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EXISTENCE AND APPROXIMATION OF FIXED POINTS OF
CHATTERJEA MAPPINGS WITH BREGMAN DISTANCES

FUMIAKI KOHSAKA AND TOMONARI SUZUKI

ABSTRACT. We introduce the concept of Chatterjea mappings on a nonempty set
and then obtain fixed point theorems and convergence theorems for Chatterjea
mappings with respect to a Bregman distance and its symmetrization associated
with the power of a norm in a Banach space. The class of Chatterjea mappings
with respect to a Bregman distance includes that of nonspreading mappings in
Hilbert spaces.

1. INTRODUCTION

Many nonlinear problems such as convex minimization problems, variational in-
equality problems, saddle point problems, equilibrium problems, and so on can be
formulated as the problem of solving 0 € Au for a maximal monotone operator A
of a Banach space X into 2X; see, for instance, [1,14-16,20].

The concept of nonspreading mappings proposed in [10] is closely related to the
problem of finding zero points of maximal monotone operators in Banach spaces. In
fact, in a smooth, strictly convex, and reflexive Banach space X, the set of all points
u € X such that 0 € Au is identical with the fixed point set of the nonspreading
mapping T of X into itself defined by Tx = (Jo + A) "1 Joz for all x € X; see [9,10]
for more details.

Let C' be a nonempty subset of a smooth Banach space X and T a nonspreading
mapping [10] of C' into itself, that is,

(11) ¢2(Tx7Ty) + (ZSQ(TZ/?T‘T) < ¢2(Tx7y) + ¢2(Ty7 x)

for all z,y € C, where ¢ is the function defined as in (2.8). Kohsaka and Taka-
hashi [10, Theorem 4.1] showed that if C' is a nonempty closed convex subset of a
smooth, strictly convex, and reflexive Banach space, then the fixed point set F(T') of
T is nonempty if and only if {T"x} is bounded for some z € C. Further, Kurokawa
and Takahashi [11, Theorem 3.1] showed that if C' is a nonempty closed convex
subset of a Hilbert space and F(T') is nonempty, then the sequence

(1.2) {%(m—FT:UvL--'—FT"_Ix)}
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converges weakly to an element of F(7T') for each x € C. In the case where X is a
Hilbert space, T' is nonspreading if and only if

(1.3) 2| T = Ty||* < | Tz —y|* + ||z — Ty

for all x,y € C.

Recently, motivated by [5,10], Suzuki [17] proposed the concept of Chatterjea
mappings in Banach spaces and obtained existence and convergence theorems for
such a mapping. Since the class of nonspreading mappings in Hilbert spaces is
nothing but that of Chatterjea mappings with ¢ + 2, the results due to Suzuki [17]
implies that the sequence {T™z} in the above result by Kurokawa and Takahashi [11]
is actually weakly convergent to an element of F(7") without the convexity of C.

Let (C,d) be a metric space, n a continuous and strictly increasing function of
[0, 00) into itself with 1(0) = 0, and 7" a mapping of C into itself which is Chatterjea
with n [17], that is,

(1.4) 217(d(T:U, Ty)) < n(d(Tx, y)) + n(d(w, Ty))

for all z,y € C. Suzuki [17, Theorems 15 and 18] showed that if X is a Banach
space, C is a nonempty boundedly weakly compact subset of X with the Opial
property, and T is a Chatterjea mapping of C' into itself with #, then T has a fixed
point if and only if {7T™z} is bounded for some x € C. In this case, the sequence
{T"x} converges weakly to an element of F(7") for each x € C.

In this paper, we propose the concept of p-Chatterjea mappings on a nonempty
set in Definition 2.1 and obtain fixed point theorems and convergence theorems for
mappings which are ¢,-Chatterjea or ®,-Chatterjea, where p is a real number such
that p > 1 and the functions ¢, and ®,, are defined by (2.8) and (2.9), respectively.
Let C be a nonempty subset of a smooth Banach space X. Following Definition 2.1,
a mapping 1" of C' into itself is said to be

o ¢,-Chatterjea if

(1.5) 2¢0p(Tz, Ty) < ¢p(Tz,y) + dp(x, Ty)

for all z,y € C;
e &, -Chatterjea if

(1.6) 20,(Tx,Ty) < ,(Tx,y) + @p(z, Ty)

for all z,y € C.

