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For p ∈ (0,∞], Lp(Ω) denotes the usual Lebesgue space equipped with the norm

∥f∥Lp(Ω) =

(∫
Ω
|f(x)|p dµ(x)

)1/p

, if p ̸= ∞,

∥f∥L∞(Ω) = ess sup
x∈Ω

|f(x)|.

Then Lp(Ω) is a complete quasi-normed space (quasi-Banach space). If p ∈ [1,∞],
then it is a Banach space. It is well known as Hölder’s inequality that

∥fg∥Lp2 (Ω) ≤ ∥f∥Lp1 (Ω)∥g∥Lp3 (Ω),

for 1/p2 = 1/p1 + 1/p3 with pi ∈ (0,∞], i = 1, 2, 3. This shows that

PWM(Lp1(Ω), Lp2(Ω)) ⊃ Lp3(Ω).

Conversely, we can show the reverse inclusion by using the uniform boundedness
theorem or the closed graph theorem. That is,

(1.1) PWM(Lp1(Ω), Lp2(Ω)) = Lp3(Ω).

If p1 = p2 = p, then

(1.2) PWM(Lp(Ω)) = L∞(Ω).

Proofs of (1.1) and (1.2) are in Maligranda and Persson [35, Proposition 3 and
Theorem 1]. See Theorem 3.1 in Section 3 for (1.2).

In this paper we give proofs of (1.1), (1.2) and their generalization, see Section 3.
By the generalization we have, for example,

PWM(Lp1,∞(Ω), Lp2,∞(Ω)) = Lp3,∞(Ω),

for 1/p2 = 1/p1 + 1/p3 with pi ∈ (0,∞], i = 1, 2, 3, where Lpi,∞(Ω) are the weak
Lebesgue spaces.

On the other hand, the results in Section 3 cannot be applied to BMO(Ω). In
1976 Stegenga [64] and Janson [15] gave the characterization of PWM(BMO(Ω))
for Ω = T and Ω = Tn, respectively. After then the history is the following:

• Nakai and Yabuta [55] (1985) for Ω = Rn.
• Nakai and Yabuta [56] (1997) and Nakai [41] (1997) for spaces of homoge-
neous type (Ω, d, µ).

• Liu and Da. Yang [29] (2014) for (Rn, µ) with the Gauss measure.
• Nakai and Sadasue [51] (2014) for probability spaces (Ω,F , P ).
• Li, Nakai and Do. Yang [26] (preprint) for (Rn, µ) with non-doubling mea-
sures.

The result of PWM(BMO(Rn)) was used by Lerner [23] to show the boundedness of

the Hardy-Littlewood maximal operator on generalized Lebesgue spaces Lp(·)(Rn)
with variable exponent.

To characterize the pointwise multipliers on BMO(Rn) in [55] we introduced the
function space BMOϕ(Rn) with

ϕ(x, r) =
1

log(r + 1/r + |x|)
, x ∈ Rn, r ∈ (0,∞).

This function space was extended to generalized Morrey-Campanato spaces with
variable growth condition, see [37,38,41–44,46,47,56], etc.
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The paper is organized as follows. In Section 2 we give basic properties of point-
wise multipliers in which we do not always assume the lattice property. In Section 3
we give the characterization of pointwise multipliers on function spaces with the
lattice property. We state the results on pointwise multipliers on Lorentz, Orlicz,
Musielak-Orlicz and Morrey spaces in Sections 4 and BMO and Campanato spaces
in Section 5. Then we give some applications of pointwise multipliers on BMO in
Section 6. Finally, we give some results for Besov and Triebel-Lizorkin spaces in Sec-
tion 7 with the definition of pointwise multiplication fg for tempered distributions
f and g.

2. Basic properties of pointwise multipliers

In this paper we always assume that the function spaces E ⊂ L0(Ω) have the
following property, see Kantorovich and Akilov’s book [18, pages 94] in which this
property is referred to as suppE = Ω:

(2.1) If a measurable subset Ω1 ⊂ Ω satisfies that

µ({x ∈ Ω : f(x) ̸= 0} \ Ω1) = 0 for every f ∈ E,

then µ(Ω \ Ω1) = 0.

Recall that a subspace E ⊂ L0(Ω) (which is not necessary to be equipped with a
norm or quasi-norm) is an ideal space if

(2.2) f ∈ E, h ∈ L0(Ω), |h| ≤ |f | a.e. =⇒ h ∈ E.

The following is a basic property of ideal spaces.

Proposition 2.1 ( [18, Corollary 2 on page 95]). If E is an ideal space, then from
the assumption (2.1) it follows that there exists a partition {Ωm} of Ω such that
each Ωm is a measurable set with finite measure and that the characteristic function
of Ωm is in E.

For pointwise multipliers on ideal spaces we have the following simple proposi-
tions.

Proposition 2.2. Let E ⊂ L0(Ω) be a subspace. Then E is an ideal space if and
only if L∞(Ω) ⊂ PWM(E).

Proof. Let L∞(Ω) ⊂ PWM(E). If f ∈ E, h ∈ L0(Ω), |h| ≤ |f | a.e., then

g(x) =

{
h(x)/f(x), if f(x) ̸= 0,

0, if f(x) = 0

is in L∞(Ω) and h = fg ∈ E. Conversely, let E be an ideal space. If g ∈ L∞(Ω)
and α = ∥g∥L∞(Ω), then, for all f ∈ E, |fg| ≤ |αf | a.e. and αf ∈ E. Hence fg ∈ E.
That is, L∞(Ω) ⊂ PWM(E). □

Proposition 2.3. Let E ⊂ L0(Ω) be a subspace. If E is an ideal space, then
PWM(L∞(Ω), E) = E.
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Proof. Let g ∈ PWM(L∞(Ω), E). Then g = 1g ∈ E, since the constant function 1
is in L∞(Ω). Conversely, let g ∈ E. Then, for all f ∈ L∞(Ω) with α = ∥f∥L∞(Ω),
|fg| ≤ |αg| a.e. and αg ∈ E. Hence fg ∈ E by the ideal property. That is,
g ∈ PWM(L∞(Ω), E). □

Next, recall that ∥·∥ is a quasi-norm on a linear space E if there exists κ ∈ [1,∞)
such that, for all f, g ∈ E and scalars α,

(i) ∥f∥ ≥ 0, ∥f∥ = 0 if and only if f = 0,
(ii) ∥αf∥ = |α|∥f∥,
(iii) ∥f + g∥ ≤ κ(∥f∥+ ∥g∥).

If κ = 1, then ∥ · ∥ is a norm. For any quasi-norm ∥ · ∥, there exists a metric d(f, g)
depending only on f − g such that

(2.3) d(f, g) ≤ ∥f − g∥p ≤ 2d(f, g),

where 0 < p ≤ 1, κ = 2(1/p)−1. Actually, letting

(2.4) d0(f) = inf

∑
j

∥fj∥p : f =
∑
j

fj(finite sum)


and d(f, g) = d0(f − g), we have that

(2.5) d0(f) ≤ ∥f∥p ≤ 2d0(f)

and (2.3). See for example [21, Theorem 1.12 on page 12] and [17, Theorem 1.2 on
page 5]. If we take

∥f∥1 = inf


∑

j

∥fj∥p
1/p

: f =
∑
j

fj(finite sum)

 ,

then ∥f∥1 is p-subadditive and this is just the Aoki-Rolewicz theorem (see [59,
pages 92–93], [17, page 7], [60, pages 95-96], [32, page 86] and [33, pages 6–8]. In
the last two publications it is even written history of this theorem). We also note
the following properties on d0 in (2.4):

(i) d0(f) ≥ 0, d0(f) = 0 ⇔ f = 0.
(ii) d0(f) = d0(−f).
(iii) d0(f + g) ≤ d0(f) + d0(g).
(iv) lim

αn→0
d0(αnf) = 0, lim

∥fn∥→0
d0(αfn) = 0.

Let E1, E2 ⊂ L0(Ω) be quasi-normed spaces. Then we say that g ∈ PWM(E1, E2)
is a bounded operator if there exists a positive constant β such that

∥fg∥E2 ≤ β∥f∥E1 for all f ∈ E1.

In this case, we define the operator norm of g ∈ PWM(E1, E2) as

∥g∥Op = inf{β > 0 : ∥fg∥E2 ≤ β∥f∥E1 for all f ∈ E1}.

Note that g ∈ PWM(E1, E2) is a bounded operator if and only if g is a continuous
operator from E1 to E2.
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Let E ⊂ L0(Ω) be a quasi-normed space, which is not necessary to be an ideal
space. In this paper we say that E has the subsequence property if

(2.6) fj → f in E (j → ∞) =⇒
∃{fj(k)} (subsequence) s.t. fj(k) → f a.e. (k → ∞).

The following is a basic property of the pointwise multipliers.

Theorem 2.4. Let E1, E2 ⊂ L0(Ω) be complete quasi-normed spaces, which are not
necessary to be ideal spaces. If both E1 and E2 have the subsequence property (2.6),
then each g ∈ PWM(E1, E2) is a bounded operator.

Proof. Let g ∈ PWM(E1, E2), and let fj → f in E1 and fjg → h in E2. Then there
exists a subsequence {fj(k)} such that fj(k) → f a.e. Moreover, since fj(k)g → h in
E2, there exists a subsequence {fj(k(ℓ))g} such that fj(k(ℓ))g → h a.e. On the other
hand, fj(k)g → fg a.e. Then h = fg a.e. That is, g has a closed graph. Hence it is
a bounded operator by the closed graph theorem. See for example [72, Theorem 1
on page 79] for the closed graph theorem. □

Let A ⊂ Ω be a measurable set. Recall that fj → f in measure on A if, for all
ϵ > 0,

µ({x ∈ A : |fj(x)− f(x)| > ϵ}) → 0 (j → ∞).

Let Ω =
∪
mΩm with µ(Ωm) <∞, m = 1, 2, . . . , and let fj ∈ L0(Ω), j = 1, 2, . . . .

It is known from the measure theory that, if fj → f in measure on Ωm for each m,
then there exists a subsequence fj(k) such that fj(k) → f a.e. Hence, we have the
following theorem which doesn’t use the ideal property.

Theorem 2.5. Let E ⊂ L0(Ω) be a quasi-normed space. Assume that there exists
a sequence of subsets Ωm ⊂ Ω with Ω =

∪
mΩm and µ(Ωm) < ∞, m = 1, 2, . . . ,

such that, for any sequence of functions fj ∈ E, j = 1, 2, . . . ,

(2.7) fj → 0 in E =⇒ fj → 0 in measure on Ωm for each m.

