
LNALNA ISSN 2188-8167 
2017



62 MAYUMI HOJO AND WATARU TAKAHASHI

[25]. Motivated by these mappings and results, Kocourek, Takahashi and Yao [14]
introduced a broad class of nonlinear mappings in a Hilbert space. They called this
the class of generalized hybrid mappings; see also Aoyama, Iemoto, Kohsaka and
Takahashi [1]. Then they proved fixed point theorems and convergence theorems for
generalized hybrid mappings in a Hilbert space; see also [28] and [9]. Furthermore,
Hsu, Takahashi and Yao [10] extended this class in a Hilbert space to that of a
Banach space and they proved fixed point theorems for such mappings in a Banach
space; see also [15]. Takahashi and Yao [27] also proved weak convergence theorems
of Mann’s type [18] for such mappings in a Banach space satisfying Opial’s conditon
[19].

In this paper, we first introduce a more broad class of nonlinear mappings in a
Banach space which covers generalized hybrid mappings and then deal with some
properties for such mappings in a Banach space. Then, we prove fixed point and
weak convergence theorems for such mappings in a Banach space satisfying Opial’s
condition.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the
topological dual space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩.
When {xn} is a sequence in E, we denote the strong convergence of {xn} to x ∈ E
by xn → x and the weak convergence by xn ⇀ x. The modulus δ of convexity of E
is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. A uniformly convex Banach space is strictly convex and
reflexive. Let C be a nonempty subset of a Banach space E. A mapping T : C → E
is nonexpansive if ∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C. A mapping T : C → E is
quasi-nonexpansive if F (T ) ̸= ∅ and ∥Tx−y∥ ≤ ∥x−y∥ for all x ∈ C and y ∈ F (T ),
where F (T ) is the set of fixed points of T . If C is a nonempty closed convex subset
of a strictly convex Banach space E and T : C → C is quasi-nonexpansive, then
F (T ) is closed and convex; see Itoh and Takahashi [12]. The duality mapping J
from E into 2E

∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}

for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only if
J is a single-valued mapping of E into E∗. We also know that E is reflexive if and
only if J is surjective, and E is strictly convex if and only if J is one-to-one. For
more details, see [21, 22]. The following result is also in [21, 22].
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Theorem 2.1. Let E be a Banach space and let J be the duality mapping on E.
Then, for any x, y ∈ E,

∥x∥2 − ∥y∥2 ≥ 2⟨x− y, j⟩,
where j ∈ Jy.

The following result was proved by Xu [29].

Theorem 2.2 ([29]). Let E be a uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,∞) → [0,∞)
such that g(0) = 0 and

∥µx+ (1− µ)y∥2 ≤ µ∥x∥2 + (1− µ)∥y∥2 − µ(1− µ)g(∥x− y∥)

for all x, y ∈ Br and µ with 0 ≤ µ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a Banach space. Then, E satisfies Opial’s condition [19] if for any {xn}
of E such that xn ⇀ x and x ̸= y,

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥.

Let E be a Banach space and let A ⊂ E × E. Then, A is accretive if for
(x1, y1), (x2, y2) ∈ A, there exists j ∈ J(x1 − x2) such that ⟨y1 − y2, j⟩ ≥ 0, where J
is the duality mapping of E. An accretive operator A ⊂ E×E is called m-accretive
if R(I + rA) = E for all r > 0, where I is the identity operator and R(I + rA)
is the range of I + rA. An accretive operator A ⊂ E × E is said to satisfy the
range condition if D(A) ⊂ R(I + rA) for all r > 0, where D(A) is the closure of the
domain D(A) of A. An m-accretive operator satisfies the range condition.

Let l∞ be the Banach space of bounded sequences with supremum norm. Let
µ be an element of (l∞)∗ (the dual space of l∞). Then we denote by µ(f) the
value of µ at f = (x1, x2, x3, . . .) ∈ l∞. Sometimes, we denote by µn(xn) the value
µ(f). A linear functional µ on l∞ is called a mean if µ(e) = ∥µ∥ = 1, where
e = (1, 1, 1, . . .). A mean µ is called a Banach limit on l∞ if µn(xn+1) = µn(xn).
We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for f = (x1, x2, x3, . . .) ∈ l∞,

lim inf
n→∞

xn ≤ µn(xn) ≤ lim sup
n→∞

xn.