If X is a Hilbert space and p = 2, then the conditions (1.1), (1.5), and (1.6) are
equivalent to (1.3) for each z,y € C. Thus the results obtained in Sections 5 and 6
generalize the following result in Hilbert spaces to Banach spaces:

Theorem 1.1 (See [17, Theorem 15 and Corollary 20]). Let C' be a nonempty
weakly closed subset of a Hilbert space X and T a nonspreading mapping of C' into
itself. Then T has a fized point if and only if {T™x} is bounded for some x € C.
In this case, the sequence {T"x} converges weakly to an element of F(T) for all
xeC.
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2. PRELIMINARIES

Throughout this paper, every Banach space is real. The set of all positive integers
is denoted by N. Let X be a Banach space with its conjugate space X*. The value
of ¥ € X* at © € X is denoted by (x,z*). For a sequence {z,} in X and a point
x in X, the strong convergence and the weak convergence of {z,} to = are denoted
by x, — x and z, — x, respectively. We also denote by z} X 2* the weak*
convergence of a sequence {z}} in X* to 2* € X*. Let C be a nonempty subset of
X and S a mapping of C into itself. We denote by F(S) the set of all fixed points
of S. The mapping S is said to be demiclosed at 0 if Sz = 0 whenever {x,} is a
sequence in C, z is an element of C, z, — z, and Sx,, — 0. It is also said to be
asymptotically regular at z € C if S"z — 8"tz — 0. We denote by I the identity
mapping on C.

We give the definition of a p-Chatterjea mapping of a nonempty set into itself.

Definition 2.1. Let C be a nonempty set and p a function of C' x C into [0, c0)
such that p(z,2) = 0 for all x € C. A mapping T of C into itself is said to be
p-Chatterjea if

(2.1) 2p(Tz, Ty) < p(Tx,y) + p(z, Ty)
for all x,y € C.

Remark 2.2. If (C,d) is a metric space, n is a continuous and strictly increasing
function of [0, c0) into itself with 7(0) = 0, and 7" is a Chatterjea mapping of C into
itself with n (see (1.4)), then T is 7 o d-Chatterjea.

Lemma 2.3. Let o, 8 and v be nonnegative real numbers satisfying 2a < 5+ .
Then 2a” < 8" + 4" for any real number r > 1.

Proof. Since the function ¢ — t" is nondecreasing and convex on [0,00) and o <
(B +7)/2, we obtain the desired result. O

Lemma 2.3 implies the following;:

Lemma 2.4. Letr be a real number such thatr > 1, C' a nonempty set, p a function
of C x C into [0,00) such that p(x,z) = 0 for all x € C. If T is a p-Chalterjea
mapping of C into itself, then it is p(-,-)"-Chatterjea.

The following lemma is of fundamental importance; see also [7,18]:

Lemma 2.5 ([17, Lemma 11]). Put
Iy = {(m,n) :m,n € NU{0}, m Sn};
I= {(m,n) m,n €N, m< n}
If A is a function of Iy into [0,00) such that

e A(0,n) <1 for alln € NU{0};

e A(n,n) =0 for alln € N;

e 2A(m,n) < A(m,n — 1)+ A(m — 1,n) for all (m,n) € I,
then lim,, A(n,n + 1) = 0.

(2.2)

Using Lemma 2.5, we can prove the following:
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Lemma 2.6. Let C be a nonempty set, p a function of C' x C into [0,00) such that
p(z,x) =0 for allx € C, and T a p-Chatterjea mapping of C into itself. If x is an
element of C' such that sup,,, , p(T™x, T"x) < oo, then p(T"x, T 'z) — 0.