Then E has the subsequence property (2.6).

Corollary 2.6. Let Ei ⊂ L0(Ω), i = 1, 2, be complete quasi-normed spaces. Assume
that there exists a sequence of subsets Ωm ⊂ Ω with Ω =

∪
mΩm and µ(Ωm) < ∞,

m = 1, 2, . . . , such that both E1 and E2 have the property (2.7). Then all g ∈
PWM(E1, E2) are bounded operators.

We say that a quasi-normed space E has the lattice property if the following
holds:

(2.8) f ∈ E, h ∈ L0(Ω), |h| ≤ |f | a.e. =⇒ h ∈ E, ∥h∥E ≤ ∥f∥E .
We don’t use the lattice property in Theorem 2.5 or Corollary 2.6. On the other

hand, using the lattice property, we have the following theorem which is an extension
of [18, Theorem 1 on page 96] which is for normed spaces, see at the end of this
section for the proof.

Theorem 2.7. Let a quasi-normed space E ⊂ L0(Ω) have the lattice property (2.8).
For any sequence of functions fj ∈ E, j = 1, 2, . . . , if fj → 0 in E, then fj → 0 in
measure on every measurable set with finite measure.
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Corollary 2.8. If E1 and E2 are quasi-Banach ideal spaces (that is, complete quasi-
normed spaces with the lattice property), then all g ∈ PWM(E1, E2) are bounded
operators.

Remark 2.1. Theorems 2.5 and 2.7 and Corollaries 2.6 and 2.8 are all applicable
to Lebesgue, Orlicz, Musielak-Orlicz, Lorentz and Morrey spaces, etc. However,
for BMO and Campanato spaces, we can use only Theorem 2.5 and Corollary 2.6.
Actually, BMO and Campanato spaces don’t have the lattice property (2.8), while
they have the property (2.7), see Proposition 5.5 in which we can take balls with
radius 2m as Ωm.

For a quasi-normed space E ⊂ L0(Ω) with the lattice property and for a positive

constant θ, let Eθ = {f ∈ L0(Ω) : |f |θ ∈ E} and ∥f∥Eθ = (∥|f |θ∥E)1/θ. Then Eθ is
a quasi-normed space with the lattice property. If E is a normed space and θ ≥ 1,
then Eθ is also a normed space. It is easy to show that the following proposition
holds.

Proposition 2.9 ([35, (g) on page 326]). Let Ei ⊂ L0(Ω) (i = 1, 2, 3) be quasi-
normed spaces with the lattice property. If PWM(E1, E2) = E3 and 0 < θ < ∞,
then PWM(Eθ1 , E

θ
2) = Eθ3 .

At the end of this section we prove Theorem 2.7. The proof is almost same as
Kantorovich and Akilov’s book [18, page 96].

Proof of Theorem 2.7. By Proposition 2.1 there exists a partition {Ωm}m of Ω such
that µ(Ωm) < ∞ and χΩm ∈ E. If fj → f in measure on Ωm for each m, then,
for any measurable set A with finite measure, fj → f in measure on A. Actually,
µ(A) =

∑
m µ(A ∩ Ωm) < ∞ implies that, for each ϵ > 0 and δ > 0, there exists

m0 ∈ N such that ∑
m>m0

µ(A ∩ Ωm) < δ,

and there exists j0 ∈ N such that, if j ≥ j0 then

µ({x ∈ Ωm : |fj(x)− f(x)| > ϵ}) < δ/m0 m = 1, 2, . . . ,m0.

Therefore,

µ({x ∈ A : |fj(x)− f(x)| > ϵ})

≤
∑
m≤m0

µ({x ∈ Ωm : |fj(x)− f(x)| > ϵ}) +
∑
m>m0

µ(A ∩ Ωm) < 2δ.

Moreover, since fj → f in E implies fjχΩm → fχΩm in E, we may assume that
µ(Ω) <∞ and the function 1 is in E.

In the following, we prove that fj → f in E and fj ̸→ f in measure on Ω yield a
contradiction. By passing to a subsequence if necessary, we may also assume that
there exist numbers ϵ, δ > 0 such that the following conditions are satisfied for all
j ∈ N:

µ({x ∈ Ω : |fj(x)− f(x)| > ϵ}) ≥ δ,(2.9)

∥fj − f∥ < ϵ/2j .(2.10)
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Write

(2.11) Bj = {x ∈ Ω : |fj(x)− f(x)| > ϵ}, B =

∞∩
j=1

∞∪
k=j+1

Bk.

By (2.9) we have

(2.12) µ(Bj) ≥ δ (j ∈ N), µ(B) ≥ δ.

By (2.10), bearing in mind that ϵχBj ≤ |fj − f |, we have

(2.13) ∥χBj∥ < 1/2j .

We now introduce the sets

Cj,s =

j+s∪
k=j+1

(Bk ∩B) ⊂ B.

Then for every j ∈ N the sequence {Cj,s}s is non-decreasing and, by (2.11),

B =

∞∪
s=1

Cj,s.

Hence for each j ∈ N there exists a suffix sj such that

(2.14) µ(B \ Cj,sj ) < 1/2j+1.

Write

Dj =
∞∩

k=j+1

Ck,sk .

Then Dj ⊂ B and the sequence {Dj}j is clearly non-decreasing. Since

B \Dj = B \
∞∩

k=j+1

Ck,sk =
∞∪

k=j+1

(B \ Ck,sk),

we see from (2.14) that

µ(B \Dj) =

∞∑
k=j+1

µ(B \ Ck,sk) < 1/2j .

Therefore µ(B \ (
∪∞
j=1Dj)) = 0. Let d0 and p be as in (2.4) and (2.5). By (2.13),

when k > j we have

∥∥χDj∥∥p ≤ ∥∥∥χCk,sk∥∥∥p ≤
∥∥∥∥∥
k+sk∑
i=k+1

χBi

∥∥∥∥∥
p

≤ 2 d0

(
k+sk∑
i=k+1

χBi

)

≤ 2

k+sk∑
i=k+1

d0 (χBi) ≤ 2

k+sk∑
i=k+1

∥χBi∥
p <

2

1− 1/2p
1

2p(k+1)
,

so that χDj = 0, that is, µ(Dj) = 0. Therefore µ(B) = 0, contradicting (2.12). □
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3. Pointwise multipliers on function spaces with the lattice property

Recall that E is a Banach (or quasi-Banach) ideal space if E is a complete normed
(or quasi-normed) space with the lattice property (2.8).

General properties of the space of pointwise multipliers PWM(E1, E2) for Banach
ideal spaces E1, E2 were studied by Maligranda and Persson [35, pp. 326–330], and
Kolwicz, Leśnik and Maligranda [19, pp. 879–880]. For symmetric Banach spaces
(that is, rearrangement invariant spaces) E1, E2 they were proved by Kolwicz,
Leśnik and Maligranda [19, pp. 881–887]. For ideal Banach spaces, the following
result is known and it was proved by Maligranda and Persson [35].

Theorem 3.1 ([35]). If E ⊂ L0(Ω) is a Banach ideal space, then

PWM(E) = L∞(Ω).

Remark 3.1. (i) In [35] they also proved that PWM(E, [E]) = L∞(Ω), where [E] is
the maximal normed extension of E in the sense of Abramovič. That is,

[E] =
{
f ∈ L0(Ω) : ∥f∥[E] = sup{∥g∥E : g ∈ E, 0 ≤ g ≤ |f |} <∞

}
.

(ii) The proof of Theorem 3.1 adapts to ideal quasi-Banach spaces.

As mentioned in Section 1, Hölder’s inequality

∥fg∥Lp2 (Ω) ≤ ∥f∥Lp1 (Ω)∥g∥Lp3 (Ω)

implies
PWM(Lp1(Ω), Lp2(Ω)) ⊃ Lp3(Ω),

for 1/p2 = 1/p1 + 1/p3 with pi ∈ (0,∞], i = 1, 2, 3. The reverse inclusion can be
shown by using the uniform boundedness theorem or the closed graph theorem. The
following theorem is an extension of

PWM(Lp1(Ω), Lp2(Ω)) = Lp3(Ω)

for general quasi-normed spaces by using the uniform boundedness theorem.

Theorem 3.2 (cf. [39]). Let Ei ⊂ L0(Ω), i = 1, 2, 3. Suppose that E1 is a complete
quasi-normed space with the lattice property, that E2 is a quasi-normed space with
the lattice property, that E3 is a quasi-normed space with the monotone completeness
property;

(3.1) fj ∈ E (j = 1, 2 . . . ), fj ≥ 0, fj ↗ f a.e. and sup
j

∥fj∥E <∞,

=⇒ f ∈ E3.

Suppose also that there exists Ωm ⊂ Ω, m = 1, 2, . . . , such that

(3.2) µ(Ωm) <∞, Ω1 ⊂ Ω2,⊂ . . . , Ω =
∪
m

Ωm,

and that

(3.3) {f ∈ L∞(Ω) : {f ̸= 0} ⊂ Ωm for some m} ⊂ E3.

If
PWM(E1, E2) ⊃ E3,
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and if all g ∈ E3 are bounded operators as elements in PWM(E1, E2) and

C−1∥g∥E3 ≤ ∥g∥Op ≤ C∥g∥E3

holds for all g ∈ E3 and some positive constant C independent of g, then

PWM(E1, E2) = E3.

Remark 3.2. (i) If E3 has the lattice property, then by Proposition 2.1 we can take
Ωm, m = 1, 2, . . . , which satisfy (3.2) and (3.3).
(ii) From the conclusion of Theorem 3.2 it follows that, for every g ∈ PWM(E1, E2),
its operator norm is equivalent to ∥g∥E3 .

Proof of Theorem 3.2. Let g ∈ PWM(E1, E2). By the lattice property of E2, the
real and imaginary parts of g and their positive and negative parts are also in
PWM(E1, E2). Then it is enough to prove the case g ≥ 0, since E3 is a linear space.
Let

gj(x) =


0 x ∈ Ω \ Ωj ,
g(x) x ∈ Ωj and |g(x)| ≤ j,

j x ∈ Ωj and |g(x)| > j,

for j = 1, 2, . . . .

Then, for any f ∈ E1, we have fg ∈ E2 and |fgj | ≤ |fg|. It follows from the lattice
property that

∥fgj∥E2 ≤ ∥fg∥E2 (j = 1, 2, . . . ).

By the uniform boundedness theorem and the assumption, we have

sup
j

∥gj∥Op <∞ and sup
j

∥gj∥E3 <∞.