In particular, if f = (x1, x2, x3, . . .) ∈ l∞ and xn → a ∈ R, then we have µ(f) =
µn(xn) = a. See [21] for the proof of the existence of a Banach limit and its other
elementary properties.

3. Extension of generalized hybrid mappings in Banach spaces

Let E be a Banach space and let C be a nonempty subset of E. Then, a mapping
T : C → E is said to be firmly nonexpansive [5] if

∥Tx− Ty∥2 ≤ ⟨x− y, j⟩,

for all x, y ∈ C, where j ∈ J(Tx−Ty). It is known that the resolvent of an accretive
operator satisfying the range condition in a Banach space is a firmly nonexpansive
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mapping of the closure of the domain into itself. In fact, let C = D(A) and r > 0.
Define the resolvent Jr of A as follows:

Jrx = {z ∈ D(A) : x ∈ z + rAz}

for all x ∈ D(A). It is known that such Jrx is a singleton; see [21]. We have that

for x1, x2 ∈ D(A), x1 = z1 + ry1, y1 ∈ Az1 and x2 = z2 + ry2, y2 ∈ Az2. Since A is
accretive, we have that ⟨y1 − y2, j⟩ ≥ 0, where j ∈ J(z1 − z2). So, we have

⟨x1 − z1
r

− x2 − z2
r

, j⟩ ≥ 0.

Furthermore, we have that

⟨x1 − z1
r

− x2 − z2
r

, j⟩ ≥ 0

⇐⇒ ⟨x1 − z1 − (x2 − z2), j⟩ ≥ 0

⇐⇒ ⟨x1 − x2, j⟩ ≥ ∥z1 − z2∥2.
From z1 = Jrx1 and z2 = Jrx2, we have that Jr is a firmly nonexpansive mapping
of C into itself; see also [5], [6] and [26]. Hsu, Takahashi and Yao [10] defined a
class of nonlinear mappings in a Banach space containing nonexpansive mappings,
nonspreading mappings and hybrid mappings as follows: Let E be a Banach space
and let C be a nonempty subset of E. A mapping T : C → E is called generalized
hybrid if there are α, β ∈ R such that

(3.1) α∥Tx− Ty∥2 + (1− α)∥x− Ty∥2 ≤ β∥Tx− y∥2 + (1− β)∥x− y∥2

for all x, y ∈ C. They called such a mapping (α, β)-generalized hybrid. We note
that an (α, β)-generalized hybrid mapping is nonexpansive for α = 1 and β = 0,
nonspreading for α = 2 and β = 1, and hybrid for α = 3

2 and β = 1
2 . We consider

an extension of generalized hybrid mappings in a Banach space: A mapping T :
C → E is called extended generalized hybrid if there are α, β, γ, δ ∈ R such that
α+ β + γ + δ ≥ 0, α+ β > 0 and

(3.2) α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2 ≤ 0

for all x, y ∈ C. We call such a mapping (α, β, γ, δ)-extended generalized hybrid.
We have the following result.

Theorem 3.1. Let E be a Banach space, let C be a nonempty subset of E and let
λ, µ ∈ [0, 1] with λ+ µ > 0. Then the following hold:

(i) An extended generalized hybrid mapping which has a fixed point is quasi-
nonexpansive;

(ii) a firmly nonexpansive mapping is (2µ+λ,−µ,−µ,−λ)-extended generalized
hybrid.

Proof. We show (i). Since T : C → E is an extended generalized hybrid mapping,
there are α, β, γ, δ ∈ R such that α+ β + γ + δ ≥ 0, α+ β > 0 and

α∥Tx− Ty∥2 + β∥x− Ty∥2 + γ∥Tx− y∥2 + δ∥x− y∥2 ≤ 0

for all x, y ∈ C. Let u ∈ F (T ). Then we have that for any y ∈ C,

(3.3) α∥u− Ty∥2 + β∥u− Ty∥2 + γ∥u− y∥2 + δ∥u− y∥2 ≤ 0.
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From α+ β + γ + δ ≥ 0 and α+ β > 0, we have that

∥u− Ty∥2 ≤ −(γ + δ)