Proof. By assumption, there exists a positive real number M such that
(2.3) p(T"x, T"x) < M

for all m,n € NU{0}. Let Iy be the same as in Lemma 2.5 and A a function of I
into [0, 00) defined by

(2.4) A(m,n) = %p(me,T"x)

for all (m,n) € Iy. Then all the assumptions in Lemma 2.5 hold. Thus we obtain
lim,, A(n,n + 1) = 0, which implies the conclusion. a

Let p be a real number such that p > 1, X a Banach space, and Sx the unit
sphere of X. The duality mapping J,, of X into X* with weight ¢ — tP~1 is defined
by

(25) e ={a* € X" (e,a%) = al Ja* ], "] = 2]}
for all x € X. The space X is said to be smooth if

20 ety o]

t—0 t
exists for all x,y € Sx. The norm on X is said to be uniformly Gateaux differen-
tiable if (2.6) converges uniformly in x € Sy for each y € Sx. The space X is said
to be strictly convex if ||z + y|| < 2 for all distinct x,y € Sx. It is also said to be
uniformly convex if for each € € (0, 2], there exists § > 0 such that ||z + y|| < 2(1-9)
whenever z,y € Sx and ||z — y|| > ¢; see [6,12,19,21] on geometry of Banach spaces.
It is known that the following hold; see, for instance, [6,21]:
Jpx = ||z|[P~t Ty (x/ ||z]|) if 2 # 0 and Jyz = {0} if x = 0;
if X is smooth, then J, is single valued;
if X is strictly convex, then J, is one-to-one;
if X is strictly convex, then J), is strictly monotone, that is,

(2.7) (x—y, 2" —y*) >0
whenever z,y € X, v # y, 2* € Jpx, and y* € Jpy.

The mapping J, in a smooth Banach space X is said to be weakly sequentially
continuous if Jpx, A Jpx whenever {z,} is a sequence in X and x is an element of
X such that z, — x. It is known that if 1 < p < 0o and X = [P, then J, is weakly
sequentially continuous; see, for instance, [6, Proposition 4.14 in Chapter II.

Let p be a real number such that p > 1, X a smooth Banach space, and J, the
duality mapping of X into X* with weight ¢ — t?~1. We denote by ¢, the Bregman
distance associated with the convex function || -||” defined by

(2.8) bp(@,y) = [lz)|” — p(z =y, Jpy) — llylI”

for all z,y € X. This concept was originally proposed by Bregman [2]; see also [3,4]
for more details on Bregman distances. It is clear that the following hold:
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o ¢p(z,y) = |lz||” —p(z, Jpy) + (p — 1) [Jy||” for all z,y € X;
® d)p(l"y) >0 for all T,y € X;
o ¢p(x,x) =0 for all x € X.

If X is also strictly convex, then |- ||” is strictly convex; see [21, Theorem 3.7.2].
Thus, in this case, ¢,(x,y) > 0 for all distinct z,y € X; see [3, Proposition 1.1.4].

We denote by ®, the symmetrization of ¢, defined by

(29) (I)P(x7y) - ¢p($,y) + qbp(y,x)

for all z,y € X. It is clear that

(2.10) O, (z,y) =plx—y, Jpzr — Jpy)

for all z,y € X.
Choosing the power of the norm on a smooth and uniformly convex Banach space
as a convex function considered in [8, Lemma 3.1], we obtain the following:

Lemma 2.7 ([8, Lemma 3.1]). Let p be a real number such that p > 1 and X a
smooth and uniformly convex Banach space. If {x,} and {y,} are bounded sequences
in X such that ¢p(xy,yn) — 0, then ||z, — yy| — 0.

We also know the following:

Lemma 2.8 ([13, Lemma 2.2]). If the norm on a Banach space X is uniformly
Gateaux differentiable, then Jo is uniformly norm-to-weak* continuous on each
bounded subset of X, that is, lim, (z, Joxy, — Joyn) = 0 for all z € X whenever
{zn} and {yn} are bounded sequences in X such that x, — yn, — 0.

Using Lemma 2.8, we can prove the following:

Corollary 2.9. If X is the same as in Lemma 2.8 and 1 < p < oo, then Jp is
uniformly norm-to-weak™ continuous on each bounded subset of X.

