, the
real and imaginary parts of g and their positive and negative parts are also in
PWM(E1, Ey). Then it is enough to prove the case g > 0, since Ej is a linear space.
Let

0 x € \ Qj,
gj(z) = g(x) xeQjand|g(z) <j, forj=1,2,....
J z € Qj and |g(z)| > j,
Then, for any f € Fy, we have fg € Es and |fg;| <|fg|. It follows from the lattice
property that

1fgille, < Nfollm (G =1,2,...).

By the uniform boundedness theorem and the assumption, we have

sup||gjllop < oo and  sup|lg;llE, < oo
J J
Therefore the monotone completeness property implies that g is in F5. Note that
a complete quasi-normed space is a complete quasi metric space and it cannot
express as a countable union of closed subsets each of which does not contain non-
empty open set. Thus we can apply the uniform boundedness theorem to our case,
see [72, Theorem 1 in page 68]. O

Corollary 3.3. Let E C L°(Q2) be a quasi-Banach space. Then
(3-4) PWM(E) = L¥(Q) and ||gllop = [|9]lLe= (),
if and only if E has the lattice property (2.8).

The first part of the following proof is the same as in [22,35,39].

Proof of Corollary 3.3. Assume that FE is a quasi-Banach space with the lattice
property. Note that L>°(€2) has the monotone completeness property and contains
all finitely simple functions. Let g € L*°(€2). Then by the lattice property of E we
have that g € PWM(E) and ||gllop < [lg] (). 1t g = 0, then [lgllop = 19l () =
0. If g € L>*(Q2) and g # 0, for any n such that 0 < n < ||g[| (), choose Qy, in
Proposition 2.1 such that xq,, € F and that

0<pu(A,NQy) <oco, A,={zxeQ:|g(z)>n},
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and let h, be the characteristic function of A4, N €,,. Then h, € E by the lattice
property. From the inequality n|h,| < |hyg| a.e. it follows that

_ gl
= halle
This shows that [|g[lop = [|g]lr(q) for all g € L>(Q2). Then PWM(E) = L>°(€2) by

Theorem 3.2.
Conversely, assume (3.4). Let f € E, h € L°(Q), |h| < |f| a.e. Then, letting

g(z) = {h(m)/ f(@), it f(@) #0,

< [lgllop-

0, if f(z) =0,
we have ||gllop = (|9l (@) < 1 and

[1hllz = 11f9llz < llgllopllflle < Iflle-
Hence, E has the lattice property. O

A quasi-normed space E has the Fatou property if

(35) fieE(G=12...), f; 20, f; /* fae and sup||f;l|g < oo,
J

= feEand|fllp <supllfle.
J

Theorem 3.4. Let E; ¢ L%(Q), i = 1,2,3, be quasi-Banach ideal spaces. Assume
that E3 has the Fatou property (3.5). If generalized Hélder’s inequality

(3.6) If9lle, < Clifllellglles, fe€ By, g€ Es,

holds, and if, for any finitely simple function g contained in Es with g # 0, there
exists f € E1 with f # 0 such that

(3.7) I£glle, = ClIf | llgll 25

then
PWM(Ey, Ea) = B3 and  C'||g|lg;5 < llgllop < Cllgll&s-

We give two kinds of proofs. The first proof uses Theorem 3.2 (the uniform
boundedness theorem) and the second uses Corollary 2.8 (the closed graph theorem).

The first proof of Theorem 3.4. Generalized Holder’s inequality (3.6) shows that
PWM(Ey, E2) D E3,  [lgllop < Cllgll -

For g € E3, take a sequence of finitely simple functions g; € E3, j = 1,2,..., such
that g; * |g|. Then by (3.7), the lattice property of Ey and the Fatou property of
FE3 we have

C'ligjlles < llgsllop < llglop and  C’liglle; < llgllop for all g € Es.

Therefore, we have the conclusion by Theorem 3.2. O
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The second proof of Theorem 3.4. Generalized Holder’s inequality (3.6) shows that
PWM(EL, E2) O Es,  lgllop < Cllgll -

Conversely, let g € PWM(E1, F2). Then g is a bounded operator by Corollary 2.8.
By Proposition 2.1 we can take a sequence of finitely simple functions g; € FEj3,
j=1,2,..., such that g; " |g| a.e. Then by (3.7) and the lattice property of Ej
we have

C'llgilles < llgillop < llgllop-
Then by the Fatou property of E3 we have g € F5 and
C'lglles < llgllop-

Therefore we have the conclusion. Il
Example 3.1. Let p; € (0,00] (i =1,2,3) and 1/p; + 1/p3 = 1/ps. Then
(38)  PWM(LP(Q),L7(Q)) = 27(Q) and |glop = llgllims -
Actually, by Holder’s inequality, we have

1 fallzr2) < N fllzev@llgllrs ), [ € LPH(Q), g € LP*(C).

If p3 # oo, then for any g € LP3(Q) with g # 0, take f = [g[P3/P* (f =1 if p; = c0).
Then f € LP(§2) and

”fg||LP2(Q) = Hf“LPl(Q)HgHLPS(Q)~
If p3 = co and p; = po, then taking h,, as in the proof of Corollary 3.3, we have

gl o2 () = nllyll Lo o) = HgH;(mnhnnm @llgll L,

for any n with 0 < n < [[g|=(q)- Then we have (3.8) by Theorem 3.4. (In case of
p3 = o0 and p; = po the conclusion (3.8) also follows from Corollary 3.3).

4. LORENTZ, ORLICZ AND MORREY SPACES

In this section we state results on Lorentz, Orlicz, Musielak-Orlicz and Morrey
spaces without proofs. These function spaces have the lattice property.

