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converges weakly to an element of F(T ) for each x ∈ C. In the case where X is a
Hilbert space, T is nonspreading if and only if

2 ∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥x− Ty∥2(1.3)

for all x, y ∈ C.
Recently, motivated by [5, 10], Suzuki [17] proposed the concept of Chatterjea

mappings in Banach spaces and obtained existence and convergence theorems for
such a mapping. Since the class of nonspreading mappings in Hilbert spaces is
nothing but that of Chatterjea mappings with t 7→ t2, the results due to Suzuki [17]
implies that the sequence {Tnx} in the above result by Kurokawa and Takahashi [11]
is actually weakly convergent to an element of F(T ) without the convexity of C.

Let (C, d) be a metric space, η a continuous and strictly increasing function of
[0,∞) into itself with η(0) = 0, and T a mapping of C into itself which is Chatterjea
with η [17], that is,

2η
(
d(Tx, Ty)

)
≤ η

(
d(Tx, y)

)
+ η

(
d(x, Ty)

)
(1.4)

for all x, y ∈ C. Suzuki [17, Theorems 15 and 18] showed that if X is a Banach
space, C is a nonempty boundedly weakly compact subset of X with the Opial
property, and T is a Chatterjea mapping of C into itself with η, then T has a fixed
point if and only if {Tnx} is bounded for some x ∈ C. In this case, the sequence
{Tnx} converges weakly to an element of F(T ) for each x ∈ C.

In this paper, we propose the concept of ρ-Chatterjea mappings on a nonempty
set in Definition 2.1 and obtain fixed point theorems and convergence theorems for
mappings which are ϕp-Chatterjea or Φp-Chatterjea, where p is a real number such
that p > 1 and the functions ϕp and Φp are defined by (2.8) and (2.9), respectively.
Let C be a nonempty subset of a smooth Banach space X. Following Definition 2.1,
a mapping T of C into itself is said to be

• ϕp-Chatterjea if

2ϕp(Tx, Ty) ≤ ϕp(Tx, y) + ϕp(x, Ty)(1.5)

for all x, y ∈ C;
• Φp-Chatterjea if

2Φp(Tx, Ty) ≤ Φp(Tx, y) + Φp(x, Ty)(1.6)

for all x, y ∈ C.

If X is a Hilbert space and p = 2, then the conditions (1.1), (1.5), and (1.6) are
equivalent to (1.3) for each x, y ∈ C. Thus the results obtained in Sections 5 and 6
generalize the following result in Hilbert spaces to Banach spaces:

Theorem 1.1 (See [17, Theorem 15 and Corollary 20]). Let C be a nonempty
weakly closed subset of a Hilbert space X and T a nonspreading mapping of C into
itself. Then T has a fixed point if and only if {Tnx} is bounded for some x ∈ C.
In this case, the sequence {Tnx} converges weakly to an element of F(T ) for all
x ∈ C.
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2. Preliminaries

Throughout this paper, every Banach space is real. The set of all positive integers
is denoted by N. Let X be a Banach space with its conjugate space X∗. The value
of x∗ ∈ X∗ at x ∈ X is denoted by ⟨x, x∗⟩. For a sequence {xn} in X and a point
x in X, the strong convergence and the weak convergence of {xn} to x are denoted

by xn → x and xn ⇀ x, respectively. We also denote by x∗n
∗
⇀ x∗ the weak*

convergence of a sequence {x∗n} in X∗ to x∗ ∈ X∗. Let C be a nonempty subset of
X and S a mapping of C into itself. We denote by F(S) the set of all fixed points
of S. The mapping S is said to be demiclosed at 0 if Sz = 0 whenever {xn} is a
sequence in C, z is an element of C, xn ⇀ z, and Sxn → 0. It is also said to be
asymptotically regular at x ∈ C if Snx− Sn+1x → 0. We denote by I the identity
mapping on C.

We give the definition of a ρ-Chatterjea mapping of a nonempty set into itself.