Proof. Since J), is identical with Js on Sy, Lemma 2.8 ensures that J, is uniformly
norm-to-weak™ continuous on Sx. Let {z,} and {y,} be bounded sequences in X
such that x,, —y, — 0 and let z € X be given. Note that the sequence {~,} defined
by v = (2, Jpxn — Jpyn) is bounded. Let v be any cluster point of {v,}. Then
there exists a subsequence {vy,} of {7,} tending to ~.

If z,,, = 0 or y,, — 0, then we can see that Jyx,, — 0 and Jpy,, — 0 and hence
v = lim; vy, = 0. Thus we consider the case where neither {zy, } nor {yy, } converges
strongly to 0. Then there exist a positive real number § and a subsequence {n;; } of
{n;} such that

(2.11) ‘

‘25 and ‘
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for all j € N. Set u; = Tn,, and v; = Yni, and let M be a positive real number such
that ||z, || < M and ||y,]| < M for all n € N. Then we have

(st () = el (2 )
(o™ (2 () = (o)
(212 (e (st = ) (525 )

(o () = (o))

—1 —1
o [ e O L BT

(2, Jpuj — Jpvj)| =

<

< mp1

for all j € N. Since
Uj Yj

Tl ™ ool (sl s = w3l + el = ] e )

' 1
= Tl T
1
< =5 (sl Tty = vsll + ol = sl o) = 0

and J,, is uniformly norm-to-weak* continuous on Sx, we also know that

(2.14) <z, Jp (sz”> —J, <sz”)> 0.

On the other hand, since ¢ — #*~! is uniformly continuous on [0, M] and |u;|| —
[ v;]| = 0, we have [Ju;[[P~" — |lo;[|P~" — 0. Thus, by (2.12), we have

(2.13) ‘

(2.15) v = lim o, = lim (2, Jpu; — Jpv;) = 0.
Therefore, we conclude that ~, — 0. U
3. LEMMAS

In this section, we obtain some fundamental lemmas on ¢, and ®,,.

Lemma 3.1. Let p be a real number such that p > 1, X a smooth Banach space,
U a subset of X, and z an element of X. Then the following are equivalent:

(i) U is bounded;

(ii) {op(x,y) : z,y € U} is bounded;
(ili) {¢p(z,2): 2z € U} is bounded;
(iv) {pp(z,x) : x € U} is bounded.

Proof. Since

(3.1) ép(x,y) < llz|” +p =) lyIP~ + (= 1) [yl
(3.2) [l ()P~ = pllyIP~") + (p = D [lylP < ¢p(x, ),
and

(3-3) 7+ P~ (= llll + (o = 1) Iyll) < dp(z,y)
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for all x,y € X, the conclusion clearly holds. O

Lemma 3.2. Let p be a real number such that p > 1, X a smooth Banach space,
both {x,} and {y,} sequences in X, and both z and w elements of X. Then the
following hold:

(i) If zp, — z, then
¢p(xn> Z) - ¢p($na UI) — _(Z)p(za w)a
(ii) if zp — yn — 0 and {z,} is bounded, then ¢p(zn,2) — ¢p(yn,z) — 0;
(iii) iof , = 2z and J, is weakly sequentially continuous, then
¢p(za Qj‘n) - ¢P(w7 l‘n) — _¢p(wa Z);
(iv) if T — yn — 0, {zn} is bounded, and the norm on X is uniformly Gateauz

differentiable, then ¢p(z, xn) — ¢p(2,yn) — 0.

Proof. We first prove (i). Suppose that x,, — z. Then we have
Gp(Tn, 2) = Pp(an, w)
(3-4) = p(@n, Jyw — Jpz) + (p = D ([I2l]” — [[w]l”)
= plz, Jpw = Jpz) + (p = D(ll2]” = [w]”) = =p(2, w).
We next prove (ii). Suppose that =, —y, — 0 and {z,} is bounded. Then there
exists a positive real number M such that ||z, | < M and ||y,| < M for all n € N.

The uniform continuity of ¢ — ¥ on [0, M] implies that ||z,||” — ||y.||” — 0 and
hence

(3.5) Gp(Tn, 2) = bp(Yn, 2) = [lznll” = llynll” = p (20 = yn, Jpz) = 0.