4.1. Lorentz spaces. Let = (2, 1) be a complete o-finite measure space. For
f € L) and s,t € [0,00), let

:U'(f7 8) - M({$ e: ‘f(l’)’ > S})a
fr(t) =1inf{s > 0: pu(f,s) <t}

Definition 4.1 (Lorentz space). For p,q € (0,00], let LP9(£2) be the set of all
f € L(Q) such that || || 1r.a(q) < oo, where

0 1/q
</ t<q/P>—1(f*(t))th> , 0<p<oo, 0<g<oo,
I fllzpaqe) = 0

sup t'/7 f*(t), 0<p< oo, g=o0.
t>0
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Then || - ||zp.e() is @ quasi-norm and thereby LP4(2) is a complete quasi-normed
linear space with the lattice property and the Fatou property. If p = oo and
0 < g < o0, then LP4(Q2) = {0}. Note that

LPP(Q) = LP(Q) and ||f||LPﬁP(Q) = ”fHLP(Q), 0<p<oo.
By the inequality (fg)*(t) < f*(t/2)g*(t/2) and Hoélder’s inequality we have the
following proposition:
Proposition 4.1. Let p; € (0,00), ¢; € (0,00] (i =1,2,3). If 1/p1 + 1/p3 = 1/p2
and 1/q1 +1/q3 = 1/q2, then
£l Lroaz () < 2YP2(| £l povar () 9]l posas (@) -

If 1/p1 +1/ps = 1/pe and p1/q1 = p2/q2 = ps/qs, then, for g € LP3:93(Q)), setting
f =|g|P3/P, we have
HfQHLpz*qz(Q) = || fllrran (Q)HQHLPB’%(Q)‘
By Theorem 3.4 we have the following theorem:
Theorem 4.2 ([40]). Let p; € (0,00) and g; € (0,00]. If 1/p1 + 1/p3 = 1/p2 and
p1/@1 = p2/q2 = p3/q3, then
PWM(Lpl’ql (Q)’ [P2:92 (Q)) — [,P3:43 (Q)
and
||9||Lp3v43(9) < Hg”Op < 21/1}2”9HLP37‘13(Q)~
Remark 4.1. In the above, if py > go, then we have ||g||zrs.as) = llgllop, see [39].
4.2. Orlicz and Musielak-Orlicz spaces. Let @ be the set of all functions ® :
[0, 00] — [0, o0] such that
(4.1) tilg)IJer(I)(t) =®(0)=0 and tlgglo O(t) = ¢(00) = o0.
Let
a(®) =sup{r >0: ®(r) =0}, b(®)=1inf{r >0:P(r) = oo}.

Definition 4.2. A function ® € ¢ is called a Young function (or sometimes also
called an Orlicz function) if ® is nondecreasing on [0, 00) and convex on [0, b(®)),
and
li P(r) =0(0(P)) (£ .
lim a() = 20(®)) (< )
We denote by @y the set of all Young functions. Any Young function is neither
identically zero nor identically infinity on (0, 00).
Let Q = (2, 1) be a complete o-finite measure space.

Definition 4.3 (Orlicz space). For a Young function @, let

o = 0 N X X O I0r some
L(Q)—{feL(Q)-/be(klf( ) dp(z) < oo £ k>o},

||f||L<I>=inf{>\>0:/9<1><’f()\$)’>du(fv)Sl}.
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Then ||f||;+ is a norm and thereby L®(€) is a Banach space.

For example, if ®(r) = 77, 1 < p < oo, then L*(Q) = LP(Q). If ®(r) = 0 (0 <
r < 1) and ®(r) = co (r > 1), then L*(Q) = L>®(Q).

Next we recall the generalized inverse of Young function ® in the sense of O’Neil
[58, Definition 1.2]. For a Young function ® and u € [0, cc], let

O Y(u) = inf{t >0: ®(t) > u},

where inf () = co. Then ®~!(u) is finite for all u € [0,00). If ® is bijective from
[0,00) to itself, then ®~! is the usual inverse function of ®.

Theorem 4.3 ([58]). Let ®; be Young functions, i = 1,2,3. If
oM@ (r) < C BN (r)  for allr >0,
then
1 fgllLe2q) < 2C [ fllLoy@yllgllLes @)

Description of the space of pointwise multipliers PWM(L®1 (), L?2(£2)) for Orlicz
spaces was given by Maligranda and Persson [35, pp. 332-334] (see also [31, Chap-
ter 10, pp. 69-79]) under some conditions either on measure or on Young functions
¥, ®y. In general, result was proved by Maligranda and Nakai [34].

Theorem 4.4 ([34]). Let ®; be Young functions, i = 1,2,3. If
C1®5 ' (r) < o7 (N @31 (r) < C2 @3 (r)  for allr > 0,
then
PWM(L®1(Q), L*2(Q)) = L (Q)
and

Cillgllpes o) < llgllop < 2Callgll 25 0)-

Result in Theorem 4.4 is not showing how for given Young functions ®;, ®» we
can find another Young function ®3 with the above equivalence. We consider the
conjugate (complementary) function to ®; with respect to ®2 by the formula

Dy & Oy (u) = sup{Pa(tu) — P1(¢) : t >0}, u>0.

In particular, if ®9(u) = u, then 3 © & = ®; is the usual conjugate (complemen-
tary) function (in sense of Young) to ®;. This operation on the class of N-functions
was defined by Ando [2, p. 180] and on the class of Young functions by O’Neil [58,
p. 325] and he referred to Ando [2]. Kolwicz, Le$nik and Maligranda [19, Theo-
rem 8] proved that under some additional assumptions on Young functions we have
identification PWM(L®1(Q), L?2(2)) = LP3(12), where &3 = &5 © ®4.

On the other hand, if we restrict supremum in the above operation to (0, 1], that
is,

(P2 © P1)o(u) = sup{Pa(tu) — P1(t) : 0 <t <1}, u>0.

then Djakov and Ramanujan [10], in the case of Orlicz sequence spaces, showed the
following identification PWM(¢®1, ¢®2) = (®3 where ®3 = (®3 © ®1)o without any
restrictions on Young functions. Of course, the function (®2 © ®1)¢ is smaller than
®9 © &1 and it can be different than ®5 © ®;.
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Lesnik and Tomaszewski [25] proved recently how we should understand supre-
mum in the definition of operation ®9 & ®; that in a non-atomic measure case we
have identification PWM(L®1(2), L*2(Q)) = L*29%1(Q).

Next we generalize Young functions to the following;:

Definition 4.4. Let &}, be the set of all ® : Q x [0, 00] — [0, 00] such that ®(z, )
is a Young function for every x € Q, and that ®(-,¢) is measurable on Q for every
t € [0,00]. Assume also that, for any subset A C Q with finite measure, there exists
t € (0,00) such that ®(-,¢)x4 is integrable.

Definition 4.5. (i) Let ®gy be the set of all ® € & such that &((-)1/*) is in
Py for some ¢ € (0,1].