Therefore the monotone completeness property implies that g is in E3. Note that
a complete quasi-normed space is a complete quasi metric space and it cannot
express as a countable union of closed subsets each of which does not contain non-
empty open set. Thus we can apply the uniform boundedness theorem to our case,
see [72, Theorem 1 in page 68]. □

Corollary 3.3. Let E ⊂ L0(Ω) be a quasi-Banach space. Then

(3.4) PWM(E) = L∞(Ω) and ∥g∥Op = ∥g∥L∞(Ω),

if and only if E has the lattice property (2.8).

The first part of the following proof is the same as in [22,35,39].

Proof of Corollary 3.3. Assume that E is a quasi-Banach space with the lattice
property. Note that L∞(Ω) has the monotone completeness property and contains
all finitely simple functions. Let g ∈ L∞(Ω). Then by the lattice property of E we
have that g ∈ PWM(E) and ∥g∥Op ≤ ∥g∥L∞(Ω). If g = 0, then ∥g∥Op = ∥g∥L∞(Ω) =
0. If g ∈ L∞(Ω) and g ̸= 0, for any η such that 0 < η < ∥g∥L∞(Ω), choose Ωm in
Proposition 2.1 such that χΩm ∈ E and that

0 < µ(Aη ∩ Ωm) <∞, Aη = {x ∈ Ω : |g(x)| > η},
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and let hη be the characteristic function of Aη ∩ Ωm. Then hη ∈ E by the lattice
property. From the inequality η|hη| ≤ |hηg| a.e. it follows that

η ≤ ∥hηg∥E
∥hη∥E

≤ ∥g∥Op.

This shows that ∥g∥Op = ∥g∥L∞(Ω) for all g ∈ L∞(Ω). Then PWM(E) = L∞(Ω) by
Theorem 3.2.

Conversely, assume (3.4). Let f ∈ E, h ∈ L0(Ω), |h| ≤ |f | a.e. Then, letting

g(x) =

{
h(x)/f(x), if f(x) ̸= 0,

0, if f(x) = 0,

we have ∥g∥Op = ∥g∥L∞(Ω) ≤ 1 and

∥h∥E = ∥fg∥E ≤ ∥g∥Op∥f∥E ≤ ∥f∥E .

Hence, E has the lattice property. □

A quasi-normed space E has the Fatou property if

(3.5) fj ∈ E (j = 1, 2 . . . ), fj ≥ 0, fj ↗ f a.e. and sup
j

∥fj∥E <∞,

=⇒ f ∈ E and ∥f∥E ≤ sup
j

∥fj∥E .

Theorem 3.4. Let Ei ⊂ L0(Ω), i = 1, 2, 3, be quasi-Banach ideal spaces. Assume
that E3 has the Fatou property (3.5). If generalized Hölder’s inequality

(3.6) ∥fg∥E2 ≤ C∥f∥E1∥g∥E3 , f ∈ E1, g ∈ E3,

holds, and if, for any finitely simple function g contained in E3 with g ̸= 0, there
exists f ∈ E1 with f ̸= 0 such that

(3.7) ∥fg∥E2 ≥ C ′∥f∥E1∥g∥E3 ,

then

PWM(E1, E2) = E3 and C ′∥g∥E3 ≤ ∥g∥Op ≤ C∥g∥E3 .

We give two kinds of proofs. The first proof uses Theorem 3.2 (the uniform
boundedness theorem) and the second uses Corollary 2.8 (the closed graph theorem).

The first proof of Theorem 3.4. Generalized Hölder’s inequality (3.6) shows that

PWM(E1, E2) ⊃ E3, ∥g∥Op ≤ C∥g∥E3 .

For g ∈ E3, take a sequence of finitely simple functions gj ∈ E3, j = 1, 2, . . . , such
that gj ↗ |g|. Then by (3.7), the lattice property of E2 and the Fatou property of
E3 we have

C ′∥gj∥E3 ≤ ∥gj∥Op ≤ ∥g∥Op and C ′∥g∥E3 ≤ ∥g∥Op for all g ∈ E3.

Therefore, we have the conclusion by Theorem 3.2. □
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The second proof of Theorem 3.4. Generalized Hölder’s inequality (3.6) shows that

PWM(E1, E2) ⊃ E3, ∥g∥Op ≤ C∥g∥E3 .

Conversely, let g ∈ PWM(E1, E2). Then g is a bounded operator by Corollary 2.8.
By Proposition 2.1 we can take a sequence of finitely simple functions gj ∈ E3,
j = 1, 2, . . . , such that gj ↗ |g| a.e. Then by (3.7) and the lattice property of E2

we have

C ′∥gj∥E3 ≤ ∥gj∥Op ≤ ∥g∥Op.

Then by the Fatou property of E3 we have g ∈ E3 and

C ′∥g∥E3 ≤ ∥g∥Op.

Therefore we have the conclusion. □

Example 3.1. Let pi ∈ (0,∞] (i = 1, 2, 3) and 1/p1 + 1/p3 = 1/p2. Then

(3.8) PWM(Lp1(Ω), Lp2(Ω)) = Lp3(Ω) and ∥g∥Op = ∥g∥Lp3 (Ω).

Actually, by Hölder’s inequality, we have

∥fg∥Lp2 (Ω) ≤ ∥f∥Lp1 (Ω)∥g∥Lp3(Ω), f ∈ Lp1(Ω), g ∈ Lp3(Ω).

If p3 ̸= ∞, then for any g ∈ Lp3(Ω) with g ̸= 0, take f = |g|p3/p1 (f = 1 if p1 = ∞).
Then f ∈ Lp1(Ω) and

∥fg∥Lp2 (Ω) = ∥f∥Lp1 (Ω)∥g∥Lp3 (Ω).

If p3 = ∞ and p1 = p2, then taking hη as in the proof of Corollary 3.3, we have

∥hηg∥Lp2 (Ω) ≥ η∥hη∥Lp1 (Ω) =
η

∥g∥L∞(Ω)
∥hη∥Lp1 (Ω)∥g∥L∞(Ω),

for any η with 0 < η < ∥g∥L∞(Ω). Then we have (3.8) by Theorem 3.4. (In case of
p3 = ∞ and p1 = p2 the conclusion (3.8) also follows from Corollary 3.3).

4. Lorentz, Orlicz and Morrey spaces

In this section we state results on Lorentz, Orlicz, Musielak-Orlicz and Morrey
spaces without proofs. These function spaces have the lattice property.

4.1. Lorentz spaces. Let Ω = (Ω, µ) be a complete σ-finite measure space. For
f ∈ L0(Ω) and s, t ∈ [0,∞), let

µ(f, s) = µ({x ∈ Ω : |f(x)| > s}),
f∗(t) = inf{s > 0 : µ(f, s) ≤ t}.

Definition 4.1 (Lorentz space). For p, q ∈ (0,∞], let Lp,q(Ω) be the set of all
f ∈ L0(Ω) such that ∥f∥Lp,q(Ω) <∞, where

∥f∥Lp,q(Ω) =


(∫ ∞

0
t(q/p)−1(f∗(t))q dt

)1/q

, 0 < p ≤ ∞, 0 < q <∞,

sup
t>0

t1/pf∗(t), 0 < p ≤ ∞, q = ∞.
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Then ∥ · ∥Lp,q(Ω) is a quasi-norm and thereby Lp,q(Ω) is a complete quasi-normed
linear space with the lattice property and the Fatou property. If p = ∞ and
0 < q <∞, then Lp,q(Ω) = {0}. Note that

Lp,p(Ω) = Lp(Ω) and ∥f∥Lp,p(Ω) = ∥f∥Lp(Ω), 0 < p ≤ ∞.

By the inequality (fg)∗(t) ≤ f∗(t/2)g∗(t/2) and Hölder’s inequality we have the
following proposition:

Proposition 4.1. Let pi ∈ (0,∞), qi ∈ (0,∞] (i = 1, 2, 3). If 1/p1 + 1/p3 = 1/p2
and 1/q1 + 1/q3 = 1/q2, then

∥fg∥Lp2,q2(Ω) ≤ 21/p2∥f∥Lp1,q1 (Ω)∥g∥Lp3,q3 (Ω).

If 1/p1 + 1/p3 = 1/p2 and p1/q1 = p2/q2 = p3/q3, then, for g ∈ Lp3,q3(Ω), setting

f = |g|p3/p1 , we have

∥fg∥Lp2,q2 (Ω) = ∥f∥Lp1,q1 (Ω)∥g∥Lp3,q3 (Ω).

By Theorem 3.4 we have the following theorem:

Theorem 4.2 ([40]). Let pi ∈ (0,∞) and qi ∈ (0,∞]. If 1/p1 + 1/p3 = 1/p2 and
p1/q1 = p2/q2 = p3/q3, then

PWM(Lp1,q1(Ω), Lp2,q2(Ω)) = Lp3,q3(Ω).

and

∥g∥Lp3,q3 (Ω) ≤ ∥g∥Op ≤ 21/p2∥g∥Lp3,q3(Ω).

Remark 4.1. In the above, if p2 ≥ q2, then we have ∥g∥Lp3,q3 (Ω) = ∥g∥Op, see [39].

4.2. Orlicz and Musielak-Orlicz spaces. Let Φ̄ be the set of all functions Φ :
[0,∞] → [0,∞] such that

(4.1) lim
t→0+0

Φ(t) = Φ(0) = 0 and lim
t→∞

Φ(t) = Φ(∞) = ∞.

Let

a(Φ) = sup{r ≥ 0 : Φ(r) = 0}, b(Φ) = inf{r ≥ 0 : Φ(r) = ∞}.

Definition 4.2. A function Φ ∈ Φ̄ is called a Young function (or sometimes also
called an Orlicz function) if Φ is nondecreasing on [0,∞) and convex on [0, b(Φ)),
and

lim
r→b(Φ)−0

Φ(r) = Φ(b(Φ)) (≤ ∞).

We denote by ΦY the set of all Young functions. Any Young function is neither
identically zero nor identically infinity on (0,∞).

Let Ω = (Ω, µ) be a complete σ-finite measure space.

Definition 4.3 (Orlicz space). For a Young function Φ, let

LΦ(Ω) =

{
f ∈ L0(Ω) :

∫
Ω
Φ(k|f(x)|) dµ(x) <∞ for some k > 0

}
,

∥f∥LΦ = inf

{
λ > 0 :

∫
Ω
Φ

(
|f(x)|
λ

)
dµ(x) ≤ 1

}
.
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Then ∥f∥LΦ is a norm and thereby LΦ(Ω) is a Banach space.
For example, if Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Ω) = Lp(Ω). If Φ(r) = 0 (0 ≤

r ≤ 1) and Φ(r) = ∞ (r > 1), then LΦ(Ω) = L∞(Ω).
Next we recall the generalized inverse of Young function Φ in the sense of O’Neil

[58, Definition 1.2]. For a Young function Φ and u ∈ [0,∞], let

Φ−1(u) = inf{t ≥ 0 : Φ(t) > u},

where inf ∅ = ∞. Then Φ−1(u) is finite for all u ∈ [0,∞). If Φ is bijective from
[0,∞) to itself, then Φ−1 is the usual inverse function of Φ.