We next prove (iii). Suppose that z,, — z and J, is weakly sequentially continu-
ous. Then it follows from the weak* convergence of {Jpz,} to J,z that

¢p(27xn) - d)p(wa zn) = [|2]|7 — lw|” +p (w — z, Jpxn>

3.6
(3.6) 2l el p b — 2 dp2) = —dpw,2).

We finally prove (iv). Suppose that z, — y, — 0, {z,} is bounded, and the
norm on X is uniformly Gateaux differentiable. Then we have ||x,]|” — ||y.||" — 0.
Corollary 2.9 also implies that (z, Jyz, — Jpyn) — 0. Thus we have

(3.7) ¢p(z,2n) = dp(2,9n) = =P (2, ST — Jpyn) + (= 1) ([za]l” = llya ") — 0.
This completes the proof. O

Lemma 3.3. Let p be a real number such that p > 1, X a smooth and strictly
convex Banach space, both {x,} and {yn,} sequences in X, and both {x,,} and
{@m,} subsequences of {xn} such that x,, — z and xpy; — w. Then the following
hold:

(i) If both {¢p(zn, 2)} and {Pp(xn,w)} are convergent, then z = w;
(ii) if both {Pp(z,2n)} and {¢p(w,xyn)} are convergent and J, is weakly sequen-
tially continuous, then z = w;
(iii) if both {®p(zn,2)} and {Pp(zn, w)} are convergent and Jy, is weakly sequen-
tially continuous, then z = w.
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Proof. We first prove (i). Suppose that both {¢,(xy, 2)} and {¢,(x,, w)} are con-
vergent and X is strictly convex. Since

(3.8) Gp(Tn, w) — Gp(Tn, 2) = p(Tn, Jpz — Jpw) + (p — 1)(||w”p - ||Z”p)
for all n € N, we know that {(xn, Jpz — Jpw>} is also convergent. Hence we have

(z, Jpz — Jpw) = lim (xy,,, Jpz — Jpw)
71— 00

(3.9) = lim (zp, Jpz — Jpw)

n—0o0

= Jlggo (T, Jpz — Jpw) = (w, Jpz — Jpw)

and hence
(3.10) (z —w, Jpz — Jyw) = 0.

The strict convexity of X implies that z = w.
We next prove (ii). Suppose that both {¢,(z,zy)} and {¢,(w,z,)} are conver-
gent, J, is weakly sequentially continuous, and X is strictly convex. Since

(3.11) Pp(w, 2n) = Gp(z,2n) = [[w[|” = |[2]]" + p (z — w, Jpwn)
for all n € N, we know that {<z —w, Jpxn>} is also convergent. Since J, is weakly
sequentially continuous, we have

(z —w, Jpz) m (z —w, Jpzp,)

=1l
i—

(3.12) = lim (z —w, Jprn)

= ]lgrolo (z = w, JpTm;) = (z —w, Jpw)
and hence
(3.13) (z —w, Jpz — Jyw) = 0.

The strict convexity of X implies that z = w.
We finally prove (iii). Suppose that both {®,(xy,2)} and {®,(z,,w)} are con-
vergent, J,, is weakly sequentially continuous, and X is strictly convex. Since

O, (2, w) — Op(ay, 2)
(3.14) = ¢p(Tn, w) — dp(Tn, 2) + Pp(w, ) — Pp(2z, Tn)
= p(Hpr - ||Z||p) +p{@n, Jpz — Jpw) +p(z — w, Jpzy)
for all n € N, we know that
(3.15) {{zn, Jpz — Jpw) + (z — w, Jpyzy) }
is convergent. Since J, is weakly sequentially continuous, we have

(z,Jpz — Jyw) + (z — w, Jpz) = lim {(@n,, Jpz — Jpyw) + (z — w, Jpan,)}

1—00
= lim {(zp, Jpz — Jpw) + (z — w, Jyx,)
(3.16) "?“’{ o o))
= j]ggo{@mj, Jpz — Jpw> + <z —w, Jpxmj>}