(ii) Let @Y%y be the set of all ® : Q x [0,00] — [0, 00] such that ®(-, (-)1/*) is in
@Y, for some £ € (0,1].

For ®, U € &, we write ® ~ ¥ if there exists a positive constant C' such that
O(C7H) < W(t) < ®(Ct) for all t € (0,00).

For &, ¥ : Q% [0, 00] — [0, 00], we also write ® ~ W if there exists a positive constant
C such that

O(z,C ) < W(x,t) < ®(x,Ct) for all (z,t) € Q x (0,00).

Definition 4.6. Let &y, @51{/, doy and @’éy be the sets of all ® such that ® ~ ¥
for some ¥ in @y, &}, Pgy and &gy, respectively.

Lemma 4.5. Let ® € ¢Y%. For a subset A C Q with 0 < u(A) < oo, let ®(t) =
[4®(z,t)du(z). Then &4 € dgy.

Definition 4.7 (Musielak-Orlicz space). For a function ® € 9%, let

o = 0 . X i X o0 I0or some
L(Q)—{feL(Q)-/be(,k!f( )1) dpa(z) < oo § k:>o},

I flle = inf{A -0 /Qcp( W;”)dum < 1}.

Then each function f € L®(Q) satisfies | f(x)| < 0o a.e.x € Q. By the assumption
in Definition 4.4 all simple functions are in L®(Q). Moreover, | - || 1o is a quasi-

norm and thereby L®(Q) is a complete quasi-normed space with the lattice property
and the Fatou property. If & € &V, then || - ||;+ is a norm.

Example 4.1. Let p = p(-) be a variable exponent, that is, it is a measurable
function defined on Q valued in (0, 00}, and let ®(x,t) = tP(®). Let p_ = ess iélfp(x).
xre

If p- > 0, then & € &%, and &(x, (-)™>*L1/P-)) € @Y. In this case we denote
L*(Q) by LPO)(Q) which is a generalized Lebesgue space with variable exponent

p(+).

For the function spaces with variable exponent, see for example [13,57].
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Example 4.2. Let w be a weight function, that is, a measurable function defined on
Q valued in (0,00) a.e., and [, w(z)du(x) < oo for any A C Q with finite measure.
Let p be a variable exponent, and let

®(x,t) = tPPw(z).

If ess iélfp(.fv) > 0, then ® € &Y%, In this case we denote L®(2) by LEZ,(')(Q).
Te

Example 4.3. Let p be a variable exponent, and let

1/ exp(1/tr@), te0,1],
() = {exp(tp(x)), t € (1,00].

If ess iélfp(x) > 0, then ® € @Y. In this case we denote L®(Q) by exp(LP1))(Q).
xre

Next proposition is a generalized Holder’s inequality for Musielak-Orlicz spaces,
which can be proven in the same way as in O’Neil’s paper [58].

Proposition 4.6. Let ®; € @gy, 1 =1,2,3. Assume that there exists a constant
C > 0 such that

(4.2) o (2, )05 (2,t) < C O (w,t)  for (x,t) € Q x (0,00).
If f € L®1(Q) and g € L**(Q), then fg € L®2(Q) and
£l o> < ClLfllor gl Lo,
where C' is a positive constant dependent only on ®;, i =1,2,3, and C.
We define three subsets of Young functions Y (i = 1,2, 3) as
YV ={®e &y : b(®) = o0},
Y = (@€ By 1 b(D) < 00, B(B(D)) = o},
VO = (d e by : b(P) < 0o, B(B(P)) < oo} .
Then we have the following theorem:
Theorem 4.7 ([48]). Let ®; € OY%y, i =1,2,3. Assume that
1
C

Assume also that there evists U3 € @Y%y such that ®3 ~ U3 and U{((-)V/¢) €
YO U YD for some € € (0,1] and for any A C Q with 0 < p(A) < oo, where
Ui (t) = [, Us(x,t) du(z). Then

PWM(L® (), L**(Q)) = L*3(Q).
Moreover, the operator norm of g € PWM(L®1(Q), L®2(2)) is comparable to ||g|| o5 -

(4.3) Oy (z,t) < B (2, 1) @5 (2,8) < COL (2, t)  for (z,t) € Q x (0,00).

Example 4.4. Let p; be variable exponents, ¢ = 1,2, 3, and
Do = {2 € Q: p3(z) = o0}.
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Assume that essinf p;(z) > 0, i =1,2,3, esssup p3(z) < co and
S 2EN\ Qoo

1 1 1
44 @ | pa@  pal)

Then
PWM(LP O (), 2720(@)) = L5O(Q) and lgllop ~ 9]l s
Example 4.5. Let p; be variable exponents, w; be weight functions, ¢ = 1,2, 3, and
Qoo = {2 € Q: p3(z) = o0}.

Assume that essinf p;(z) > 0,7 =1,2,3, esssup p3(z) < co and
zef 2EMN\ Qo

1
(4.5) + — Wy (2) VP ) g (2)/P3(E) = gy (2)1/P2(®)

Then
PWM(LE (), L20(9)) = LizO(Q) and [|gllop ~ 91l s )
Example 4.6. Let p; be variable exponents, ¢ = 1,2, 3, and
Qoo = {z € Q: p3(x) = 0}.

Assume that ess i(l;lfpi(:v) >0,i=1,2,3, esssup p3(x) < oo and
re

2N\ Qoo
1 1 1
(46) @ s mE
Then
PWM(exp(LP*0)) (), exp(LP2())(02)) = exp(LP21))(Q)
and

S P ————"

4.3. Morrey spaces. Let B(z,r) C R" be the ball with center z € R"” and radius
r > 0. That is, B(z,7) = {y € R" : |y — x| < r}. Let ¢ : R" x (0,00) — (0,00).
For a ball B = B(z,r), we shall write ¢(B) in place of ¢(z,r). For a measurable
set A C R", we denote its Lebesgue measure and characteristic function by |A| and
X A, respectively.

Definition 4.8 (generalized Morrey space). For p € (0,00) and ¢ : R x (0,00) —
(0,00), let L, 4(R™) be the set of all f € L°(R™) such that I fllz,.,@n) < oo, where

1 (1 > \P
||f||L,,,¢(Rn):s%pgb(B)(|B| [ 1@ dx> .

The supremum above is taken over all balls B in R".