Theorem 4.3 ([58]). Let Φi be Young functions, i = 1, 2, 3. If

Φ−1
1 (r)Φ−1

3 (r) ≤ C Φ−1
2 (r) for all r > 0,

then

∥fg∥LΦ2 (Ω) ≤ 2C ∥f∥LΦ1 (Ω)∥g∥LΦ3 (Ω).

Description of the space of pointwise multipliers PWM(LΦ1(Ω), LΦ2(Ω)) for Orlicz
spaces was given by Maligranda and Persson [35, pp. 332–334] (see also [31, Chap-
ter 10, pp. 69–79]) under some conditions either on measure or on Young functions
Φ1, Φ2. In general, result was proved by Maligranda and Nakai [34].

Theorem 4.4 ([34]). Let Φi be Young functions, i = 1, 2, 3. If

C1Φ
−1
2 (r) ≤ Φ−1

1 (r)Φ−1
3 (r) ≤ C2Φ

−1
2 (r) for all r > 0,

then

PWM(LΦ1(Ω), LΦ2(Ω)) = LΦ3(Ω)

and

C1∥g∥LΦ3(Ω) ≤ ∥g∥Op ≤ 2C2∥g∥LΦ3 (Ω).

Result in Theorem 4.4 is not showing how for given Young functions Φ1, Φ2 we
can find another Young function Φ3 with the above equivalence. We consider the
conjugate (complementary) function to Φ1 with respect to Φ2 by the formula

Φ2 ⊖ Φ1(u) = sup{Φ2(tu)− Φ1(t) : t > 0}, u > 0.

In particular, if Φ2(u) = u, then Φ2 ⊖ Φ1 = Φ̃1 is the usual conjugate (complemen-
tary) function (in sense of Young) to Φ1. This operation on the class of N-functions
was defined by Ando [2, p. 180] and on the class of Young functions by O’Neil [58,
p. 325] and he referred to Ando [2]. Kolwicz, Leśnik and Maligranda [19, Theo-
rem 8] proved that under some additional assumptions on Young functions we have
identification PWM(LΦ1(Ω), LΦ2(Ω)) = LΦ3(Ω), where Φ3 = Φ2 ⊖ Φ1.

On the other hand, if we restrict supremum in the above operation to (0, 1], that
is,

(Φ2 ⊖ Φ1)0(u) = sup{Φ2(tu)− Φ1(t) : 0 < t ≤ 1}, u > 0.

then Djakov and Ramanujan [10], in the case of Orlicz sequence spaces, showed the
following identification PWM(ℓΦ1 , ℓΦ2) = ℓΦ3 , where Φ3 = (Φ2 ⊖ Φ1)0 without any
restrictions on Young functions. Of course, the function (Φ2 ⊖Φ1)0 is smaller than
Φ2 ⊖ Φ1 and it can be different than Φ2 ⊖ Φ1.
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Leśnik and Tomaszewski [25] proved recently how we should understand supre-
mum in the definition of operation Φ2 ⊖ Φ1 that in a non-atomic measure case we
have identification PWM(LΦ1(Ω), LΦ2(Ω)) = LΦ2⊖Φ1(Ω).

Next we generalize Young functions to the following:

Definition 4.4. Let Φv
Y be the set of all Φ : Ω× [0,∞] → [0,∞] such that Φ(x, ·)

is a Young function for every x ∈ Ω, and that Φ(·, t) is measurable on Ω for every
t ∈ [0,∞]. Assume also that, for any subset A ⊂ Ω with finite measure, there exists
t ∈ (0,∞) such that Φ(·, t)χA is integrable.

Definition 4.5. (i) Let ΦGY be the set of all Φ ∈ Φ̄ such that Φ((·)1/ℓ) is in
ΦY for some ℓ ∈ (0, 1].

(ii) Let Φv
GY be the set of all Φ : Ω× [0,∞] → [0,∞] such that Φ(·, (·)1/ℓ) is in

Φv
Y for some ℓ ∈ (0, 1].

For Φ,Ψ ∈ Φ̄, we write Φ ≈ Ψ if there exists a positive constant C such that

Φ(C−1t) ≤ Ψ(t) ≤ Φ(Ct) for all t ∈ (0,∞).

For Φ,Ψ : Ω×[0,∞] → [0,∞], we also write Φ ≈ Ψ if there exists a positive constant
C such that

Φ(x,C−1t) ≤ Ψ(x, t) ≤ Φ(x,Ct) for all (x, t) ∈ Ω× (0,∞).

Definition 4.6. Let Φ̄Y , Φ̄v
Y , Φ̄GY and Φ̄v

GY be the sets of all Φ such that Φ ≈ Ψ
for some Ψ in ΦY , Φv

Y , ΦGY and Φv
GY , respectively.

Lemma 4.5. Let Φ ∈ Φv
GY . For a subset A ⊂ Ω with 0 < µ(A) < ∞, let ΦA(t) =∫

AΦ(x, t) dµ(x). Then ΦA ∈ ΦGY .

Definition 4.7 (Musielak-Orlicz space). For a function Φ ∈ Φ̄v
GY , let

LΦ(Ω) =

{
f ∈ L0(Ω) :

∫
Ω
Φ(x, k|f(x)|) dµ(x) <∞ for some k > 0

}
,

∥f∥LΦ = inf

{
λ > 0 :

∫
Ω
Φ

(
x,

|f(x)|
λ

)
dµ(x) ≤ 1

}
.

Then each function f ∈ LΦ(Ω) satisfies |f(x)| <∞ a.e.x ∈ Ω. By the assumption
in Definition 4.4 all simple functions are in LΦ(Ω). Moreover, ∥ · ∥LΦ(Ω) is a quasi-

norm and thereby LΦ(Ω) is a complete quasi-normed space with the lattice property
and the Fatou property. If Φ ∈ Φv

Y , then ∥ · ∥LΦ is a norm.

Example 4.1. Let p = p(·) be a variable exponent, that is, it is a measurable

function defined on Ω valued in (0,∞], and let Φ(x, t) = tp(x). Let p− = ess inf
x∈Ω

p(x).

If p− > 0, then Φ ∈ Φv
GY and Φ(x, (·)max(1,1/p−)) ∈ Φv

Y . In this case we denote

LΦ(Ω) by Lp(·)(Ω) which is a generalized Lebesgue space with variable exponent
p(·).

For the function spaces with variable exponent, see for example [13,57].
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Example 4.2. Let w be a weight function, that is, a measurable function defined on
Ω valued in (0,∞) a.e., and

∫
Aw(x) dµ(x) <∞ for any A ⊂ Ω with finite measure.

Let p be a variable exponent, and let

Φ(x, t) = tp(x)w(x).

If ess inf
x∈Ω

p(x) > 0, then Φ ∈ Φv
GY . In this case we denote LΦ(Ω) by L

p(·)
w (Ω).

Example 4.3. Let p be a variable exponent, and let

Φ(x, t) =

{
1/ exp(1/tp(x)), t ∈ [0, 1],

exp(tp(x)), t ∈ (1,∞].

If ess inf
x∈Ω

p(x) > 0, then Φ ∈ Φ̄v
Y . In this case we denote LΦ(Ω) by exp(Lp(·))(Ω).

Next proposition is a generalized Hölder’s inequality for Musielak-Orlicz spaces,
which can be proven in the same way as in O’Neil’s paper [58].

Proposition 4.6. Let Φi ∈ Φ̄v
GY , i = 1, 2, 3. Assume that there exists a constant

C > 0 such that

(4.2) Φ−1
1 (x, t)Φ−1

3 (x, t) ≤ C Φ−1
2 (x, t) for (x, t) ∈ Ω× (0,∞).

If f ∈ LΦ1(Ω) and g ∈ LΦ3(Ω), then fg ∈ LΦ2(Ω) and

∥fg∥LΦ2 ≤ C ′∥f∥LΦ1∥g∥LΦ3 ,

where C ′ is a positive constant dependent only on Φi, i = 1, 2, 3, and C.

We define three subsets of Young functions Y(i) (i = 1, 2, 3) as

Y(1) = {Φ ∈ ΦY : b(Φ) = ∞} ,

Y(2) = {Φ ∈ ΦY : b(Φ) <∞, Φ(b(Φ)) = ∞} ,

Y(3) = {Φ ∈ ΦY : b(Φ) <∞, Φ(b(Φ)) <∞} .

Then we have the following theorem:

Theorem 4.7 ([48]). Let Φi ∈ Φ̄v
GY , i = 1, 2, 3. Assume that

(4.3)
1

C
Φ−1
2 (x, t) ≤ Φ−1

1 (x, t)Φ−1
3 (x, t) ≤ CΦ−1

2 (x, t) for (x, t) ∈ Ω× (0,∞).

Assume also that there exists Ψ3 ∈ Φv
GY such that Φ3 ≈ Ψ3 and ΨA

3 ((·)1/ℓ) ∈
Y(1) ∪ Y(2) for some ℓ ∈ (0, 1] and for any A ⊂ Ω with 0 < µ(A) < ∞, where
ΨA

3 (t) =
∫
AΨ3(x, t) dµ(x). Then

PWM(LΦ1(Ω), LΦ2(Ω)) = LΦ3(Ω).

Moreover, the operator norm of g ∈ PWM(LΦ1(Ω), LΦ2(Ω)) is comparable to ∥g∥LΦ3 .

Example 4.4. Let pi be variable exponents, i = 1, 2, 3, and

Ω∞ = {x ∈ Ω : p3(x) = ∞}.
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Assume that ess inf
x∈Ω

pi(x) > 0, i = 1, 2, 3, ess sup
x∈Ω\Ω∞

p3(x) <∞ and

(4.4)
1

p1(x)
+

1

p3(x)
=

1

p2(x)
.

Then

PWM(Lp1(·)(Ω), Lp2(·)(Ω)) = Lp3(·)(Ω) and ∥g∥Op ∼ ∥g∥Lp3(·)(Ω).