= (w, Jpz — Jpyw) + (z — w, Jpw)
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and hence
(3.17) 2(z —w, Jpz — Jyw) = 0.
The strict convexity of X implies that z = w. O

4. ¢p-CHATTERJEA MAPPINGS AND ®,-CHATTERJEA MAPPINGS

In this section, we obtain some preliminary results for ¢,-Chatterjea mappings
and ®,-Chatterjea mappings in Banach spaces.
Definition 2.1 readily implies the following:

Lemma 4.1. Let C be a nonempty set, p a function of C' x C into [0,00) such that
p(z,xz) =0 for all z € C, and T a p-Chatterjea mapping of C' into itself such that
F(T) is nonempty. Then p(Tx,y) < p(z,y) and p(y,Tx) < p(y,z) for all x € C
and y € F(T).

Every ¢,-Chatterjea mapping is also ®,-Chatterjea.

Lemma 4.2. Let p be a real number such that p > 1, C' a nonempty subset of a
smooth Banach space X, and T a mapping of C into itself. If T' is ¢,-Chatterjea,
then T is ®,-Chatterjea.

Proof. Suppose that T' is ¢,-Chatterjea. If z,y € C, then we have

(4.1) 20p(Tz, Ty) < ¢p(Tx,y) + ¢p(x, Ty)

and

(4.2) 20p(Ty, Tx) < ¢p(Ty, ) + ¢p(y, Tx).

Adding these inequalities, we have

(4.3) 20,(Tz, Ty) < O,(Tz,y) + ®p(z, Ty).

Thus T' is ®,-Chatterjea. U

Using a mapping 7" found by Suzuki [17, Example 7], we can prove the following:

Example 4.3. Let p and q be real numbers such that ¢ > p > 1, w a nonzero
element of a smooth Banach space X, and T a mapping of X into itself defined by

0 (z # w);
4.4 Tx =
(4.4) ! {21/qw (x = w).
Then T is ¢4-Chatterjea and T is not ®,-Chatterjea.

Proof. Let x,y € X be given. If either x # w and y # w, or x = y = w hold, then
we have

(4.5) 20¢(Tx, Ty) = 0 < ¢g(Tz, y) + dg(x, Ty).
If . = w and y # w, then Tz = 2~% and Ty = 0 and hence
(4.6) 20q(Tx, Ty) = lwl|! = ¢q(x, Ty) < dg(Tx,y) + ¢g(z,Ty).

If £ # w and y = w, then Tz = 0 and Ty = 2~'/%w and hence
(4.7) 20¢(T, Ty) = (¢ = 1) [lw]|* = ¢q(Tz,y) < ¢q(Tz,y) + dy(x, Ty).
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Thus T' is ¢4-Chatterjea.
Since T?w =0, 1 — p/q > 0, and w # 0, we also know that

20, (Tw, T?w) = 2(¢p(Tw, T*w) + ¢p(T?w, Tw))
2{fz e+ - el

(4.8)
1—
= 2121y
> pllwlP = @,(Tw, Tw) + ®,(w, T*w)
and hence T' is not ®,-Chatterjea. U

By using Lemmas 2.6 and 2.7, we can prove the following:

Lemma 4.4. Let p be a real number such that p > 1, C a nonempty subset of a
smooth and uniformly convex Banach space X, T a ®,-Chatterjea mapping of C into
itself, and x an element of C' such that {T™z} is bounded. Then T is asymptotically
reqular at x.

Proof. Since {T™z} is bounded, it follows from Lemma 3.1 that
(4.9) sup ®,(T™"z, T"z) < 2 sup ¢, (T"x, T"x) < 0.
m,n m,n

Thus Lemma 2.6 ensures that
(4.10) 0 < ¢p(TMx, T o) < @, (T2, T" ) — 0

and hence ¢,(T"z, T 1x) — 0. Since X is uniformly convex, Lemma 2.7 implies
that || 7"z — T""z|| — 0. Thus T is asymptotically regular at . O

We next obtain the following lemma:

Lemma 4.5. Let p be a real number such that p > 1, C' a nonempty weakly closed
subset of a smooth and uniformly convex Banach space X, and T' a ®,-Chatterjea
mapping of C into itself such that I —T is demiclosed at 0. Then F(T) is nonempty
if and only if {T™x} is bounded for some z € C.