Then || - ||, &) is a quasinorm and thereby L,s(R") is a complete quasi-
normed spaces with the lattice property and the Fatou property. If 1 < p < oo,
then L, 4(R") is a Banach space. If ¢(B) = |B|~'/?, then L,4(R") = LP(R"). If
¢(B) = 1, then L, 4(R") = L®(R™). If ¢(z,r) = r*@~™/P then L, 4,(R") coincides
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with the classical Morrey space LPA(R™) introduced by Morrey [36]. See also [1].
That is,

1 1/p
fllLpa(gny = sup / fW)P dy ;
£ 1l or () S BW)\ ()|

where the supremum is taken over all balls B(x,r) in R™.
By Holder’s inequality we have the following proposition:

Proposition 4.8. Let p; € (0,00) (i = 1,2,3). If 1/py + 1/p3 = 1/ps and ¢1¢3 <
Coo, then

1£9llL,, o, &) < ClflL,, o ®@09lL,, 4, @)
Corollary 4.9. If 1/p1 + 1/ps = 1/p2 and M\1/p1 + A3/ps = Xa/p2, then
HngLP%)Q(R") < HfHme(Rn)|’9HLp3A3(Rn)~

For functions 60, 62 : R™ x (0,00) — (0,00), we write 61 ~ 65 if there exists a
positive constant C' such that

(4.7) C 0y (x,7) < Oo(x,7) < COy(x,r) for all z € R and r > 0.

A function 6 : R x (0, 00) — (0, 00) is almost increasing (almost decreasing) if there
exists a positive constant C' such that

(4.8) O(z,r) < CO(x,s) (O(x,r)>CO(z,s)) forall z e R" and r < s.

If ¢ is almost decreasing, ¢(x, )| B(z,)|'/? is almost increasing and inf egn ¢(z,1) >
0, then xp € L, 4(R™) for all balls B. Moreover, we see that ¢(x,r) ~ ¢(x,2r),
that is, ¢ satisfies the doubling condition. We also consider the following condition;
there exists a positive constant C' such that

(4.9) Clo(x,r) < oy, r) < Co(z,r) for all z,y € R with |z —y| < r.

Theorem 4.10 ([42]). Let p; € (0,00) and ¢; : R™ x (0,00) — (0,00) (i =
1,2,3). Suppose that ¢; is almost decreasing, ¢i(zx,r)|B(z,r)|"/? is almost in-
creasing, infyern ¢i(z,1) > 0 and ¢; satisfies (4.9) (i = 1,2,3). Suppose also that

1/p1+1/p3s = 1/py and Pp1¢3 ~ ¢po. If ¢’2’2/”1/¢1 is almost increasing, then
PWM(Lp1.¢1 (R™), Lp, .4 (R™)) = Lp;.¢s (R™).

Moreover, the operator norm of g € PWM(Lyp, 4, (R™), Lp, ¢, (R™)) is comparable to
19012, 5, (RY)-

The above result is valid for spaces of homogeneous type (X, d, pt), see [42]. We

cannot remove the almost increasingness of ¢§2/ PY /by, see [43].
For the classical Morrey spaces, we have the following theorem:

Theorem 4.11 ([43]). Let p; € (0,00) and \; € (0,n). Suppose that 1/p1 +1/p3 =
1/p2 and A1/p1 + A3/ps = Aa/p2. Then

PWM(LPPM (R™), LP2A2(R™))
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= {0}, p1 < p2,

= {0}, P1 = P2 and A\ < )\2,

= L>®(R"), p1 =po and A\ = Ao,

2 {0}, pr=p2 and A\ > g,

= {0}, p1 > p2 and n+ (A —n)p2/p1 < A2,

=L®[R"),  p1>p2 and Iy =n+ (A1 —n)p2/p1,

= LP3M(R™), pr>py and M < g < n+ (A —n)pa/p1,
2 LP*3(R™), p1>pe and Aipa/p1 < A2 < Aq,

2 LP3(R™), p1 > p2 and Ay = \ip2/p1,

2 {0}, p1>p2 and A < Aip2/p1.

For Musielak-Orlicz-Morrey spaces, see [49].

5. CAMPANATO SPACES WITH VARIABLE GROWTH CONDITION

In this section we concentrate on generalized Campanato spaces on R™. The
results are also valid for spaces of homogeneous type (X, d, u).

5.1. Definition and connections with Morrey and Hoélder spaces. For = €
R™ and r € (0,00), let B(x,r) be a ball centered at = and radius r, or, a cube
centered at z and sidelength r. For ¢ : R™ x (0,00) — (0,00) and B = B(z,r), we
write ¢(B) in place of ¢(z,7). For a function f € LL (R™) and for a ball (cube) B

let
1
fo= g [ Sz
B 5T
where | B| is the Lebesgue measure of B.

Definition 5.1 ([44]). For p € [1,00) and ¢ : R™ x (0,00) — (0, 00), Campanato
spaces Ly, 4(R™), Morrey spaces L, »(R") and Holder spaces Ay(R"™) are defined
to be the sets of all f such that |f|c,, < oo, [fllz,, < oo and |f|a, < oo,
respectively, where

1/p
Il e = sup, ¢<|B, [ @ - galra)

1/p
ny = SU )P dx ,
sy = s s (11 [ P ac)

2|f(z) — f(y)]
x|z —y|) + oy, [v —yl)

We regard L, 4(R™) and £, 4(R") as spaces of functions modulo null-functions
(that is, two functions are considered equal if they are equal almost everywhere,
as usual) and A4(R™) as a space of functions defined at all x € R™. Moreover,
regarding £, 4(R") and A4(R") as spaces modulo constant functions, || - [z, &n);
|| - ‘|£p’¢(Rn) and || - HAé(Rn) are norms, and thereby L, »(R"), £, 4(R™) and Ag(R")
are Banach spaces, respectively.

flla, ey = sup
H H ¢ (®") z,y€ER", z#y @b(
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If p(x,r) =r*, then

1/p
ey = s (o [ @)= fapas) . —ajpzas

B= BzrcRn""

1/p
f sup < /f pdx) , —n/p<a<0,
e = s (1 ), 1) /
x P
1flas = g, = sup O ZIOI g oy

z,y€R", x#y ‘(L‘ - y‘a
which are the usual Campanato, Morrey and Holder (Lipschitz) spaces. If p = 1
and ¢ = 1, then £, 4(R") = BMO(R"). For ¢(x,r) = r®, the following properties
are known.
Ly =L1y=BMO, a=0,1<p<oo,
Lys=Ny, 0<a<l, 1<p<oo,
Lypo/C =Ly, —n/p<a<0, 1<p<oo,
Lps/C=Lps=LF, a=-n/p, 1<p<oo,
where £, 4/C = L, 4 means that the Campanato space £, 4 modulo constant func-

tions can be identified with the Morrey space Ly, 4.
For p(-) € L°(R™; R), that is, a measurable function from R" to R, let

p— =essinfp(z), ps = esssupp(x).
z€R™ reR™

Definition 5.2 ([46]). Let a, be a constant in [0, 00) and «(-) € L°(R";R) satisfy
0<a <ay <oo.