α+ β
∥u− y∥2 ≤ ∥u− y∥2

and hence ∥u− Ty∥ ≤ ∥u− y∥. This implies that T is quasi-nonexpansive.
We next show (ii). Let T be a firmly nonexpansive mapping of C into E. Then

we have that for x, y ∈ C and j ∈ J(Tx− Ty),

∥Tx− Ty∥2 ≤ ⟨x− y, j⟩.
From Theorem 2.1 we have that

∥Tx−Ty∥2 ≤ ⟨x− y, j⟩
⇐⇒ 0 ≤ 2⟨x− Tx− (y − Ty), j⟩
=⇒ 0 ≤ ∥x− y∥2 − ∥Tx− Ty∥2

⇐⇒ ∥Tx− Ty∥2 ≤ ∥x− y∥2.
So, for λ ∈ [0, 1] we have

(3.4) λ∥Tx− Ty∥2 ≤ λ∥x− y∥2.
Futhermore, we have that for x, y ∈ C and j ∈ J(Tx− Ty),

∥Tx−Ty∥2 ≤ ⟨x− y, j⟩
⇐⇒ 0 ≤ 2⟨x− Tx− (y − Ty), j⟩
⇐⇒ 0 ≤ 2⟨x− Tx, j⟩+ 2⟨Ty − y, j⟩
=⇒ 0 ≤ ∥x− Ty∥2 − ∥Tx− Ty∥2 + ∥Tx− y∥2 − ∥Tx− Ty∥2

⇐⇒ 0 ≤ ∥x− Ty∥2 + ∥y − Tx∥2 − 2∥Tx− Ty∥2

⇐⇒ 2∥Tx− Ty∥2 ≤ ∥x− Ty∥2 + ∥y − Tx∥2.
Thus, for µ ∈ [0, 1] we have

(3.5) 2µ∥Tx− Ty∥2 ≤ µ∥x− Ty∥2 + µ∥y − Tx∥2.
Therefore, we have from (3.4) and (3.5) that

(2µ+ λ)∥Tx− Ty∥2 ≤ µ∥x− Ty∥2 + µ∥y − Tx∥2 + λ∥x− y∥2

and hence

(2µ+ λ)∥Tx− Ty∥2 − µ∥x− Ty∥2 − µ∥y − Tx∥2 − λ∥x− y∥2 ≤ 0.

Since (2µ+λ)−µ−µ−λ = 0 and (2µ+λ)−µ = µ+λ > 0, T is (2µ+λ,−µ,−µ,−λ)-
extended generalized hybrid. □

Using Takahashi and Jeong’s result [24], Hsu, Takahashi and Yao [10] also proved
the following lemma for nonlinear mappings in a Banach space; see also [2, 13].

Lemma 3.2 ([10]). Let C be a nonempty closed convex subset of a uniformly convex
Banach space E and let T be a mapping of C into itself. Let {xn} be a bounded
sequence of E and let µ be a mean on l∞. If

µn∥xn − Ty∥2 ≤ µn∥xn − y∥2

for all y ∈ C, then T has a fixed point in C.
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Theorem 3.3. Let E be a uniformly convex Banach space and let C be a noempty
closed convex subset of E. Let α, β, γ, δ ∈ R and let T be an (α, β, γ, δ)-extended
generalized hybrid mapping from C into itself. Then the following are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnz} is bounded for some z ∈ C.

Furthermore, a fixed point p of T is unique in the case of α+ β+ γ+ δ > 0 and for
any y ∈ C, {Tny} converges strongly to p.

Proof. Suppose that T has a fixed point z. Then {Tnz} = {z}. Therefore {Tnz} is
bounded.

Conversely, suppose that there exists z ∈ C such that {Tnz} is bounded. Since T
is an (α, β, γ, δ)-extended generalized hybrid mapping from C into itself, we obtain
that

α∥Tn+1z − Ty∥2 + β∥Tnz − Ty∥2 + γ∥Tn+1z − y∥2 + δ∥Tnz − y∥2 ≤ 0

for any n ∈ N ∪ {0} and y ∈ C. Applying a Banach limit µ to both sides of this
inequality, we obtain that

µn

(
α∥Tn+1z − Ty∥2 + β∥Tnz − Ty∥2 + γ∥Tn+1z − y∥2 + δ∥Tnz − y∥2

)
≤ 0

and hence

(α+ β)µn∥Tnz − Ty∥2 + (γ + δ)µn∥Tnz − y∥2 ≤ 0.