Proof. Since the only if part is obvious, it is sufficient to prove the if part. Suppose
that {T"x} is bounded for some z € C' and set x,, = T"z for all n € N. Then, by
Lemma 4.4, we know that

(4.11) |20 = Tan|| = ||T"x — T 'at|| = 0.

Since {x,} is bounded and X is reflexive, there exists a subsequence {z,,} of {z,}
which is weakly convergent to some z € X. The weak closedness of C' implies that
z € C. Since I — T is demiclosed at 0 by assumption, we know that (I — 7))z =0
and hence z € F(T). O

5. EXISTENCE OF FIXED POINTS

In this section, we give fixed point theorems for ¢,-Chatterjea mappings and
®,-Chatterjea mappings in Banach spaces.
We first obtain the following two demiclosedness principles:
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Lemma 5.1. Let p be a real number such that p > 1, C' a nonempty subset of a
smooth and strictly convex Banach space X, and T a ¢,-Chatterjea mapping of C
into itself. Then I — T is demiclosed at 0.

Proof. Let {x,} be a sequence in C' and z an element of C' such that z,, — z and
Zp — T'xy, — 0. Since T is ¢,-Chatterjea, we have

(5.1) 0 < op(Tan, z) — op(Txyn, T2) + ¢p(an, Tz) — ¢p(Txy, Tz)

for all n € N. Since x,, — z and x,, — Tz, — 0, we have Tz, — z. Then it follows
from (i) and (ii) of Lemma 3.2 that

(5.2) Op(Txy, 2) — op(Txpn, T2z) = —¢p(2,Tz)
and
(5.3) Op(xn, T2) — ¢p(Tay, Tz) = 0,

respectively. Thus, letting n — oo in (5.1), we obtain 0 < —¢,(z,T2) and hence we
have ¢,(z,T%) = 0. By the strict convexity of X, we obtain Tz = z. O

Lemma 5.2. Let p be a real number such that p > 1, C a nonempty subset of a
strictly convex Banach space X such that the norm on X is uniformly Gateaux dif-
ferentiable and J, is weakly sequentially continuous, and T' a ®,-Chatterjea mapping
of C into itself. Then I —T 1is demiclosed at 0.

Proof. Let {x,} be a sequence in C' and z an element of C' such that z,, — z and
2y — T'xy, — 0. Since T is ®,-Chatterjea, we have

(5.4) 0<®)(Txp,2) — Cp(Tay, Tz) + Op(xn, T2) — @p(Txy, Tz)

for all n € N. Since =, — z and z,, — Tz, — 0, we have Tz, — 2. Since J, is
weakly sequentially continuous, it follows from (i) and (iii) of Lemma 3.2 that

Q,(Txp,2) — @p(Tay, Tz)
(5.5) = ¢p(Txp,2) — Op(Tan, T2) + ¢p(2, Tay) — op(Tz, Txy)
— —dp(2,T2) — op(T2,2) = —0,(T2, 2).
Since the norm on X is uniformly Gateaux differentiable, {z,} is bounded, and
Zp, — Txy, — 0, it follows from (ii) and (iv) of Lemma 3.2 that
(5:6) S (20, Tz) — @p(Tay, T2)
' = ¢p(xn, T2) — ¢p(Tan, T2) + ¢p(Tz,x) — ¢p(T2, Txy) — 0.
Thus, letting n — oo in (5.4), we obtain 0 < —®,(Tz,2) and hence we have
®,(Tz,z) = 0. It follows from (2.10) that
(5.7) p{z—Tz Jpz — JpTz) = 0.
By the strict convexity of X, we obtain Tz = z. O

As a consequence of Lemmas 4.2, 4.5, and 5.1, we obtain the following fixed point
theorem for ¢,-Chatterjea mappings:
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Theorem 5.3. Let p be a real number such thatp > 1, C' a nonempty weakly closed
subset of a smooth and uniformly convex Banach space X, and T' a ¢,-Chatterjea
mapping of C into itself. Then F(T) is nonempty if and only if {T"x} is bounded
for some x € C.