Definition 2.1. Let C be a nonempty set and ρ a function of C × C into [0,∞)
such that ρ(x, x) = 0 for all x ∈ C. A mapping T of C into itself is said to be
ρ-Chatterjea if

2ρ(Tx, Ty) ≤ ρ(Tx, y) + ρ(x, Ty)(2.1)

for all x, y ∈ C.

Remark 2.2. If (C, d) is a metric space, η is a continuous and strictly increasing
function of [0,∞) into itself with η(0) = 0, and T is a Chatterjea mapping of C into
itself with η (see (1.4)), then T is η ◦ d-Chatterjea.

Lemma 2.3. Let α, β and γ be nonnegative real numbers satisfying 2α ≤ β + γ.
Then 2αr ≤ βr + γr for any real number r > 1.

Proof. Since the function t 7→ tr is nondecreasing and convex on [0,∞) and α ≤
(β + γ)/2, we obtain the desired result. □

Lemma 2.3 implies the following:

Lemma 2.4. Let r be a real number such that r > 1, C a nonempty set, ρ a function
of C × C into [0,∞) such that ρ(x, x) = 0 for all x ∈ C. If T is a ρ-Chatterjea
mapping of C into itself, then it is ρ(·, ·)r-Chatterjea.

The following lemma is of fundamental importance; see also [7, 18]:

Lemma 2.5 ([17, Lemma 11]). Put

I0 =
{
(m,n) : m,n ∈ N ∪ {0}, m ≤ n

}
;

I =
{
(m,n) : m,n ∈ N, m < n

}
.

(2.2)

If A is a function of I0 into [0,∞) such that

• A(0, n) ≤ 1 for all n ∈ N ∪ {0};
• A(n, n) = 0 for all n ∈ N;
• 2A(m,n) ≤ A(m,n− 1) +A(m− 1, n) for all (m,n) ∈ I,

then limnA(n, n+ 1) = 0.

Using Lemma 2.5, we can prove the following:
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Lemma 2.6. Let C be a nonempty set, ρ a function of C×C into [0,∞) such that
ρ(x, x) = 0 for all x ∈ C, and T a ρ-Chatterjea mapping of C into itself. If x is an
element of C such that supm,n ρ(T

mx, Tnx) < ∞, then ρ(Tnx, Tn+1x) → 0.

Proof. By assumption, there exists a positive real number M such that

ρ(Tmx, Tnx) ≤ M(2.3)

for all m,n ∈ N ∪ {0}. Let I0 be the same as in Lemma 2.5 and A a function of I0
into [0,∞) defined by

A(m,n) =
1

M
ρ(Tmx, Tnx)(2.4)

for all (m,n) ∈ I0. Then all the assumptions in Lemma 2.5 hold. Thus we obtain
limnA(n, n+ 1) = 0, which implies the conclusion. □

Let p be a real number such that p > 1, X a Banach space, and SX the unit
sphere of X. The duality mapping Jp of X into X∗ with weight t 7→ tp−1 is defined
by

Jpx =
{
x∗ ∈ X∗ : ⟨x, x∗⟩ = ∥x∥ ∥x∗∥ , ∥x∗∥ = ∥x∥p−1

}
(2.5)

for all x ∈ X. The space X is said to be smooth if

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.6)

exists for all x, y ∈ SX . The norm on X is said to be uniformly Gâteaux differen-
tiable if (2.6) converges uniformly in x ∈ SX for each y ∈ SX . The space X is said
to be strictly convex if ∥x+ y∥ < 2 for all distinct x, y ∈ SX . It is also said to be
uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that ∥x+ y∥ ≤ 2(1−δ)
whenever x, y ∈ SX and ∥x− y∥ ≥ ε; see [6,12,19,21] on geometry of Banach spaces.
It is known that the following hold; see, for instance, [6, 21]:

• Jpx = ∥x∥p−1 J2 (x/ ∥x∥) if x ̸= 0 and Jpx = {0} if x = 0;
• if X is smooth, then Jp is single valued;
• if X is strictly convex, then Jp is one-to-one;
• if X is strictly convex, then Jp is strictly monotone, that is,

⟨x− y, x∗ − y∗⟩ > 0(2.7)

whenever x, y ∈ X, x ̸= y, x∗ ∈ Jpx, and y∗ ∈ Jpy.