By α+ β + γ + δ ≥ 0 and α+ β > 0 we obtain that

µn∥Tnz − Ty∥2 ≤ −(γ + δ)

α+ β
µn∥Tnz − y∥2

≤ µn∥Tnz − y∥2

for all y ∈ C. By Lemma 3.2 we obtain a fixed point p ∈ C.
Suppose that α + β + γ + δ > 0 and p1 and p2 are fixed points of T . Then we

have that

α∥Tp1−Tp2∥2 + β∥p1 − Tp2∥2 + γ∥Tp1 − p2∥2 + δ∥p1 − p2∥2

= (α+ β + γ + δ)∥p1 − p2∥2 ≤ 0

and hence p1 = p2. Therefore, a fixed point p of T is unique. For such a unique
fixed point p of T , we have that for any y ∈ C,

α∥Tp− Ty∥2 + β∥p− Ty∥2 + γ∥Tp− y∥2 + δ∥p− y∥2 ≤ 0

and hence

(α+ β)∥p− Ty∥2 + (γ + δ)∥p− y∥2 ≤ 0.

From α+ β + γ + δ > 0 and α+ β > 0, we have that

∥p− Ty∥2 ≤ −(γ + δ)

α+ β
∥p− y∥2.

If y = p for all y ∈ C, {Tny} converges strongly to p. If y ̸= p for some y ∈ C, then
−(γ + δ) ≥ 0 and hence

0 ≤ −(γ + δ)

α+ β
< 1.
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Putting λ = −(γ+δ)
α+β , we have that

∥Tny − p∥2 ≤ λn∥y − p∥2.

Thus {Tny} for all y ∈ C converges strongly to p. This completes the proof. □

Using Theorem 3.3, we can prove the following fixed point theorem.

Theorem 3.4. Let E be a uniformly convex Banach space and let C be a nonempty
closed convex subset of E. Let T : C → C be a generalized hybrid mapping. Then
the following are equivalent:

(a) F (T ) ̸= ∅;
(b) {Tnz} is bounded for some z ∈ C.

Proof. Since T : C → C is a generalized hybrid mapping, there exist a, b ∈ R such
that

a∥Tx− Ty∥2 + (1− a)∥x− Ty∥2 ≤ b∥Tx− y∥2 + (1− b)∥x− y∥2

for all x, y ∈ C. From a+ (1− a)− b− (1− b) = 0 and a+ (1− a) = 1, we have the
desired result by using Theorem 3.3. □

Using Theorem 3.3, we can also prove the following fixed point theorems in a
Banach space.

Theorem 3.5 ([21]). Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let T : C → C be a nonexpansive mapping,
i.e.,

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Theorem 3.6 ([2]). Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let T : C → C be a nonspreading mapping,
i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.

Theorem 3.7 ([2]). Let E be a uniformly convex Banach space and let C be a
nonempty closed convex subset of E. Let T : C → C be a hybrid mapping, i.e.,

3∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2 + ∥x− y∥2, ∀x, y ∈ C.

Suppose that there exists an element x ∈ C such that {Tnx} is bounded. Then, T
has a fixed point in C.
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4. Some properties of generalized hybrid mappings

Let E be a Banach space. Let C be a nonempty subset of E. Let T : C → C be
a mapping. Then, p ∈ C is called an asymptotic fixed point of T [20] if there exists

{xn} ⊂ C such that xn ⇀ p and limn→∞ ∥xn − Txn∥ = 0. We denote by F̂ (T ) the
set of asymptotic fixed points of T . A mapping I − T of C into E is said to be
demiclosed on C if F̂ (T ) = F (T ).

Theorem 4.1. Let E be a Banach space satisfying Opial’s condition and let C be a
nonempty closed convex subset of E. Let α, β, γ, δ ∈ R and let T be an (α, β, γ, δ)-
extended generalized hybrid mapping of C into itself which satisfies β ≤ 0 and γ ≤ 0.
Then F̂ (T ) = F (T ), i.e., I − T is demiclosed.

Proof. The inclusion F (T ) ⊂ F̂ (T ) is obvious. We show F̂ (T ) ⊂ F (T ). Let

u ∈ F̂ (T ) be given. Then we have a sequence {xn} of C such that xn ⇀ u and
limn→∞ ∥xn − Txn∥ = 0. Since T : C → C is an extended generalized hybrid
mapping, we obtain that

(4.1) α∥Txn − Tu∥2 + β∥xn − Tu∥2 + γ∥Txn − u∥2 + δ∥xn − u∥2 ≤ 0.