Example 4.5. Let pi be variable exponents, wi be weight functions, i = 1, 2, 3, and

Ω∞ = {x ∈ Ω : p3(x) = ∞}.
Assume that ess inf

x∈Ω
pi(x) > 0, i = 1, 2, 3, ess sup

x∈Ω\Ω∞

p3(x) <∞ and

(4.5)
1

p1(x)
+

1

p3(x)
=

1

p2(x)
, w1(x)

1/p1(x)w3(x)
1/p3(x) = w2(x)

1/p2(x).

Then

PWM(Lp1(·)w1
(Ω), Lp2(·)w2

(Ω)) = Lp3(·)w3
(Ω) and ∥g∥Op ∼ ∥g∥

L
p3(·)
w3

(Ω)
.

Example 4.6. Let pi be variable exponents, i = 1, 2, 3, and

Ω∞ = {x ∈ Ω : p3(x) = ∞}.
Assume that ess inf

x∈Ω
pi(x) > 0, i = 1, 2, 3, ess sup

x∈Ω\Ω∞

p3(x) <∞ and

(4.6)
1

p1(x)
+

1

p3(x)
=

1

p2(x)
.

Then
PWM(exp(Lp1(·))(Ω), exp(Lp2(·))(Ω)) = exp(Lp3(·))(Ω)

and
∥g∥Op ∼ ∥g∥exp(Lp3(·))(Ω).

4.3. Morrey spaces. Let B(x, r) ⊂ Rn be the ball with center x ∈ Rn and radius
r > 0. That is, B(x, r) = {y ∈ Rn : |y − x| < r}. Let ϕ : Rn × (0,∞) → (0,∞).
For a ball B = B(x, r), we shall write ϕ(B) in place of ϕ(x, r). For a measurable
set A ⊂ Rn, we denote its Lebesgue measure and characteristic function by |A| and
χA, respectively.

Definition 4.8 (generalized Morrey space). For p ∈ (0,∞) and ϕ : Rn × (0,∞) →
(0,∞), let Lp,ϕ(Rn) be the set of all f ∈ L0(Rn) such that ∥f∥Lp,ϕ(Rn) <∞, where

∥f∥Lp,ϕ(Rn) = sup
B

1

ϕ(B)

(
1

|B|

∫
B
|f(x)|p dx

)1/p

.

The supremum above is taken over all balls B in Rn.

Then ∥ · ∥Lp,ϕ(Rn) is a quasi-norm and thereby Lp,ϕ(Rn) is a complete quasi-
normed spaces with the lattice property and the Fatou property. If 1 ≤ p < ∞,
then Lp,ϕ(Rn) is a Banach space. If ϕ(B) = |B|−1/p, then Lp,ϕ(Rn) = Lp(Rn). If

ϕ(B) ≡ 1, then Lp,ϕ(Rn) = L∞(Rn). If ϕ(x, r) = r(λ−n)/p, then Lp,ϕ(Rn) coincides
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with the classical Morrey space Lp,λ(Rn) introduced by Morrey [36]. See also [1].
That is,

∥f∥Lp,λ(Rn) = sup
B(x,r)

(
1

rλ

∫
B(x,r)

|f(y)|p dy

)1/p

,

where the supremum is taken over all balls B(x, r) in Rn.
By Hölder’s inequality we have the following proposition:

Proposition 4.8. Let pi ∈ (0,∞) (i = 1, 2, 3). If 1/p1 + 1/p3 = 1/p2 and ϕ1ϕ3 ≤
Cϕ2, then

∥fg∥Lp2,ϕ2 (Rn) ≤ C∥f∥Lp1,ϕ1 (Rn)∥g∥Lp3,ϕ3 (Rn).

Corollary 4.9. If 1/p1 + 1/p3 = 1/p2 and λ1/p1 + λ3/p3 = λ2/p2, then

∥fg∥Lp2,λ2 (Rn) ≤ ∥f∥Lp1,λ1 (Rn)∥g∥Lp3,λ3(Rn).

For functions θ1, θ2 : Rn × (0,∞) → (0,∞), we write θ1 ∼ θ2 if there exists a
positive constant C such that

(4.7) C−1θ1(x, r) ≤ θ2(x, r) ≤ Cθ1(x, r) for all x ∈ Rn and r > 0.

A function θ : Rn×(0,∞) → (0,∞) is almost increasing (almost decreasing) if there
exists a positive constant C such that

(4.8) θ(x, r) ≤ Cθ(x, s) (θ(x, r) ≥ Cθ(x, s)) for all x ∈ Rn and r < s.

If ϕ is almost decreasing, ϕ(x, r)|B(x, r)|1/p is almost increasing and infx∈Rn ϕ(x, 1) >
0, then χB ∈ Lp,ϕ(Rn) for all balls B. Moreover, we see that ϕ(x, r) ∼ ϕ(x, 2r),
that is, ϕ satisfies the doubling condition. We also consider the following condition;
there exists a positive constant C such that

(4.9) C−1ϕ(x, r) ≤ ϕ(y, r) ≤ Cϕ(x, r) for all x, y ∈ Rn with |x− y| < r.

Theorem 4.10 ( [42]). Let pi ∈ (0,∞) and ϕi : Rn × (0,∞) → (0,∞) (i =

1, 2, 3). Suppose that ϕi is almost decreasing, ϕi(x, r)|B(x, r)|1/pi is almost in-
creasing, infx∈Rn ϕi(x, 1) > 0 and ϕi satisfies (4.9) (i = 1, 2, 3). Suppose also that

1/p1 + 1/p3 = 1/p2 and ϕ1ϕ3 ∼ ϕ2. If ϕ
p2/p1
2 /ϕ1 is almost increasing, then

PWM(Lp1.ϕ1(R
n), Lp2.ϕ2(R

n)) = Lp3.ϕ3(R
n).

Moreover, the operator norm of g ∈ PWM(Lp1.ϕ1(Rn), Lp2.ϕ2(Rn)) is comparable to
∥g∥Lp3.ϕ3 (Rn).

The above result is valid for spaces of homogeneous type (X, d, µ), see [42]. We

cannot remove the almost increasingness of ϕ
p2/p1
2 /ϕ1, see [43].

For the classical Morrey spaces, we have the following theorem:

Theorem 4.11 ([43]). Let pi ∈ (0,∞) and λi ∈ (0, n). Suppose that 1/p1 +1/p3 =
1/p2 and λ1/p1 + λ3/p3 = λ2/p2. Then

PWM(Lp1,λ1(Rn), Lp2,λ2(Rn))
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= {0}, p1 < p2,

= {0}, p1 = p2 and λ1 < λ2,

= L∞(Rn), p1 = p2 and λ1 = λ2,

⫌ {0}, p1 = p2 and λ1 > λ2,

= {0}, p1 > p2 and n+ (λ1 − n)p2/p1 < λ2,

= L∞(Rn), p1 > p2 and λ2 = n+ (λ1 − n)p2/p1,

= Lp3,λ3(Rn), p1 > p2 and λ1 ≤ λ2 < n+ (λ1 − n)p2/p1,

⫌ Lp3,λ3(Rn), p1 > p2 and λ1p2/p1 < λ2 < λ1,

⫌ Lp3(Rn), p1 > p2 and λ2 = λ1p2/p1,

⫌ {0}, p1 > p2 and λ2 < λ1p2/p1.

For Musielak-Orlicz-Morrey spaces, see [49].

5. Campanato spaces with variable growth condition

In this section we concentrate on generalized Campanato spaces on Rn. The
results are also valid for spaces of homogeneous type (X, d, µ).

5.1. Definition and connections with Morrey and Hölder spaces. For x ∈
Rn and r ∈ (0,∞), let B(x, r) be a ball centered at x and radius r, or, a cube
centered at x and sidelength r. For ϕ : Rn × (0,∞) → (0,∞) and B = B(x, r), we
write ϕ(B) in place of ϕ(x, r). For a function f ∈ L1

loc(Rn) and for a ball (cube) B,
let

fB =
1

|B|

∫
B
f(x) dx,

where |B| is the Lebesgue measure of B.

Definition 5.1 ([44]). For p ∈ [1,∞) and ϕ : Rn × (0,∞) → (0,∞), Campanato
spaces Lp,ϕ(Rn), Morrey spaces Lp,ϕ(Rn) and Hölder spaces Λϕ(Rn) are defined
to be the sets of all f such that ∥f∥Lp,ϕ < ∞, ∥f∥Lp,ϕ < ∞ and ∥f∥Λϕ < ∞,
respectively, where

∥f∥Lp,ϕ(Rn) = sup
B⊂Rn

1

ϕ(B)

(
1

|B|

∫
B
|f(x)− fB|p dx

)1/p

,

∥f∥Lp,ϕ(Rn) = sup
B⊂Rn

1

ϕ(B)

(
1

|B|

∫
B
|f(x)|p dx

)1/p

,

∥f∥Λϕ(Rn) = sup
x,y∈Rn, x ̸=y

2|f(x)− f(y)|
ϕ(x, |x− y|) + ϕ(y, |x− y|)

.

We regard Lp,ϕ(Rn) and Lp,ϕ(Rn) as spaces of functions modulo null-functions
(that is, two functions are considered equal if they are equal almost everywhere,
as usual) and Λϕ(Rn) as a space of functions defined at all x ∈ Rn. Moreover,
regarding Lp,ϕ(Rn) and Λϕ(Rn) as spaces modulo constant functions, ∥ · ∥Lp,ϕ(Rn),
∥ · ∥Lp,ϕ(Rn) and ∥ · ∥Λϕ(Rn) are norms, and thereby Lp,ϕ(Rn), Lp,ϕ(Rn) and Λϕ(Rn)
are Banach spaces, respectively.
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If ϕ(x, r) = rα, then

∥f∥Lp,ϕ = sup
B=B(z,r)⊂Rn

1

rα

(
1

|B|

∫
B
|f(x)− fB|p dx

)1/p

, −n/p ≤ α ≤ 1,

∥f∥Lp,ϕ = sup
B=B(z,r)⊂Rn

1

rα

(
1

|B|

∫
B
|f(x)|p dx

)1/p

, −n/p ≤ α ≤ 0,

∥f∥Λϕ = ∥f∥Lipα = sup
x,y∈Rn, x ̸=y

|f(x)− f(y)|
|x− y|α

, 0 < α ≤ 1,

which are the usual Campanato, Morrey and Hölder (Lipschitz) spaces. If p = 1
and ϕ ≡ 1, then Lp,ϕ(Rn) = BMO(Rn). For ϕ(x, r) = rα, the following properties
are known.