The mapping Jp in a smooth Banach space X is said to be weakly sequentially

continuous if Jpxn
∗
⇀ Jpx whenever {xn} is a sequence in X and x is an element of

X such that xn ⇀ x. It is known that if 1 < p < ∞ and X = lp, then Jp is weakly
sequentially continuous; see, for instance, [6, Proposition 4.14 in Chapter II].

Let p be a real number such that p > 1, X a smooth Banach space, and Jp the
duality mapping of X into X∗ with weight t 7→ tp−1. We denote by ϕp the Bregman
distance associated with the convex function ∥ · ∥p defined by

ϕp(x, y) = ∥x∥p − p ⟨x− y, Jpy⟩ − ∥y∥p(2.8)

for all x, y ∈ X. This concept was originally proposed by Bregman [2]; see also [3,4]
for more details on Bregman distances. It is clear that the following hold:
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• ϕp(x, y) = ∥x∥p − p ⟨x, Jpy⟩+ (p− 1) ∥y∥p for all x, y ∈ X;
• ϕp(x, y) ≥ 0 for all x, y ∈ X;
• ϕp(x, x) = 0 for all x ∈ X.

If X is also strictly convex, then ∥ · ∥p is strictly convex; see [21, Theorem 3.7.2].
Thus, in this case, ϕp(x, y) > 0 for all distinct x, y ∈ X; see [3, Proposition 1.1.4].
We denote by Φp the symmetrization of ϕp defined by

Φp(x, y) = ϕp(x, y) + ϕp(y, x)(2.9)

for all x, y ∈ X. It is clear that

Φp(x, y) = p ⟨x− y, Jpx− Jpy⟩(2.10)

for all x, y ∈ X.
Choosing the power of the norm on a smooth and uniformly convex Banach space

as a convex function considered in [8, Lemma 3.1], we obtain the following:

Lemma 2.7 ([8, Lemma 3.1]). Let p be a real number such that p > 1 and X a
smooth and uniformly convex Banach space. If {xn} and {yn} are bounded sequences
in X such that ϕp(xn, yn) → 0, then ∥xn − yn∥ → 0.

We also know the following:

Lemma 2.8 ([13, Lemma 2.2]). If the norm on a Banach space X is uniformly
Gâteaux differentiable, then J2 is uniformly norm-to-weak* continuous on each
bounded subset of X, that is, limn ⟨z, J2xn − J2yn⟩ = 0 for all z ∈ X whenever
{xn} and {yn} are bounded sequences in X such that xn − yn → 0.

Using Lemma 2.8, we can prove the following:

Corollary 2.9. If X is the same as in Lemma 2.8 and 1 < p < ∞, then Jp is
uniformly norm-to-weak* continuous on each bounded subset of X.

Proof. Since Jp is identical with J2 on SX , Lemma 2.8 ensures that Jp is uniformly
norm-to-weak* continuous on SX . Let {xn} and {yn} be bounded sequences in X
such that xn−yn → 0 and let z ∈ X be given. Note that the sequence {γn} defined
by γn = ⟨z, Jpxn − Jpyn⟩ is bounded. Let γ be any cluster point of {γn}. Then
there exists a subsequence {γni} of {γn} tending to γ.