From β ≤ 0, γ ≤ 0 and (4.1), we have

α∥Txn − Tu∥2 + β(∥xn − Txn∥+ ∥Txn − Tu∥)2 + δ∥xn − u∥2

+ γ(∥Txn − xn∥+ ∥xn − u∥)2 ≤ 0.

Then we have that

(α+ β)∥Txn − Tu∥2 + (γ + δ)∥xn − u∥2 + (β + γ)∥xn − Txn∥2

+ 2β∥Txn − Tu∥)∥xn − Txn∥+ 2γ∥xn − u∥∥Txn − xn∥.
From xn ⇀ u, we obtain that {xn} is bounded. From limn→∞ ∥xn − Txn∥ = 0 we
also have that {Txn} is bounded. Suppose Tu ̸= u. Then we have from Opial’s
condition, α+ β + γ + δ ≥ 0 and α+ β > 0 that

lim inf
n→∞

∥xn − u∥2 < lim inf
n→∞

∥xn − Tu∥2

= lim inf
n→∞

∥xn − Txn + Txn − Tu∥2

= lim inf
n→∞

∥Txn − Tu∥2

≤ lim inf
n→∞

1

α+ β
{−(γ + δ)∥xn − u∥2 − (β + γ)∥xn − Txn∥2

− 2β∥Txn − Tu∥∥xn − Txn∥ − 2γ∥xn − u∥∥Txn − xn∥}
≤ lim inf

n→∞
∥xn − u∥2.

This is a contradiction. Thus we have Tu = u and hence F̂ (T ) ⊂ F (T ). □
Using Theorem 4.1, we can prove the following theorems in a Banach space.

Theorem 4.2. Let E be a Banach space satisfying Opial’s condition and let C be
a nonempty closed convex subset of E. Let T : C → C be a nonexpansive mapping,
i.e.,

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ C.
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Then, I − T is demiclosed on C.

Proof. It is clear that T is a (1, 0, 0, -1)-extended generalized hybrid mapping of C
into itself. Thus Theorem 4.1 implies that I − T is demiclosed on C. □
Theorem 4.3. Let E be a Banach space satisfying Opial’s condition and let C be
a nonempty closed convex subset of E. Let T : C → C be a nonspreading mapping,
i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

Then, I − T is demiclosed on C.

Proof. It is clear that T is a (2, -1, -1, 0)-extended generalized hybrid mapping of
C into itself. Thus Theorem 4.1 implies that I − T is demiclosed on C. □
Theorem 4.4. Let E be a Banach space satisfying Opial’s condition and let C be
a nonempty closed convex subset of E. Let T : C → C be a hybrid mapping, i.e.,

3∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2 + ∥x− y∥2, ∀x, y ∈ C.

Then, I − T is demiclosed on C.

Proof. It is clear that T is a (3, -1, -1, -1)-extended generalized hybrid mapping of
C into itself. Thus Theorem 4.1 implies that I − T is demiclosed on C. □

We also have the following property of an extended generalized hybrid mapping.

Theorem 4.5. Let E be a strictly convex Banach space, let C be a nonempty closed
convex subset of E and let T be an extended generalized hybrid mapping of C into
itself. Then F (T ) is closed and convex.

Proof. Since T : C → C is an extended generalized hybrid mapping with F (T ) ̸= ∅,
we have from Theorem 3.1 that T is quasi-nonexpansive. From Itoh and Takahashi
[12], we have that F (T ) is closed and convex. □

5. Weak convergence theorems

In this section, we first prove a weak convergence theorem of Mann’s type [18]
for extended generalized hybrid mappings in a Banach space satisfying Opial’s con-
dition.

Theorem 5.1. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty closed convex subset of E. Let α, β, γ, δ ∈ R
and let T be an (α, β, γ, δ)-extended generalized hybrid mapping of C into itself
such that β ≤ 0 and γ ≤ 0. Let {γn} be a sequence of real numbers such that
0 < a ≤ γn ≤ b < 1 for some a, b ∈ R and define a sequence {xn} of C as follows:
x1 = x ∈ C and

xn+1 = γnxn + (1− γn)Txn, ∀n ∈ N.
If F (T ) ̸= ∅, then {xn} converges weakly to some element z ∈ F (T ).