(i) For ¢(z,r) = r*®) denote Ay(R™) by Lip,(.)(R™). In this case,
2|f(z) = f(y)l

; ny = su
I lipa @y = S0 e g — 2o
(ii) For
@ 0<r<1/2
5.1 )= ’ ,
(5.1) o(x,r) {ra*’ 1/2 < r < oo,

denote Ag(R™) by Lip%:, (R™). In this case,

)
i

“mex{sup ORI (RS Gl

O<lo—yl<1/2 [T — y|®@) + |z —y|oW) |, Syn o -yl

Theorem 5.1 ([44]). Let 1 < p < 0o and ¢ : R" x (0,00) — (0,00). Assume that
there exists a positive constant C' such that, for all z € R"™ and r € (0, 00),

/wd?”ﬁgcwxm
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Then
Moreover, if also ¢(B) = |B|~'/?, then
Ly s[R")/C = L, (R") = LP(R").
Theorem 5.2 ([45]). Let ¢ : R" x (0,00) — (0,00). Assume that there exist positive
constants A;, 1 = 1,2,3, such that, for all z,y € R™ and r,s € (0,00),

1 o(z, ) 1 s
(5-2) Ail < qb(:c,r) < Ay, if 5 < ; <2,
(5.3) 22 < zgg <Ay, if lr—yl <,
(5-4) p(z,7) < A3d(x, ), if r<s.

Then
Lps(R") = L14(R"), pe€[l,00).

Theorem 5.3 ([44]). Let ¢ : R" x (0,00) — (0,00). Assume that ¢ satisfies (5.2)—
(5.4) and that there exists a positive constant C' such that, for all x € R™ and
r € (0,00),

(5.5) /0 ' ‘Wi’t) dt < Colz, 7).

Then
Lys[R") = Ag(R"), pell,o0).

We consider the local log-Holder continuity condition;
Cx

5.6 px) —pW)| < =

00 PO =PI oy )

and a log-Holder type decay condition at infinity;

1
for |z —y| < 3 xz,y € R",

*

C
5.7 < — R",
(5.7) IP(%) — poo| < gl t o) T €

where ¢, ¢* and po, are positive constants independent of z and y. Let
LHy = {p(-) € L°(R™;R) : p(-) satisfies (5.6)},
LH., = {p(-) € L°(R™;R) : p(-) satisfies (5.7)},
LH =LHyN LH.

Example 5.1. For a constant o, € [0,00) and for a(-) € LHj satisfying 0 < a— <

ag < 00, let
re®) 0 <r<1/2,
slar) =" /
r, 1/2<r <oo.

Then
LpsR") = L14(R"), pe[l,00).

Moreover, if a_ > 0, then
L, 4(R") = Lipzz.)(R”), p € [1,00).
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Example 5.2. For p(-) € LH and (n —1)/n <p_ <p; <1. Let

e 0<r <12, a(z) =n(1/p(z) — 1),
(x,r) = {ro‘*, 1/2 <r < oo, where {a* (1/p — 1),

Then
(HPO(R™)" = L14(R").
Moreover, if p; < 1, then

(HPO(R™))* = Lipl, (

In the above, we can take 0 < p_ < py <1 instead of (n —1)/n <p_ <py <1,

by using higher dimensional Campanato spaces. For Hardy spaces with variable
exponent and these facts, see Nakai and Sawano [53] (2012).

Theorem 5.4 ([46]). Let p(-) : R" — (1,00) and p(-)/(p(-) — 1) € LHy. Define

rPE) 0 << 1/2,
ola,r) = {T_”/p+, 1/2 <r < .

R™).

Then LPO(R™) C Ly 4(R") C L1 4(R™) and
1z + B0l < Cillfllz,, < Collfllee-

5.2. Pointwise multipliers on Campanato spaces. If we regard £, 4(R") and
A(R") as spaces modulo constant functions, then || - ||z, &») and |- [z, &) are
norms and thereby L, »(R™) and £, 4(R") are Banach spaces, respectively. However,
pointwise multipliers are not well defined on a space modulo constant functions,
since, for g € L(Q) and for the constant function 1, pointwise multiplication 1g is
not a constant function in general.

To consider pointwise multipliers on Campanato and Holder spaces, we regard
these spaces as spaces of functions. Moreover, we define norms

1F1gs gy = 11l o) + 1 Fm00] a0 151y oy = 1 Fllagien) + SO0

and we denote £, 4(R™) and Ay(R™) equipped with these norms by £E) 4(R") and
Ai(R”), respectively.
Note that EE) d)(R") fails the lattice property. But we have the following proposi-

tion. Therefore, all pointwise multipliers on Campanato spaces are bounded oper-
ator, see Theorem 2.5.

Proposition 5.5. For any p € [1,00) and ¢ : R" x (0,00) — (0,00), the following
property holds:

li . = ; ] B(0,2™).
oo HfJHEi,qa(Rn) 0 = f; = 0 in measure on each B(0,2™)

Proof. For any m, we have

|fB(0,2m) — fBO) =

o .
— flx)dx — f m
BO ] Jay T4 IB02m
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1
< - xT) — my| dx
|B(0 om)] /
< m
1B(0,1)] \302 ) JB0.2m) ~ fBoam)| do

1/p
<2 m dﬂ:
- <|BO2 |/02m ~ Jz02 )‘ )

< 27%¢(0,2™)[ fllz, 5 (mn)-
Then
[f02m] < (1427700, 2) [Ifll 25 | ny-

Next, using Chebyshev’s inequality and the inequality
|flB < d(B)|Ifllz, oy + /Bl

we have
e[{z € B(0,2™) : [f(z)| = e}| < [B(0,2™)||f|B(0,2m) < C¢,meH£;¢(Rn)’

where the constant Cy ,,, is dependent only on ¢, m and n. Therefore, we have the
conclusion. O

Definition 5.3. (i) For ¢(z,7r) =r* (a > 0), let
Lip,(R") = Ag(R"), Liph(R") = A}(R").
(ii) For p =1, let
BMO4(R") = L1 4(R"), BMOZ(R") = L] ,(R").
(iii) For ¢ =1, let
BMO(R") = BMO,4(R"), BMO#(R") = BMO',(R").