Lp,ϕ = L1,ϕ = BMO, α = 0, 1 ≤ p <∞,

Lp,ϕ = Λϕ, 0 < α ≤ 1, 1 ≤ p <∞,

Lp,ϕ/C = Lp,ϕ, −n/p ≤ α < 0, 1 ≤ p <∞,

Lp,ϕ/C = Lp,ϕ = Lp, α = −n/p, 1 ≤ p <∞,

where Lp,ϕ/C = Lp,ϕ means that the Campanato space Lp,ϕ modulo constant func-
tions can be identified with the Morrey space Lp,ϕ.

For p(·) ∈ L0(Rn;R), that is, a measurable function from Rn to R, let

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

Definition 5.2 ([46]). Let α∗ be a constant in [0,∞) and α(·) ∈ L0(Rn;R) satisfy
0 ≤ α− ≤ α+ <∞.

(i) For ϕ(x, r) = rα(x), denote Λϕ(Rn) by Lipα(·)(Rn). In this case,

∥f∥Lipα(·)(Rn) = sup
x,y∈Rn, x ̸=y

2|f(x)− f(y)|
|x− y|α(x) + |y − x|α(y)

.

(ii) For

(5.1) ϕ(x, r) :=

{
rα(x), 0 < r < 1/2,

rα∗ , 1/2 ≤ r <∞,

denote Λϕ(Rn) by Lipα∗
α(·)(R

n). In this case,

∥f∥Lipα∗
α(·)(R

n)

= max

{
sup

0<|x−y|<1/2

2|f(x)− f(y)|
|x− y|α(x) + |x− y|α(y)

, sup
|x−y|≥1/2

|f(x)− f(y)|
|x− y|α∗

}
.

Theorem 5.1 ([44]). Let 1 ≤ p < ∞ and ϕ : Rn × (0,∞) → (0,∞). Assume that
there exists a positive constant C such that, for all x ∈ Rn and r ∈ (0,∞),∫ ∞

r

ϕ(x, t)

t
dt ≤ Cϕ(x, r).
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Then
Lp,ϕ(Rn)/C = Lp,ϕ(Rn).

Moreover, if also ϕ(B) = |B|−1/p, then

Lp,ϕ(Rn)/C = Lp,ϕ(Rn) = Lp(Rn).

Theorem 5.2 ([45]). Let ϕ : Rn×(0,∞) → (0,∞). Assume that there exist positive
constants Ai, i = 1, 2, 3, such that, for all x, y ∈ Rn and r, s ∈ (0,∞),

1

A1
≤ ϕ(x, s)

ϕ(x, r)
≤ A1, if

1

2
≤ s

r
≤ 2,(5.2)

1

A2
≤ ϕ(x, r)

ϕ(y, r)
≤ A2, if |x− y| ≤ r,(5.3)

ϕ(x, r) ≤ A3ϕ(x, s), if r < s.(5.4)

Then
Lp,ϕ(Rn) = L1,ϕ(Rn), p ∈ [1,∞).

Theorem 5.3 ([44]). Let ϕ : Rn × (0,∞) → (0,∞). Assume that ϕ satisfies (5.2)–
(5.4) and that there exists a positive constant C such that, for all x ∈ Rn and
r ∈ (0,∞),

(5.5)

∫ r

0

ϕ(x, t)

t
dt ≤ Cϕ(x, r).

Then
Lp,ϕ(Rn) = Λϕ(Rn), p ∈ [1,∞).

We consider the local log-Hölder continuity condition;

(5.6) |p(x)− p(y)| ≤ c∗
log(1/|x− y|)

for |x− y| ≤ 1

2
, x, y ∈ Rn,

and a log-Hölder type decay condition at infinity;

(5.7) |p(x)− p∞| ≤ c∗

log(e+ |x|)
for x ∈ Rn,

where c∗, c
∗ and p∞ are positive constants independent of x and y. Let

LH0 = {p(·) ∈ L0(Rn;R) : p(·) satisfies (5.6)},
LH∞ = {p(·) ∈ L0(Rn;R) : p(·) satisfies (5.7)},

LH = LH0 ∩ LH∞.

Example 5.1. For a constant α∗ ∈ [0,∞) and for α(·) ∈ LH0 satisfying 0 ≤ α− ≤
α+ <∞, let

ϕ(x, r) =

{
rα(x), 0 < r < 1/2,

rα∗ , 1/2 ≤ r <∞.

Then
Lp,ϕ(Rn) = L1,ϕ(Rn), p ∈ [1,∞).

Moreover, if α− > 0, then

Lp,ϕ(Rn) = Lipα∗
α(·)(R

n), p ∈ [1,∞).
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Example 5.2. For p(·) ∈ LH and (n− 1)/n ≤ p− ≤ p+ ≤ 1. Let

ϕ(x, r) =

{
rα(x), 0 < r < 1/2,

rα∗ , 1/2 ≤ r <∞,
where

{
α(x) = n(1/p(x)− 1),

α∗ = n(1/p∞ − 1).

Then

(Hp(·)(Rn))∗ = L1,ϕ(Rn).
Moreover, if p+ < 1, then

(Hp(·)(Rn))∗ = Lipα∗
α(·)(R

n).

In the above, we can take 0 < p− ≤ p+ ≤ 1 instead of (n− 1)/n ≤ p− ≤ p+ ≤ 1,
by using higher dimensional Campanato spaces. For Hardy spaces with variable
exponent and these facts, see Nakai and Sawano [53] (2012).

Theorem 5.4 ([46]). Let p(·) : Rn → (1,∞) and p(·)/(p(·)− 1) ∈ LH0. Define

ϕ(x, r) :=

{
r−n/p(x), 0 < r < 1/2,

r−n/p+ , 1/2 ≤ r <∞.

Then Lp(·)(Rn) ⊂ L1,ϕ(Rn) ⊂ L1,ϕ(Rn) and

∥f∥L1,ϕ
+ |fB(0,1)| ≤ C1∥f∥L1,ϕ

≤ C2∥f∥Lp(·) .

5.2. Pointwise multipliers on Campanato spaces. If we regard Lp,ϕ(Rn) and
Λϕ(Rn) as spaces modulo constant functions, then ∥ · ∥Lp,ϕ(Rn) and ∥ · ∥Lp,ϕ(Rn) are
norms and thereby Lp,ϕ(Rn) and Lp,ϕ(Rn) are Banach spaces, respectively. However,
pointwise multipliers are not well defined on a space modulo constant functions,
since, for g ∈ L0(Ω) and for the constant function 1, pointwise multiplication 1g is
not a constant function in general.

To consider pointwise multipliers on Campanato and Hölder spaces, we regard
these spaces as spaces of functions. Moreover, we define norms

∥f∥L♮p,ϕ(Rn) = ∥f∥Lp,ϕ(Rn) + |fB(0,1)| and ∥f∥
Λ♮ϕ(Rn)

= ∥f∥Λϕ(Rn) + |f(0)|,

and we denote Lp,ϕ(Rn) and Λϕ(Rn) equipped with these norms by L♮p,ϕ(R
n) and

Λ♮ϕ(R
n), respectively.

Note that L♮p,ϕ(R
n) fails the lattice property. But we have the following proposi-

tion. Therefore, all pointwise multipliers on Campanato spaces are bounded oper-
ator, see Theorem 2.5.

Proposition 5.5. For any p ∈ [1,∞) and ϕ : Rn × (0,∞) → (0,∞), the following
property holds:

lim
j→∞

∥fj∥L♮p,ϕ(Rn) = 0 =⇒ fj → 0 in measure on each B(0, 2m).

Proof. For any m, we have

|fB(0,2m) − fB(0,1)| =

∣∣∣∣∣ 1

|B(0, 1)|

∫
B(0,1)

f(x) dx− fB(0,2m)

∣∣∣∣∣
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≤ 1

|B(0, 1)|

∫
B(0,1)

∣∣f(x)− fB(0,2m)

∣∣ dx
≤ |B(0, 2m)|

|B(0, 1)|
1

|B(0, 2m)|

∫
B(0,2m)

∣∣f(x)− fB(0,2m)

∣∣ dx
≤ 2mn

(
1

|B(0, 2m)|

∫
B(0,2m)

∣∣f(x)− fB(0,2m)

∣∣p dx)1/p

≤ 2mnϕ(0, 2m)∥f∥Lp,ϕ(Rn).

Then

|fB(0,2m)| ≤ (1 + 2mnϕ(0, 2m)) ∥f∥L♮p,ϕ(Rn).

Next, using Chebyshev’s inequality and the inequality

|f |B ≤ ϕ(B)∥f∥Lp,ϕ(Rn) + |fB|,

we have

ϵ |{x ∈ B(0, 2m) : |f(x)| ≥ ϵ}| ≤ |B(0, 2m)||f |B(0,2m) ≤ Cϕ,m∥f∥L♮p,ϕ(Rn),

where the constant Cϕ,m is dependent only on ϕ, m and n. Therefore, we have the
conclusion. □

Definition 5.3. (i) For ϕ(x, r) = rα (α > 0), let

Lipα(Rn) = Λϕ(Rn), Lip♮α(Rn) = Λ♮ϕ(R
n).

(ii) For p = 1, let

BMOϕ(Rn) = L1,ϕ(Rn), BMO♮
ϕ(R

n) = L♮1,ϕ(R
n).

(iii) For ϕ ≡ 1, let

BMO(Rn) = BMOϕ(Rn), BMO♮(Rn) = BMO♮
ϕ(R

n).

BMO is the space of functions with bounded mean oscillation introduced by
John and Nirenberg [16] in 1961. It is known that log |x − a| is in BMO(Rn) and
BMO♮(Rn) for all a ∈ Rn.

Theorem 5.6 ([55]). Let

ϕ(x, r) =
1

log(r + 1/r + |x|)
, x ∈ Rn, r ∈ (0,∞).

Then

PWM(BMO♮(Rn)) = BMOϕ(Rn) ∩ L∞(Rn)
and

∥g∥Op ∼ ∥g∥BMOϕ + ∥g∥L∞(Rn).

For example,

g1(x) := sin
(
χB(0,1/e)(x) log log(|x|−1)

)
,(5.8)

g2(x) := sin
(
χB(0,e)∁(x) log log |x|

)
(5.9)
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are in PWM(BMO♮(Rn)). Note that g1 is not continuous and that lim
|x|→∞

g2(x)

doesn’t exist. Example (5.8) was given by Janson [15] and Stegenga [64], and
example (5.9) by Nakai and Yabuta [55].