If xni → 0 or yni → 0, then we can see that Jpxni → 0 and Jpyni → 0 and hence
γ = limi γni = 0. Thus we consider the case where neither {xni} nor {yni} converges
strongly to 0. Then there exist a positive real number δ and a subsequence {nij} of
{ni} such that ∥∥∥xnij

∥∥∥ ≥ δ and
∥∥∥ynij

∥∥∥ ≥ δ(2.11)
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for all j ∈ N. Set uj = xnij
and vj = ynij

and let M be a positive real number such

that ∥xn∥ ≤ M and ∥yn∥ ≤ M for all n ∈ N. Then we have

|⟨z, Jpuj − Jpvj⟩| =
∣∣∣∣⟨z, ∥uj∥p−1 J2

(
uj
∥uj∥

)
− ∥vj∥p−1 J2

(
vj
∥vj∥

)⟩∣∣∣∣
≤

∣∣∣∣⟨z, ∥uj∥p−1

(
J2

(
uj
∥uj∥

)
− J2

(
vj
∥vj∥

))⟩∣∣∣∣
+

∣∣∣∣⟨z,(∥uj∥p−1 − ∥vj∥p−1
)
J2

(
vj
∥vj∥

)⟩∣∣∣∣
≤ Mp−1

∣∣∣∣⟨z, Jp

(
uj

∥uj∥

)
− Jp

(
vj

∥vj∥

)⟩∣∣∣∣
+

∣∣∣∥uj∥p−1 − ∥vj∥p−1
∣∣∣ ∥z∥

(2.12)

for all j ∈ N. Since∥∥∥∥ uj
∥uj∥

− vj
∥vj∥

∥∥∥∥ ≤ 1

∥uj∥ ∥vj∥

(
∥vj∥ ∥uj − vj∥+

∣∣∥vj∥ − ∥uj∥
∣∣ ∥vj∥)

≤ 1

δ2

(
∥vj∥ ∥uj − vj∥+

∣∣∥vj∥ − ∥uj∥
∣∣ ∥vj∥) → 0

(2.13)

and Jp is uniformly norm-to-weak* continuous on SX , we also know that⟨
z, Jp

(
uj
∥uj∥

)
− Jp

(
vj
∥vj∥

)⟩
→ 0.(2.14)

On the other hand, since t 7→ tp−1 is uniformly continuous on [0,M ] and ∥uj∥ −
∥vj∥ → 0, we have ∥uj∥p−1 − ∥vj∥p−1 → 0. Thus, by (2.12), we have

γ = lim
j→∞

γnij
= lim

j→∞
⟨z, Jpuj − Jpvj⟩ = 0.(2.15)

Therefore, we conclude that γn → 0. □

3. Lemmas

In this section, we obtain some fundamental lemmas on ϕp and Φp.

Lemma 3.1. Let p be a real number such that p > 1, X a smooth Banach space,
U a subset of X, and z an element of X. Then the following are equivalent:

(i) U is bounded;
(ii) {ϕp(x, y) : x, y ∈ U} is bounded;
(iii) {ϕp(x, z) : x ∈ U} is bounded;
(iv) {ϕp(z, x) : x ∈ U} is bounded.

Proof. Since

ϕp(x, y) ≤ ∥x∥p + p ∥x∥ ∥y∥p−1 + (p− 1) ∥y∥p ,(3.1)

∥x∥
(
∥x∥p−1 − p ∥y∥p−1)+ (p− 1) ∥y∥p ≤ ϕp(x, y),(3.2)

and

∥x∥p + ∥y∥p−1 (−p ∥x∥+ (p− 1) ∥y∥
)
≤ ϕp(x, y)(3.3)



CHATTERJEA MAPPINGS WITH BREGMAN DISTANCES 79

for all x, y ∈ X, the conclusion clearly holds. □
Lemma 3.2. Let p be a real number such that p > 1, X a smooth Banach space,
both {xn} and {yn} sequences in X, and both z and w elements of X. Then the
following hold:

(i) If xn ⇀ z, then

ϕp(xn, z)− ϕp(xn, w) → −ϕp(z, w);

(ii) if xn − yn → 0 and {xn} is bounded, then ϕp(xn, z)− ϕp(yn, z) → 0;
(iii) if xn ⇀ z and Jp is weakly sequentially continuous, then

ϕp(z, xn)− ϕp(w, xn) → −ϕp(w, z);

(iv) if xn − yn → 0, {xn} is bounded, and the norm on X is uniformly Gâteaux
differentiable, then ϕp(z, xn)− ϕp(z, yn) → 0.