BMO is the space of functions with bounded mean oscillation introduced by
John and Nirenberg [16] in 1961. It is known that log |z — a| is in BMO(R") and
BMO?(R") for all a € R",

Theorem 5.6 ([55]). Let

1 n
o(z,r) = log(r £ 1/r + 2]}’ xz € R" re(0,00).
Then
PWM(BMO*(R")) = BMOy4(R") N L>®(R")
and

lgllop ~ llgllBmoy, + llgll oo n)-
For example,
(5.8) g1(x) := sin (xp(0,1/¢) () loglog(|z| ")),
(5.9) g2(x) :=sin (XB((),e)c(a;) loglog |z|)
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are in PWM(BMO?(R")). Note that g; is not continuous and that lim 92( )

|z|—
doesn’t exist. Example (5.8) was given by Janson [15] and Stegenga [64] and
example (5.9) by Nakai and Yabuta [55].

Theorem 5.7 ([37]). Let p € [1,00) and there ezists a positive constant A such
that, for all z,y € R", r € (0,00), s € [1,00),
(i) AF < o(x,r)/(x,2r) < A,

(i) [ o(a,)t"P dt < Ap(x,r)r™?,
0
(ifi) |z —y| <r= A1 < ¢(z,1)/d(y,1) < A,
(iv) ¢(x,sr) < As(x,r).
Then

PWM(L] ,(R™)) = L, 4(R") N L*(R")
and
lgllop ~ 19|z, , &) + 9]l Lo ®n),
where Y = ¢/(®* + @**), and

max(2,]z|,r) max(2,|z|,r)
1 r

Remark 5.1 ([37]). Under four conditions in Theorem 5.7, let

1 a
ful) = / At gy

z—al t

Then f, is in £, 4(R™) and ij s(R™) for all a € R™.
For ¢; (i =1,2), we define &} and ®;* by (5.10).

Theorem 5.8 ([41]). Suppose that ¢1 and ¢o are almost increasing and satisfy four
conditions in Theorem 5.7. Suppose also that

" 92(@,t) ppr $a(,7)
v = LPT dt<A7r”/p, r>1,
N Xy br(z.r)
for some p > 1. Then
PWM(BMOY, (R"), BMO}, (R")) = BMOg,(R") N Lg, 4, (R")
and
lgllop ~ llgllemo,, @) +1l9llL,, 4, &)
where ¢3 = 2 /(D7 + D).
Theorem 5.9 ([41]). Let 1 < pa < p1 < 00 and p1 + pa < pip2. Suppose that

o1 and ¢2 satisfy (v) for p = pa2 and four conditions in Theorem 5.7, and that
(P54 D5) /P2 < C(PT+ D) /1. If p3 = P2 /(DT + ®T*) is almost increasing, then
PWM(,C;I o1 (R™), ’Czhm $2 (R™)) = BMO¢3 (R™) N L¢2/¢1 (R™)
and

lgllop ~ \|9HBMO¢3(RH) + H9HL¢2/¢,1 (R™)>
See also [30,71] for related results.
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5.3. Examples. In theorems in the previous subsection we can replace R" with
spaces of homogeneous type (X, d, ). If u(X) < 0o, then we can omit the condition
(v). For example, X is a cube @ C R™ or T". All of examples in this subsection were
given in [41]. Let ap be the constant with respect to the continuity of quasi-distance
d (see page 36 in [41]). If d is a distance, then ag = 1.

5.3.1. The case p(X) < 0.
Example 5.3. For0< g <a <1,

(X),BMO? (X)) = BMO"

i
PWM(BMO (log(1/r))~# (log(1/r))* A1

(log(1/r))~ (X).

For @« = 1/2 and 8 = 0 in particular,

(X),BMO!(X)) = BMO?

:
PWM(BMO (log(1/r))~1/2

(log(1/7))~1/2 (X).

Example 5.4.

(X)), BMO%(X)) = BMO®

;
PWM(BMO (log log(1/r))

(log(1/r)) 1 (X).

Example 5.5.

PWM(BMO®

(loglog(1/r))~1 (X)’ BMOH(X))

= BMOii(10g(1/r)))~1 (X) N Loglog(1/r)) (X))
where li(R) = [ 1/(logt) dt.
Example 5.6.
PWM(BMO?(X)) = BMO (10g(1/r))-1 (X) N L=(X).

If X =T", d(z,y) = |z — y| and p is Lebesgue measure, then the example above
is known (Janson [15] and Stegenga [64]).

Example 5.7. For a > 1,

u
PWM(BMO jq41/1))-o

Example 5.8. For 0 < 8 < a < «ay,

(X),BMO!(X)) = BMO*(X).

PWM(BMO% (X), BMO?, (X)) = BMO, (X).

If X =1T" d(z,y) = |z — y| and p is Lebesgue measure, then BMOEQ(T”) =
Lip? (T™). Therefore, for 0 < < a <1,

«

PWM(Lip5,(T"), Lip} (T")) = Lip;(T").

Example 5.9. For -1 <a<f<a+1, 1 <ps <p; <00, pip2 > p1 + P2,

; : ol
PWM(Ly, (tog(1/ryye (K)> £, 105178 (X)) = BMO (1501 )50 (X)-



POINTWISE MULTIPLIERS 51

5.3.2. The case u(X) = 0o, fixr zg € X.
Example 5.10.
PWM(BMO*(X), BMO*(X)) = BMO (tog(d(ag,z)-+r-+1/r)) -1 (X) N L(X).

If X =R", d(z,y) = |x —y| and p is Lebesgue measure, then the example above
is Theorem 5.6.