Theorem 5.7 ([37]). Let p ∈ [1,∞) and there exists a positive constant A such
that, for all x, y ∈ Rn, r ∈ (0,∞), s ∈ [1,∞),

(i) A−1 ≤ ϕ(x, r)/ϕ(x, 2r) ≤ A,

(ii)

∫ r

0
ϕ(x, t)tn/p−1 dt ≤ Aϕ(x, r)rn/p,

(iii) |x− y| ≤ r ⇒ A−1 ≤ ϕ(x, r)/ϕ(y, r) ≤ A,
(iv) ϕ(x, sr) ≤ Asϕ(x, r).

Then
PWM(L♮p,ϕ(R

n)) = Lp,ψ(Rn) ∩ L∞(Rn)
and

∥g∥Op ∼ ∥g∥Lp,ψ(Rn) + ∥g∥L∞(Rn),

where ψ = ϕ/(Φ∗ +Φ∗∗), and

(5.10) Φ∗(x, r) =

∫ max(2,|x|,r)

1

ϕ(0, t)

t
dt, Φ∗∗(x, r) =

∫ max(2,|x|,r)

r

ϕ(x, t)

t
dt.

Remark 5.1 ([37]). Under four conditions in Theorem 5.7, let

fa(x) =

∫ 1

|x−a|

ϕ(a, t)

t
dt.

Then fa is in Lp,ϕ(Rn) and L♮p,ϕ(R
n) for all a ∈ Rn.

For ϕi (i = 1, 2), we define Φ∗
i and Φ∗∗

i by (5.10).

Theorem 5.8 ([41]). Suppose that ϕ1 and ϕ2 are almost increasing and satisfy four
conditions in Theorem 5.7. Suppose also that

(v)

∫ r

1

ϕ2(x, t)

ϕ1(x, t)
tn/p−1 dt ≤ A

ϕ2(x, r)

ϕ1(x, r)
rn/p, r > 1,

for some p > 1. Then

PWM(BMO♮
ϕ1
(Rn),BMO♮

ϕ2
(Rn)) = BMOϕ3(R

n) ∩ Lϕ2/ϕ1(R
n)

and
∥g∥Op ∼ ∥g∥BMOϕ3 (R

n) + ∥g∥Lϕ2/ϕ1 (Rn),
where ϕ3 = ϕ2/(Φ

∗
1 +Φ∗∗

1 ).

Theorem 5.9 ([41]). Let 1 < p2 < p1 < ∞ and p1 + p2 ≤ p1p2. Suppose that
ϕ1 and ϕ2 satisfy (v) for p = p2 and four conditions in Theorem 5.7, and that
(Φ∗

2 +Φ∗∗
2 )/ϕ2 ≤ C(Φ∗

1 +Φ∗∗
1 )/ϕ1. If ϕ3 = ϕ2/(Φ

∗
1 +Φ∗∗

1 ) is almost increasing, then

PWM(L♮p1,ϕ1(R
n),L♮p2,ϕ2(R

n)) = BMOϕ3(R
n) ∩ Lϕ2/ϕ1(R

n)

and
∥g∥Op ∼ ∥g∥BMOϕ3 (R

n) + ∥g∥Lϕ2/ϕ1 (Rn),

See also [30,71] for related results.
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5.3. Examples. In theorems in the previous subsection we can replace Rn with
spaces of homogeneous type (X, d, µ). If µ(X) <∞, then we can omit the condition
(v). For example, X is a cube Q ⊂ Rn or Tn. All of examples in this subsection were
given in [41]. Let α0 be the constant with respect to the continuity of quasi-distance
d (see page 36 in [41]). If d is a distance, then α0 = 1.

5.3.1. The case µ(X) <∞.

Example 5.3. For 0 ≤ β < α < 1,

PWM(BMO♮
(log(1/r))−α(X),BMO♮

(log(1/r))−β
(X)) = BMO♮

(log(1/r))α−β−1(X).

For α = 1/2 and β = 0 in particular,

PWM(BMO♮

(log(1/r))−1/2(X),BMO♮(X)) = BMO♮

(log(1/r))−1/2(X).

Example 5.4.

PWM(BMO♮
(log(1/r))−1(X),BMO♮(X)) = BMO♮

(log log(1/r))−1(X).

Example 5.5.

PWM(BMO♮
(log log(1/r))−1(X),BMO♮(X))

= BMO(li(log(1/r)))−1(X) ∩ L(log log(1/r))(X),

where li(R) =
∫ R
e 1/(log t) dt.

Example 5.6.

PWM(BMO♮(X)) = BMO(log(1/r))−1(X) ∩ L∞(X).

If X = Tn, d(x, y) = |x− y| and µ is Lebesgue measure, then the example above
is known (Janson [15] and Stegenga [64]).

Example 5.7. For α > 1,

PWM(BMO♮
(log(1/r))−α(X),BMO♮(X)) = BMO♮(X).

Example 5.8. For 0 < β ≤ α ≤ α0,

PWM(BMO♮
rα(X),BMO♮

rβ
(X)) = BMO♮

rβ
(X).

If X = Tn, d(x, y) = |x − y| and µ is Lebesgue measure, then BMO♮
rα(Tn) =

Lip♮α(Tn). Therefore, for 0 < β ≤ α ≤ 1,

PWM(Lip♮α(Tn),Lip
♮
β(T

n)) = Lip♮β(T
n).

Example 5.9. For −1 < α < β ≤ α+ 1, 1 < p2 < p1 <∞, p1p2 ≥ p1 + p2,

PWM(L♮p1,(log(1/r))α(X),L♮
p2,(log(1/r))β

(X)) = BMO♮
(log(1/r))β−α−1(X).
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5.3.2. The case µ(X) = ∞, fix x0 ∈ X.

Example 5.10.

PWM(BMO♮(X),BMO♮(X)) = BMO(log(d(x0,x)+r+1/r))−1(X) ∩ L∞(X).

If X = Rn, d(x, y) = |x− y| and µ is Lebesgue measure, then the example above
is Theorem 5.6.

Example 5.11. For 0 < β ≤ α ≤ α0,

PWM(BMO♮
rα(X),BMO♮

rβ
(X)) = BMO rβ

(2+d(x0,x)+r)
α
(X) ∩ Lrβ−α(X).

Example 5.12. For 0 < α ≤ α0, β ≥ 0, β − α+ δ > 0,

PWM(BMO♮
(2+d(x0,x)+r)α

(X),BMO♮
(2+d(x0,x)+r)β

(X))

= BMO (2+d(x0,x)+r)
β−α

log(d(x0,x)+r+1/r)

(X) ∩ L(2+d(x0,x)+r)β−α(X).

Example 5.13. For 1 < p <∞,

PWM(BMO♮(X),L♮p,log(d(x0,x)+r+1/r)(X)) = BMO♮(X).

Example 5.14. Let w be an Ap′-weight on Rn. Then

ϕ(a, r) =

(∫
B(a,r)

w(x) dx

)α
satisfies four conditions in Theorem 5.7 for −1/(pp′) < α ≤ 1/(np′), and is almost
increasing for α ≥ 0. Let

ϕi(a, r) =

(∫
B(a,r)

w(x) dx

)αi
, i = 1, 2, 0 < α2 ≤ α1.

Then (Φ∗
2 +Φ∗∗

2 )/ϕ2 ≤ C(Φ∗
1 +Φ∗∗

1 )/ϕ1.

6. Applications

In this section we state applications of pointwise multipliers on BMO(Rn).

6.1. Hardy-Littlewood maximal operator on Lp(·)(Rn). Let M be the Hardy-
Littlewood maximal operator, that is, for f ∈ L1

loc(Rn),

Mf(x) = sup
B∋x

1

|B|

∫
B
|f(y)| dy,

where the supremum is taken over all balls B containing x. For the definition of
Lp(·)(Rn), see Example 4.1. Let BM (Rn) be the set of all variable exponents p(·)
such that M is bounded on Lp(·)(Rn). That is,

p(·) ∈ BM (Rn) ⇔ M ∈ B(Lp(·)(Rn)).

Note that p(x) = 4χ(−∞,0)(x) + 2χ[0,∞)(x) /∈ BM (R) and p(x) = 3 + cos(2πx) /∈
BM (R).
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Remark 6.1 ( [24]). Let 1 < p− ≤ p+ <∞. Then∫
Rn
Mf(x)p(x) dx ≤ C

∫
Rn

|f(x)|p(x) dx for all f ∈ Lp(·)(Rn),

if and only if p(·) is a constant.

Recall that

LH0 = {p(·) ∈ L0(Rn;R) : p(·) satisfies (5.6)},
LH∞ = {p(·) ∈ L0(Rn;R) : p(·) satisfies (5.7)},

LH = LH0 ∩ LH∞.

Diening [9] and Cruz-Uribe, Fiorenza and Neugebauer [6, 7] proved the following
theorem:

Theorem 6.1 ([6,7,9]). If p(·) ∈ LH and 1 < p− ≤ p+ <∞, then p(·) ∈ BM (Rn).
On the other hand, Lerner [23] showed that, for p(·) ∈ BM (Rn), we don’t need

the continuity of p(·) or existence of lim|x|→∞ p(x).

Theorem 6.2 ( [23]). Let p(·) ∈ L0(Rn;R). If p(·) ∈ PWM(BMO♮(Rn)), then
α+ p(·) ∈ BM (Rn) for some nonnegative constant α.

Let

g1(x) = sin
(
χB(0,1/e)(x) log log(|x|−1)

)
,

g2(x) = sin
(
χB(0,e)∁(x) log log |x|

)
.

Then
g1 ∈ PWM(BMO♮(Rn)) \ LH0,

g2 ∈ PWM(BMO♮(Rn)) \ LH∞.

The following inclusion relation is a special case of [55, Proposition 5.1].

LH = LH0 ∩ LH∞ ⊂ PWM(BMO♮(Rn)).
We can also consider pointwise multipliers on martingale Campanato spaces and

their applications to the boundedness of the maximal operator, see [50–52].

6.2. Density of C∞
comp(Rn). For the density of C∞

comp(Rn) in Sobolev spaces, the
following theorem is known.

Theorem 6.3 ([54]). Let E(Rn) be a subspace of L1
loc(Rn). Assume the following

four conditions:

(1) χB ∈ E(Rn) for all open balls B ⊂ Rn.
(2) If g ∈ E(Rn), f ∈ L0(Rn) and |f | ≤ |g| a.e., then f ∈ E(Rn).
(3) If g ∈ E(Rn), fj ∈ L0(Rn) (j = 1, 2, . . .), |fj | ≤ |g| a.e., and lim

j→∞
fj = 0

a.e., then lim
j→∞

∥fj∥E(Rn) = 0.

(4) The Hardy-Littlewood maximal operator M is bounded on E(Rn).
Then C∞

comp(Rn) is dense in Em(Rn), the Sobolev space based on E(Rn).