Proof. We first prove (i). Suppose that xn ⇀ z. Then we have

ϕp(xn, z)− ϕp(xn, w)

= p ⟨xn, Jpw − Jpz⟩+ (p− 1)
(
∥z∥p − ∥w∥p

)
→ p ⟨z, Jpw − Jpz⟩+ (p− 1)

(
∥z∥p − ∥w∥p

)
= −ϕp(z, w).

(3.4)

We next prove (ii). Suppose that xn − yn → 0 and {xn} is bounded. Then there
exists a positive real number M such that ∥xn∥ ≤ M and ∥yn∥ ≤ M for all n ∈ N.
The uniform continuity of t 7→ tp on [0,M ] implies that ∥xn∥p − ∥yn∥p → 0 and
hence

ϕp(xn, z)− ϕp(yn, z) = ∥xn∥p − ∥yn∥p − p ⟨xn − yn, Jpz⟩ → 0.(3.5)

We next prove (iii). Suppose that xn ⇀ z and Jp is weakly sequentially continu-
ous. Then it follows from the weak* convergence of {Jpxn} to Jpz that

ϕp(z, xn)− ϕp(w, xn) = ∥z∥p − ∥w∥p + p ⟨w − z, Jpxn⟩
→ ∥z∥p − ∥w∥p + p ⟨w − z, Jpz⟩ = −ϕp(w, z).

(3.6)

We finally prove (iv). Suppose that xn − yn → 0, {xn} is bounded, and the
norm on X is uniformly Gâteaux differentiable. Then we have ∥xn∥p − ∥yn∥p → 0.
Corollary 2.9 also implies that ⟨z, Jpxn − Jpyn⟩ → 0. Thus we have

(3.7) ϕp(z, xn)− ϕp(z, yn) = −p ⟨z, Jpxn − Jpyn⟩+ (p− 1)
(
∥xn∥p − ∥yn∥p

)
→ 0.

This completes the proof. □
Lemma 3.3. Let p be a real number such that p > 1, X a smooth and strictly
convex Banach space, both {xn} and {yn} sequences in X, and both {xni} and
{xmj} subsequences of {xn} such that xni ⇀ z and xmj ⇀ w. Then the following
hold:

(i) If both {ϕp(xn, z)} and {ϕp(xn, w)} are convergent, then z = w;
(ii) if both {ϕp(z, xn)} and {ϕp(w, xn)} are convergent and Jp is weakly sequen-

tially continuous, then z = w;
(iii) if both {Φp(xn, z)} and {Φp(xn, w)} are convergent and Jp is weakly sequen-

tially continuous, then z = w.
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Proof. We first prove (i). Suppose that both {ϕp(xn, z)} and {ϕp(xn, w)} are con-
vergent and X is strictly convex. Since

ϕp(xn, w)− ϕp(xn, z) = p ⟨xn, Jpz − Jpw⟩+ (p− 1)
(
∥w∥p − ∥z∥p

)
(3.8)

for all n ∈ N, we know that
{
⟨xn, Jpz − Jpw⟩

}
is also convergent. Hence we have

⟨z, Jpz − Jpw⟩ = lim
i→∞

⟨xni , Jpz − Jpw⟩

= lim
n→∞

⟨xn, Jpz − Jpw⟩

= lim
j→∞

⟨
xmj , Jpz − Jpw

⟩
= ⟨w, Jpz − Jpw⟩

(3.9)

and hence

⟨z − w, Jpz − Jpw⟩ = 0.(3.10)