Example 5.11. For 0 < 6 < a < ay,
PWM(BMO% (X),BMO%, (X)) =BMO .5 (X)NLsa(X).

(2+d(zq,z)+r)

Example 5.12. For 0 < a<ag, >0, B—a+4§ >0,

PWM(BMO®

(2+d(aco,a:)+7“)"‘(X)’ BMOH )8 (X))

(2+d($0,:17)+7‘
= BMO (2+d(a:0,x)+r)3*0‘ (X) ﬂ L(2+d($07$)+7,)67(1 (X).

log(d(xzq,z)+r+1/r)

Example 5.13. For 1 < p < oo,

PWM(BMO*(X), £?

v ~plog(d(zo,z)+r+1/7) (X)) = BMOh(X)

Example 5.14. Let w be an A,-weight on R". Then

o(a,r) = (/B(ayr)w(x) d:v)

satisfies four conditions in Theorem 5.7 for —1/(pp’) < a < 1/(np’), and is almost
increasing for v > 0. Let

¢i(@,7‘): (/ w(x)d:c) )i:1727 O<C¥2§Oél.
B(a,r)
Then (@5 + ®37)/¢2 < C(2] + @77)/¢1.

6. APPLICATIONS

In this section we state applications of pointwise multipliers on BMO(R").

6.1. Hardy-Littlewood maximal operator on LP()(R"). Let M be the Hardy-
Littlewood maximal operator, that is, for f € LIIOC(]R”),

M) = swp o [ 1) d,
B>z |B| /B
where the supremum is taken over all balls B containing x. For the definition of
LPO)(R™), see Example 4.1. Let By (R™) be the set of all variable exponents p(-)
such that M is bounded on LP¢)(R™). That is,

p() € Bu(R") <« M e B(LPY(R™).

Note that p(x) = 4X(—c0,0)(®) + 2X[0,00)(z) ¢ Bm(R) and p(z) = 3 + cos(27x) ¢
By (R).
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Remark 6.1 ( [24]). Let 1 < p_ < p4 < co. Then
M f(2)P@) dx: < C |f(@)P@) da for all f e LPO(R™),
R R
if and only if p(-) is a constant.
Recall that
LHy = {p(-) € L°(R™;R) : p(-) satisfies (5.6)},
LHy = {p(-) € L°(R™;R) : p(-) satisfies (5.7)},
LH =LHyNLH.

Diening [9] and Cruz-Uribe, Fiorenza and Neugebauer [6,7] proved the following
theorem:

Theorem 6.1 ([6,7,9]). Ifp(:) € LH and 1 < p_ < py < oo, then p(:) € By (R™).
On the other hand, Lerner [23] showed that, for p(-) € Bas(R™), we don’t need

the continuity of p(-) or existence of limj,_ p(z).

Theorem 6.2 ([23]). Let p(-) € LO(R™;R). If p(:) € PWM(BMO!(R™)), then

a+p(-) € By (R™) for some nonnegative constant c.
Let
g1(z) = sin (xp(0,1/e) () loglog(|z[ 1)),
g2(x) = sin (XB(O,e)C (z)loglog |:c|)
Then
g1 € PWM(BMO*(R™)) \ LHy,
g2 € PWM(BMO*(R™)) \ LHo.
The following inclusion relation is a special case of [55, Proposition 5.1].
LH = LHyN LH,, € PWM(BMO(R")).
We can also consider pointwise multipliers on martingale Campanato spaces and

their applications to the boundedness of the maximal operator, see [50-52].

6.2. Density of C35, (R™). For the density of CS5, (R™) in Sobolev spaces, the

comp comp

following theorem is known.

Theorem 6.3 ([54]). Let E(R™) be a subspace of Li _(R™). Assume the following
four conditions:

(1) xp € E(R™) for all open balls B C R™.
(2) If g € E(R™), f € L°(R™) and |f| < |g| a.e., then f € E(R").
() Ifg € BRY, fj € I°E) (= 1,2,..), [5] < gl ac. and im f; =0

a.e., then lim | f;[| pwn) = 0.
j—o0
(4) The Hardy-Littlewood mazimal operator M is bounded on E(R™).
Then C5(R™) is dense in E™(R™), the Sobolev space based on E(R™).

comp

Corollary 6.4. C°_ (R") is dense in WP (R™) if p(-) € By (R™), in particular,

comp

p(-) € PWM(BMO®(R™)) and p_ is large enough.
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6.3. Calderon-Zygmund operators.

Definition 6.1 (standard kernel of type w, see Yabuta [70]). Let w be a nonnegative
nondecreasing function on (0, 00) satisfying the Dini condition fol wt)t~tdt < .
A continuous function K (z,y) on R® x R™\ {(z,z) € R?"} is said to be a standard
kernel of type w if the following conditions are satisfied;

C
6.1 K(z,y)| < for « )
(61) K < #y

Ko 2 Kira ¢ (v~
|K(z,y) — K(z,2)| + |K(y, ) — K(2, )!S|x_y|n <|x_y|>

for 2y —z| <|z —yl.

(6.2)

Definition 6.2 (Calderén-Zygmund operator). A linear mapping T : S(R") —
S'(R™) is said to be a Calderén-Zygmund operator of type w, if T is bounded on
L?(R™) and there exists a standard kernel K of type w such that for f € R™),

Comp(
(6.3) Tf(x) = A K(z,y)f(y)dy, = ¢&suppf.
Let CZO(w) be the set of all Calderén-Zygmund operators of type w.

It is known that (Yabuta [70])

CzOW) C [ () BIP®") | N BL'R"), Lo (R™).

1<p<oo

Let M* be the sharp maximal operator that is, for f € L _(R"),
MF f(2) = sup — / |f(y) = f5ldy,
B>z ‘B|
where the supremum is taken over all balls B containing z. Alvarez and Pérez [3]
proved that, if » € (1,00), then
(6.4) (MH(|T 1Y) ()" < Cp M f(x)
for all f € Cg,,p(R”) and = € R". Diening and Ruzicka [8] proved that, if p(-) €
By (R") and py < oo, then, for f € LPO(R™),

CHIf oy < NIMFFlloey < ClL oo

Hence, for f € R™),

comp(
ITf o = T A1 W mer < CUIMEAT 1Y)
< CIMAY NG mey = CIM Fll ooy < ClLE Nl Lot
By the density of Cg5,,,(R") in LPO)(R™), we have the following theorem.