Corollary 6.4. C∞
comp(Rn) is dense in W p(·),m(Rn) if p(·) ∈ BM (Rn), in particular,

p(·) ∈ PWM(BMO♮(Rn)) and p− is large enough.
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6.3. Calderón-Zygmund operators.

Definition 6.1 (standard kernel of type ω, see Yabuta [70]). Let ω be a nonnegative

nondecreasing function on (0,∞) satisfying the Dini condition
∫ 1
0 ω(t)t

−1dt < ∞.

A continuous function K(x, y) on Rn ×Rn \ {(x, x) ∈ R2n} is said to be a standard
kernel of type ω if the following conditions are satisfied;

|K(x, y)| ≤ C

|x− y|n
for x ̸= y,(6.1)

|K(x, y)−K(x, z)|+ |K(y, x)−K(z, x)| ≤ C

|x− y|n
ω

(
|y − z|
|x− y|

)
for 2|y − z| ≤ |x− y|.

(6.2)

Definition 6.2 (Calderón-Zygmund operator). A linear mapping T : S(Rn) →
S ′(Rn) is said to be a Calderón-Zygmund operator of type ω, if T is bounded on
L2(Rn) and there exists a standard kernel K of type ω such that, for f ∈ C∞

comp(Rn),

(6.3) Tf(x) =

∫
Rn
K(x, y)f(y) dy, x /∈ supp f.

Let CZO(ω) be the set of all Calderón-Zygmund operators of type ω.

It is known that (Yabuta [70])

CZO(ω) ⊂

 ∩
1<p<∞

B(Lp(Rn))

 ∩B(L1(Rn), L1
weak(Rn)).

Let M ♯ be the sharp maximal operator, that is, for f ∈ L1
loc(Rn),

M ♯f(x) = sup
B∋x

1

|B|

∫
B
|f(y)− fB| dy,

where the supremum is taken over all balls B containing x. Alvarez and Pérez [3]
proved that, if r ∈ (1,∞), then

(6.4) (M ♯(|Tf |1/r)(x))r ≤ CrMf(x)

for all f ∈ C∞
comp(Rn) and x ∈ Rn. Diening and Růžička [8] proved that, if p(·) ∈

BM (Rn) and p+ <∞, then, for f ∈ Lp(·)(Rn),

C−1∥f∥Lp(·) ≤ ∥M ♯f∥Lp(·) ≤ C∥f∥Lp(·) .
Hence, for f ∈ C∞

comp(Rn),

∥Tf∥Lp(·) = ∥ |Tf |1/r ∥r
Lrp(·) ≤ C∥M ♯(|Tf |1/r)∥r

Lrp(·)

≤ C∥(Mf)1/r∥r
Lrp(·) = C∥Mf∥Lp(·) ≤ C∥f∥Lp(·) .

By the density of C∞
comp(Rn) in Lp(·)(Rn), we have the following theorem.

Theorem 6.5 ([8]). Let p(·) ∈ BM (Rn) and 1 < p− ≤ p+ < ∞. Then CZO(ω) ⊂
B(Lp(·)(Rn)).

Corollary 6.6. If p(·) ∈ PWM(BMO♮(Rn)) and p− is large enough, then CZO(ω) ⊂
B(Lp(·)(Rn)).
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6.4. Hardy-Littlewood maximal operator on BMO(Rn). The following two
theorems were proven by Bennett, DeVore and Sharpley [5] and Bennett [4], re-
spectively.

Theorem 6.7 ( [5]). For f ∈ BMO(Rn), if Mf is not identically infinite, then
Mf ∈ BMO(Rn) and

∥Mf∥BMO(Rn) ≤ c∥f∥BMO(Rn).

Theorem 6.8 ( [4]). For f ∈ BMO(Rn), if Mf is not identically infinite, then
Mf ∈ BLO(Rn) and

∥Mf∥BLO(Rn) ≤ c∥f∥BMO(Rn),

where

∥f∥BLO(Rn) = sup
Q

1

|Q|

∫
Q
(f(x)− ess inf

Q
f) dx.

In the above theorems, Rn can be replaced by a cube Q0 ⊂ Rn. To make sure
that Theorem 6.8 is an improvement of Theorem 6.7, we must fined a function
f ∈ BMO(Rn) such that f ≥ 0, supp f is compact and f ̸∈ BLO(Rn).

Theorem 6.9 ( [28]). For x ∈ R, let

f(x) =

{
log(2/|x|), if |x| ≤ 2,

0, if |x| > 2,

g(x) =

sin

(
1 +

∫ 1

|x|

dt

t log(2/t)

)
, if |x| ≤ 1,

sin 1, if |x| > 1.

Then |fg| ∈ BMO(R), but |fg| ̸∈ BLO(R).

Proof. From f ∈ BMO(R) and g ∈ PWM(BMO(Rn)), it follows that fg and |fg|
are in BMO(R). But an elementary calculation shows that |fg| ̸∈ BLO(R). □

For the martingale BMO, we also have a similar result, see [52].

7. Besov and Triebel-Lizorkin spaces

In this section we give some known results of type

PWM(E1, E2) ⊃ E3,

for Besov and Triebel-Lizorkin spaces, where ”⊃” indicates a continuous embedding.
For the properties of Besov and Triebel-Lizorkin spaces, see [27,61,67–69], etc.

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing infin-
itely differentiable functions on Rn. By S ′(Rn) we denote its topological dual, the
space of tempered distributions. If φ ∈ S then

Fφ(x) = (2π)−n/2
∫
Rn
e−ixξφ(ξ) dξ, x ∈ Rn
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denotes the Fourier transform Fφ of φ. As usual, F−1φ means the inverse Fourier
transform of φ. Both, F , F−1 are extended to S ′(Rn) in the standard way. Let
ψ ∈ S(Rn) be a non-negative function with

(7.1)

{
ψ(x) = 1 if |x| ≤ 1,

ψ(x) = 0 if |x| ≥ 3/2,
x ∈ Rn.

For f ∈ S ′, let

f j(x) = F−1[ψ(2−jξ)Ff(ξ)](x), j = 0, 1, 2, . . . .

Then f j is an entire analytic function of exponential type. Hence, the pointwise
product f jgj makes sense for any j and any f, g ∈ S ′. We define

fg = lim
j→∞

f jgj in S ′,

whenever this limit exists. In the following theorems the limit element of f jgj is
independent of the choice of ψ.

Let ψ be the function defined in (7.1), and let
ψ0(x) = ψ(x),

ψ1(x) = ψ(x/2)− ψ(x),

ψk(x) = ψ1(2
−k+1x), k = 2, 3, . . . ,

x ∈ Rn.

Definition 7.1. For p, q ∈ (0,∞] and s ∈ R, let
Bs
pq(Rn) = {f ∈ S ′(Rn) : ∥f∥Bspq(Rn) <∞},

where

∥f∥Bspq(Rn) =

 ∞∑
j=0

2sjq
∥∥F−1[φjFf ](·)

∥∥q
Lp(Rn)

1/q

,

(usual modification if q = ∞).

Definition 7.2. For p ∈ (0,∞), q ∈ (0,∞] and s ∈ R, let
F spq(Rn) = {f ∈ S ′(Rn) : ∥f∥F spq(Rn) <∞},

where

∥f∥F spq(Rn) =

∥∥∥∥∥∥∥
 ∞∑
j=0

2sjq|F−1[φjFf ](·)|q
1/q

∥∥∥∥∥∥∥
Lp(Rn)

,

(usual modification if q = ∞).

The spaces Bs
pq(Rn) and F spq(Rn) are independent of the choice of ψ. Recall some

special cases:

• F 0
p,2(Rn) = Lp(Rn), p ∈ (1,∞) (Lebesgue spaces),

• F sp,2(Rn) =W s
p (Rn), p ∈ (1,∞), s ∈ N (Sobolev spaces),

• F sp,2(Rn) = Hs
p(Rn), p ∈ (1,∞), s ∈ R (fractional Sobolev spaces),

• F 0
p,2(Rn) = hp(Rn), p ∈ (0,∞) (inhomogeneous Hardy spaces),

• Bs
p,q(Rn), p ∈ (1,∞), q ∈ [1,∞], s ∈ (0,∞) (classical Besov spaces),
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• Bs
∞,∞(Rn) = Cs(Rn), s ∈ (0,∞) (Hölder-Zygmund spaces).

The following theorem is one of main results in [63].

Theorem 7.1 (Sickel and Triebel [63], 1995). Let pi ∈ (0,∞), qi ∈ (0,∞], i =
1, 2, 3, and s ∈ R. Assume that

1

ri
=

1

pi
− s

n
> 0, i = 1, 2, 3, and

1

r1
+

1

r3
=

1

r2
< 1.

Then

PWM(Bs
p1,q1 , B

s
p2,q2) ⊃ Bs

p3,q3

⇐⇒ 0 < q1 ≤ r1, 0 < q3 ≤ r3 and max(q1, q3) ≤ q2 ≤ ∞,

and

PWM(F sp1,q1 , F
s
p2,q2) ⊃ F sp3,q3 ⇐⇒ max(q1, q3) ≤ q2 ≤ ∞.

If PWM(E) ⊃ E, then E is an algebra (multiplicative algebra). Let C0(Rn) be
the set of all complex-valued bounded and uniformly continuous functions on Rn
with norm ∥f∥L∞(Rn).

Theorem 7.2 (Triebel [66], 1978). Let p, q ∈ (0,∞] and s ∈ R. The following are
equivalent:

(i) PWM(Bs
p,q(Rn)) ⊃ Bs

p,q(Rn).
(ii) Bs

p,q(Rn) ⊂ C0(Rn).
(iii) either 0 < p ≤ ∞, 0 < q ≤ ∞, s > n/p

or 0 < p ≤ ∞, 0 < q ≤ 1, s = n/p.

Theorem 7.3 (Franke [11], 1986). Let p ∈ (0,∞), q ∈ (0,∞] and s ∈ R. The
following are equivalent:

(i) PWM(F sp,q(Rn)) ⊃ F sp,q(Rn).
(ii) F sp,q(Rn) ⊂ C0(Rn).
(iii) either 0 < p <∞, 0 < q ≤ ∞, s > n/p

or 0 < p ≤ 1, 0 < q ≤ ∞, s = n/p.

Theorem 7.3 contains Strichartz’s result in [65] (1967):

PWM(Hs
p(Rn)) ⊃ Hs

p(Rn) for s > n/p, 1 < p <∞.

For other results, see [12,14,62,63,67] and their references.
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