The strict convexity of X implies that z = w.
We next prove (ii). Suppose that both {ϕp(z, xn)} and {ϕp(w, xn)} are conver-

gent, Jp is weakly sequentially continuous, and X is strictly convex. Since

ϕp(w, xn)− ϕp(z, xn) = ∥w∥p − ∥z∥p + p ⟨z − w, Jpxn⟩(3.11)

for all n ∈ N, we know that
{
⟨z − w, Jpxn⟩

}
is also convergent. Since Jp is weakly

sequentially continuous, we have

⟨z − w, Jpz⟩ = lim
i→∞

⟨z − w, Jpxni⟩

= lim
n→∞

⟨z − w, Jpxn⟩

= lim
j→∞

⟨
z − w, Jpxmj

⟩
= ⟨z − w, Jpw⟩

(3.12)

and hence

⟨z − w, Jpz − Jpw⟩ = 0.(3.13)

The strict convexity of X implies that z = w.
We finally prove (iii). Suppose that both {Φp(xn, z)} and {Φp(xn, w)} are con-

vergent, Jp is weakly sequentially continuous, and X is strictly convex. Since

Φp(xn, w)− Φp(xn, z)

= ϕp(xn, w)− ϕp(xn, z) + ϕp(w, xn)− ϕp(z, xn)

= p
(
∥w∥p − ∥z∥p

)
+ p ⟨xn, Jpz − Jpw⟩+ p ⟨z − w, Jpxn⟩

(3.14)

for all n ∈ N, we know that{
⟨xn, Jpz − Jpw⟩+ ⟨z − w, Jpxn⟩

}
(3.15)

is convergent. Since Jp is weakly sequentially continuous, we have

(3.16)

⟨z, Jpz − Jpw⟩+ ⟨z − w, Jpz⟩ = lim
i→∞

{
⟨xni , Jpz − Jpw⟩+ ⟨z − w, Jpxni⟩

}
= lim

n→∞

{
⟨xn, Jpz − Jpw⟩+ ⟨z − w, Jpxn⟩

}
= lim

j→∞

{⟨
xmj , Jpz − Jpw

⟩
+

⟨
z − w, Jpxmj

⟩}
= ⟨w, Jpz − Jpw⟩+ ⟨z − w, Jpw⟩
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and hence

2 ⟨z − w, Jpz − Jpw⟩ = 0.(3.17)

The strict convexity of X implies that z = w. □

4. ϕp-Chatterjea mappings and Φp-Chatterjea mappings

In this section, we obtain some preliminary results for ϕp-Chatterjea mappings
and Φp-Chatterjea mappings in Banach spaces.

Definition 2.1 readily implies the following:

Lemma 4.1. Let C be a nonempty set, ρ a function of C×C into [0,∞) such that
ρ(x, x) = 0 for all x ∈ C, and T a ρ-Chatterjea mapping of C into itself such that
F(T ) is nonempty. Then ρ(Tx, y) ≤ ρ(x, y) and ρ(y, Tx) ≤ ρ(y, x) for all x ∈ C
and y ∈ F(T ).

Every ϕp-Chatterjea mapping is also Φp-Chatterjea.

Lemma 4.2. Let p be a real number such that p > 1, C a nonempty subset of a
smooth Banach space X, and T a mapping of C into itself. If T is ϕp-Chatterjea,
then T is Φp-Chatterjea.

Proof. Suppose that T is ϕp-Chatterjea. If x, y ∈ C, then we have

2ϕp(Tx, Ty) ≤ ϕp(Tx, y) + ϕp(x, Ty)(4.1)

and

2ϕp(Ty, Tx) ≤ ϕp(Ty, x) + ϕp(y, Tx).(4.2)

Adding these inequalities, we have

2Φp(Tx, Ty) ≤ Φp(Tx, y) + Φp(x, Ty).(4.3)

Thus T is Φp-Chatterjea. □
Using a mapping T found by Suzuki [17, Example 7], we can prove the following:

Example 4.3. Let p and q be real numbers such that q > p > 1, w a nonzero
element of a smooth Banach space X, and T a mapping of X into itself defined by

Tx =

{
0 (x ̸= w);

2−1/qw (x = w).
(4.4)

Then T is ϕq-Chatterjea and T is not Φp-Chatterjea.