Theorem 6.5 ([8]). Let p(:) € By (R™) and 1 < p_ < p;y < co. Then CZO(w) C
B(LPO)(R™)).

Corollary 6.6. Ifp(-) € PWM(BMO?(R™)) and p_ is large enough, then CZO(w) C
B(LPO)(R™)).
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6.4. Hardy-Littlewood maximal operator on BMO(R"). The following two
theorems were proven by Bennett, DeVore and Sharpley [5] and Bennett [4], re-
spectively.

Theorem 6.7 ([5]). For f € BMO(R"), if M f is not identically infinite, then
M f € BMO(R"™) and

1M flBmocrr) < cll fllBMOERR)-

Theorem 6.8 ([4]). For f € BMO(R"), if M f is not identically infinite, then
M f € BLO(R"™) and

M fllBLo®n) < cllfllBMO®RR):

where

I fllBLo®r) = sgp Kl?‘ /Q(f(:n) — enginf f)dx.

In the above theorems, R™ can be replaced by a cube Qg C R". To make sure
that Theorem 6.8 is an improvement of Theorem 6.7, we must fined a function
f € BMO(R"™) such that f > 0, supp f is compact and f & BLO(R™).

Theorem 6.9 ( [28]). For z € R, let

ﬂ@:{bQW$M if |z <2,

0, if x| > 2,
1
dt
m11+/, if |z <1,
g(w) = ( 12| thg(Q/t)>
sinl, if x| > 1.

Then |fg| € BMO(R), but |fg| ¢ BLO(R).

Proof. From f € BMO(R) and ¢ € PWM(BMO(R")), it follows that fg and |fg|
are in BMO(R). But an elementary calculation shows that |fg| € BLO(R). O

For the martingale BMO, we also have a similar result, see [52].

7. BESOV AND TRIEBEL-LIZORKIN SPACES

In this section we give some known results of type
PWM(El, EQ) D Ej,

for Besov and Triebel-Lizorkin spaces, where ” D” indicates a continuous embedding.
For the properties of Besov and Triebel-Lizorkin spaces, see [27,61,67-69], etc.

Let S(R™) be the Schwartz space of all complex-valued rapidly decreasing infin-
itely differentiable functions on R"™. By S’(R™) we denote its topological dual, the
space of tempered distributions. If ¢ € S then

Folx) = (2m) /2 / I G(E) de, xR

n
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denotes the Fourier transform Fy of ¢. As usual, F~ 'y means the inverse Fourier
transform of . Both, F, F~! are extended to S’(R") in the standard way. Let
1 € S(R™) be a non-negative function with

{Wg) =1 if|z| <1,

e R".
b(x) =0 if|z|>3/2,

(7.1)

For f € &, let
Fx)=F p@R7OFFO)), 7=01,2,....

Then fJ is an entire analytic function of exponential type. Hence, the pointwise
product f7¢’ makes sense for any j and any f,g € S’. We define

fg=lim fi¢ ind,
Jj—o0
whenever this limit exists. In the following theorems the limit element of f7g7 is

independent of the choice of .
Let 1 be the function defined in (7.1), and let

Yo(z) = ¢(x),
Vi(z) = ¢(x/2) — (), r € R™
Yr(z) =1 (27F ), k=2,3,...,

Definition 7.1. For p,q € (0,00] and s € R, let

B3, (R") = {f € S'R"): |3z, e0) < o0},

where
o 1/q
sJ —1 q
HfHng(R") = z% 2°74 HF [(pjff](')HLp(Rn) )
J:
(usual modification if ¢ = 00).
Definition 7.2. For p € (0,00), ¢ € (0,00] and s € R, let
F3 (R = {f € S'R™): |[flig () < o0,
where
o 1/q
s, = || | 329991 F s P11 |
7=0 LP(R™)

(usual modification if ¢ = 00).

The spaces B, (R") and F;, (R") are independent of the choice of 1. Recall some
special cases:

o Fy(R") = LP(R™), p € (1,00) (Lebesgue spaces),

o [5(R") =W (R"), p€(1,00), s €N (Sobolev spaces),

o [5(R") = Hy(R"), p € (1,00), s € R (fractional Sobolev spaces),
° FS,Q(RTL) = hp(R™), p € (0,00) (inhomogeneous Hardy spaces),

e B (R"), pe(l,00), q€[l,00], s € (0,00) (classical Besov spaces),
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o B3, (R") =C°(R"), s € (0,00) (Holder-Zygmund spaces).

The following theorem is one of main results in [63].

Theorem 7.1 (Sickel and Triebel [63], 1995). Let p; € (0,00), ¢; € (0,00], i =
1,2,3, and s € R. Assume that

1 1 1 1 1
== -250,i=1,23, and —+—=—<1.
T 2 n ™ 3 T2
Then
PWM(B: ., BS ) > B

p1,91° P2,92 P3,493
— 0<q <71, 0< g3 <73 and max(q1,q3) < g2 < 00,

and

PWM(FS ,  FS )D F*

p1.a10 T'p2,q2 pasgs = max(qi,q3) < g2 < 0.

If PWM(E) D E, then E is an algebra (multiplicative algebra). Let C°(R") be
the set of all complex-valued bounded and uniformly continuous functions on R”
with norm || f|| o (rr)-

Theorem 7.2 (Triebel [66], 1978). Let p,q € (0,00] and s € R. The following are
equivalent:
(i) PWM(BS,,(R™) O BS,(R™).
(ii) Bs,(R™) C CO(R™).
(iii) either 0 <p <o0,0< g <00, s>n/p
or0<p<oo,0<qg<1,s=n/p.

Theorem 7.3 (Franke [11], 1986). Let p € (0,00), ¢ € (0,00] and s € R. The
following are equivalent:
(i) PWM(E;, (R™)) D F3, (R").
.o 0
(ii) F,,(R™) C C°(R™).
(iii) either 0 <p < oo, 0 < g <00, s>n/p
or0<p<1,0<q<o0, s=n/p.
Theorem 7.3 contains Strichartz’s result in [65] (1967):
PWM(H,(R")) D Hy(R™) for s >n/p, 1 <p < oo.

For other results, see [12,14,62,63,67] and their references.
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