Proof. Since F (T ) ̸= ∅, we have from Theorem 3.1 that T is quasi-nonexpansive.
Using this fact, we have that for any u ∈ F (T ), x ∈ C and n ∈ N,

∥xn+1 − u∥ = ∥γnxn + (1− γn)Txn − u∥
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= ∥γn(xn − u) + (1− γn)(Txn − u)∥
≤ γn∥xn − u∥+ (1− γn)∥Txn − u∥
≤ γn∥xn − u∥+ (1− γn)∥xn − u∥
= ∥xn − u∥.

Thus limn→∞ ∥xn − u∥ exists and {xn} is bounded. Since T is quasi-nonexpansive,
{Txn} is also bounded. Let

r = max{sup
n∈N

∥xn − u∥, sup
n∈N

∥Txn − u∥}.

Then, from Theorem 2.2, there exists a strictly increasing, continuous and convex
function g : [0,∞) → [0,∞) such that g(0) = 0 and

∥µx+ (1− µ)y∥2 ≤ µ∥x∥2 + (1− µ)∥y∥2 − µ(1− µ)g(∥x− y∥)
for all x, y ∈ Br and µ with 0 ≤ µ ≤ 1, where Br = {z ∈ E : ∥z∥ ≤ r}. Then we
have that for any u ∈ F (T ), x ∈ C and n ∈ N,

∥xn+1 − u∥2 = ∥γnxn + (1− γn)Txn − u∥2

= ∥γn(xn − u) + (1− γn)(Txn − u)∥2

≤ γn∥xn − u∥2 + (1− γn)∥Txn − u∥2 − γn(1− γn)g(∥xn − Txn∥)
≤ γn∥xn − u∥2 + (1− γn)∥xn − u∥2 − γn(1− γn)g(∥xn − Txn∥)
= ∥xn − u∥2 − γn(1− γn)g(∥xn − Txn∥)
≤ ∥xn − u∥2

and hence

γn(1− γn)g(∥xn − Txn∥) ≤ ∥xn − u∥2 − ∥xn+1 − u∥2.
Since limn→∞ ∥xn − u∥2 exists, we have from 0 < a ≤ γn ≤ b < 1 that

lim
n→∞

g(∥xn − Txn∥) = 0.

From the properties of g, we have

(5.1) lim
n→∞

∥xn − Txn∥ = 0.

Since {xn} is bounded and E is reflexive, there exists a subsequence {xni} of {xn}
such that {xni} converges weakly to u ∈ C. Using Theorem 4.1 and (5.1), we have
Tu = u. Let us show that the entire sequence {xn} converges weakly to some point
of F (T ). To show it, let us take two subsequences {xni} and {xnj} of {xn} such
that xni ⇀ u and xnj ⇀ v. Suppose u ̸= v. From u, v ∈ F (T ), we know that
limn→∞ ∥xn − u∥ and limn→∞ ∥xn − v∥ exist. Since E satisfies Opial’s condition,
we have that

lim
n→∞

∥xn − u∥ = lim
i→∞

∥xni − u∥

< lim
i→∞

∥xni − v∥

= lim
n→∞

∥xn − v∥

= lim
j→∞

∥xnj − v∥
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< lim
j→∞

∥xnj − u∥

= lim
n→∞

∥xn − u∥.

This is a contradiction. So, we must have u = v. This implies that {xn} converges
weakly to a point of F (T ). □

Using Theorem 5.1, we obtain the following result.

Theorem 5.2. Let E be a uniformly convex Banach space which satisfies Opial’s
condition and let C be a nonempty closed convex subset of E. Let T be an (α, β, γ, δ)-
extended generalized hybrid mapping of C into itself such that β ≤ 0 and γ ≤ 0 and
let λ be a real number with 0 < λ < 1. Define a mapping S : C → C by

S = λI + (1− λ)T.

If F (T ) ̸= ∅, then for any x ∈ C, Snx converges weakly to an element z ∈ F (T ).

Proof. Putting γn = λ for all n ∈ N and S = λI + (1 − λ)T , we have that for any
x ∈ C,

x2 = Sx1 = Sx, x3 = S2x1 = S2x, . . .

in Theorem 5.1. So, we have from Theorem 5.1 that Snx converges weakly to an
element z ∈ F (T ). This completes the proof. □
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