Proof. Let x, y ∈ X be given. If either x ̸= w and y ̸= w, or x = y = w hold, then
we have

2ϕq(Tx, Ty) = 0 ≤ ϕq(Tx, y) + ϕq(x, Ty).(4.5)

If x = w and y ̸= w, then Tx = 2−1/qw and Ty = 0 and hence

2ϕq(Tx, Ty) = ∥w∥q = ϕq(x, Ty) ≤ ϕq(Tx, y) + ϕq(x, Ty).(4.6)

If x ̸= w and y = w, then Tx = 0 and Ty = 2−1/qw and hence

2ϕq(Tx, Ty) = (q − 1) ∥w∥q = ϕq(Tx, y) ≤ ϕq(Tx, y) + ϕq(x, Ty).(4.7)
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Thus T is ϕq-Chatterjea.
Since T 2w = 0, 1− p/q > 0, and w ̸= 0, we also know that

2Φp(Tw, T
2w) = 2

(
ϕp(Tw, T

2w) + ϕp(T
2w, Tw)

)
= 2

(∥∥∥2−1/qw
∥∥∥p + (p− 1)

∥∥∥2−1/qw
∥∥∥p)

= 21−p/qp ∥w∥p

> p ∥w∥p = Φp(Tw, Tw) + Φp(w, T
2w)

(4.8)

and hence T is not Φp-Chatterjea. □

By using Lemmas 2.6 and 2.7, we can prove the following:

Lemma 4.4. Let p be a real number such that p > 1, C a nonempty subset of a
smooth and uniformly convex Banach space X, T a Φp-Chatterjea mapping of C into
itself, and x an element of C such that {Tnx} is bounded. Then T is asymptotically
regular at x.

Proof. Since {Tnx} is bounded, it follows from Lemma 3.1 that

sup
m,n

Φp(T
mx, Tnx) ≤ 2 sup

m,n
ϕp(T

mx, Tnx) < ∞.(4.9)

Thus Lemma 2.6 ensures that

0 ≤ ϕp(T
nx, Tn+1x) ≤ Φp(T

nx, Tn+1x) → 0(4.10)

and hence ϕp(T
nx, Tn+1x) → 0. Since X is uniformly convex, Lemma 2.7 implies

that
∥∥Tnx− Tn+1x

∥∥ → 0. Thus T is asymptotically regular at x. □

We next obtain the following lemma:

Lemma 4.5. Let p be a real number such that p > 1, C a nonempty weakly closed
subset of a smooth and uniformly convex Banach space X, and T a Φp-Chatterjea
mapping of C into itself such that I−T is demiclosed at 0. Then F(T ) is nonempty
if and only if {Tnx} is bounded for some x ∈ C.

Proof. Since the only if part is obvious, it is sufficient to prove the if part. Suppose
that {Tnx} is bounded for some x ∈ C and set xn = Tnx for all n ∈ N. Then, by
Lemma 4.4, we know that

∥xn − Txn∥ =
∥∥Tnx− Tn+1x

∥∥ → 0.(4.11)

Since {xn} is bounded and X is reflexive, there exists a subsequence {xni} of {xn}
which is weakly convergent to some z ∈ X. The weak closedness of C implies that
z ∈ C. Since I − T is demiclosed at 0 by assumption, we know that (I − T )z = 0
and hence z ∈ F(T ). □

5. Existence of fixed points

In this section, we give fixed point theorems for ϕp-Chatterjea mappings and
Φp-Chatterjea mappings in Banach spaces.

We first obtain the following two demiclosedness principles:
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Lemma 5.1. Let p be a real number such that p > 1, C a nonempty subset of a
smooth and strictly convex Banach space X, and T a ϕp-Chatterjea mapping of C
into itself. Then I − T is demiclosed at 0.