As a consequence of Lemmas 4.5 and 5.2, we obtain the following fixed point
theorem for ®,-Chatterjea mappings:

Theorem 5.4. Let p be a real number such that p > 1, C a nonempty weakly
closed subset of a uniformly convex Banach space X such that the norm on X is
uniformly Gateauz differentiable and J, is weakly sequentially continuous, and T
a ®,-Chatterjea mapping of C into itself. Then F(T') is nonempty if and only if
{T"z} is bounded for some x € C.

6. CONVERGENCE TO FIXED POINTS

In this section, we give convergence theorems for ¢,-Chatterjea mappings and
®,-Chatterjea mappings in Banach spaces.
We first obtain the following convergence theorem for ¢,-Chatterjea mappings:

Theorem 6.1. Let p be a real number such thatp > 1, C' a nonempty weakly closed
subset of a smooth and uniformly convex Banach space X, and T' a ¢,-Chatterjea
mapping of C' into itself such that F(T') is nonempty. Then {T™z} converges weakly
to an element of F(T') for all x € C.

Proof. Let x € C be given and set x,, = T"x for all n € N. Let z € F(T') be given.
Since T is ¢,-Chatterjea, it follows from Lemma 4.1 that

(6.1) Op(Tnt1,2) < Pp(Tn, 2)

for all n € N. Thus {¢p(zn, 2)} is convergent. Since {¢,(xy,2)} is bounded, it
follows from Lemma 3.1 that {z,} is bounded. Then the reflexivity of X implies
the existence of a weakly convergent subsequence of {zy}.

Lemma 4.2 implies that 7" is also ®,-Chatterjea. Since X is uniformly convex,
Lemma 4.4 implies that z, — Tx, — 0. Let w be any weak subsequential limit of
{zy}. Since C' is weakly closed, we have w € C. By Lemma 5.1, the mapping [ — T
is demiclosed at 0 and hence w € F(T'). Thus each weak subsequential limit of {x,, }
belongs to F(T).

Let u,u’ be weak subsequential limits of {x,}. Then we know that u,u’ € F(T)
and hence {¢p(zp,u)} and {¢,(xy, u')} are convergent. Since X is strictly convex,
it follows from (i) of Lemma 3.3 that u = «’. Thus, the sequence {x,} is weakly
convergent to an element of F (7). O

We finally obtain the following convergence theorem for ®,-Chatterjea mappings:

Theorem 6.2. Let p be a real number such that p > 1, C a nonempty weakly
closed subset of a uniformly convex Banach space X such that the norm on X is
uniformly Gateaux differentiable and Jp is weakly sequentially continuous, and T" a
®,,-Chatterjea mapping of C into itself such that F(T) is nonempty. Then {T"z}
converges weakly to an element of F(T') for all z € C.
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Proof. Let x € C be given and set x,, = T"x for all n € N. Let z € F(T) be given.
Since T' is ®,-Chatterjea, it follows from Lemma 4.1 that

(6.2) Dp(zn+1,2) < Pp(an, 2)
for all n € N. Thus {®,(zp,2)} is convergent. Since {®,(z,,2)} is bounded and
(63) ¢p(xn7 Z) S (Dp(xnv Z)

for all n € N, it follows from Lemma 3.1 that {z,} is bounded. Hence there exists
a weakly convergent subsequence of {xz,}.

Since X is uniformly convex, it follows from Lemma 4.4 that x, — Tz, — 0. Let
w be any weak subsequential limit of {z,}. Then the weak closedness of C' implies
that w € C. By Lemma 5.2, the mapping I — T is demiclosed at 0 and hence
w € F(T). Thus each weak subsequential limit of {x, } belongs to F(T').

Let u,u’ be weak subsequential limits of {x,}. Then we know that u,u’ € F(T)
and hence {®,(z,,u)} and {®p(z,, ')} are convergent. Since J, is weakly sequen-
tially continuous and X is strictly convex, it follows from (iii) of Lemma 3.3 that
u = v. Thus, the sequence {z,} is weakly convergent to an element of (7). O
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