Proof. Let {xn} be a sequence in C and z an element of C such that xn ⇀ z and
xn − Txn → 0. Since T is ϕp-Chatterjea, we have

0 ≤ ϕp(Txn, z)− ϕp(Txn, T z) + ϕp(xn, T z)− ϕp(Txn, T z)(5.1)

for all n ∈ N. Since xn ⇀ z and xn − Txn → 0, we have Txn ⇀ z. Then it follows
from (i) and (ii) of Lemma 3.2 that

ϕp(Txn, z)− ϕp(Txn, T z) → −ϕp(z, Tz)(5.2)

and

ϕp(xn, T z)− ϕp(Txn, T z) → 0,(5.3)

respectively. Thus, letting n → ∞ in (5.1), we obtain 0 ≤ −ϕp(z, Tz) and hence we
have ϕp(z, Tz) = 0. By the strict convexity of X, we obtain Tz = z. □

Lemma 5.2. Let p be a real number such that p > 1, C a nonempty subset of a
strictly convex Banach space X such that the norm on X is uniformly Gâteaux dif-
ferentiable and Jp is weakly sequentially continuous, and T a Φp-Chatterjea mapping
of C into itself. Then I − T is demiclosed at 0.

Proof. Let {xn} be a sequence in C and z an element of C such that xn ⇀ z and
xn − Txn → 0. Since T is Φp-Chatterjea, we have

0 ≤ Φp(Txn, z)− Φp(Txn, T z) + Φp(xn, T z)− Φp(Txn, T z)(5.4)

for all n ∈ N. Since xn ⇀ z and xn − Txn → 0, we have Txn ⇀ z. Since Jp is
weakly sequentially continuous, it follows from (i) and (iii) of Lemma 3.2 that

Φp(Txn, z)− Φp(Txn, T z)

= ϕp(Txn, z)− ϕp(Txn, T z) + ϕp(z, Txn)− ϕp(Tz, Txn)

→ −ϕp(z, Tz)− ϕp(Tz, z) = −Φp(Tz, z).

(5.5)

Since the norm on X is uniformly Gâteaux differentiable, {xn} is bounded, and
xn − Txn → 0, it follows from (ii) and (iv) of Lemma 3.2 that

Φp(xn, T z)− Φp(Txn, T z)

= ϕp(xn, T z)− ϕp(Txn, T z) + ϕp(Tz, xn)− ϕp(Tz, Txn) → 0.
(5.6)

Thus, letting n → ∞ in (5.4), we obtain 0 ≤ −Φp(Tz, z) and hence we have
Φp(Tz, z) = 0. It follows from (2.10) that

p ⟨z − Tz, Jpz − JpTz⟩ = 0.(5.7)

By the strict convexity of X, we obtain Tz = z. □

As a consequence of Lemmas 4.2, 4.5, and 5.1, we obtain the following fixed point
theorem for ϕp-Chatterjea mappings:
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Theorem 5.3. Let p be a real number such that p > 1, C a nonempty weakly closed
subset of a smooth and uniformly convex Banach space X, and T a ϕp-Chatterjea
mapping of C into itself. Then F(T ) is nonempty if and only if {Tnx} is bounded
for some x ∈ C.

As a consequence of Lemmas 4.5 and 5.2, we obtain the following fixed point
theorem for Φp-Chatterjea mappings:

Theorem 5.4. Let p be a real number such that p > 1, C a nonempty weakly
closed subset of a uniformly convex Banach space X such that the norm on X is
uniformly Gâteaux differentiable and Jp is weakly sequentially continuous, and T
a Φp-Chatterjea mapping of C into itself. Then F(T ) is nonempty if and only if
{Tnx} is bounded for some x ∈ C.

6. Convergence to fixed points

In this section, we give convergence theorems for ϕp-Chatterjea mappings and
Φp-Chatterjea mappings in Banach spaces.

We first obtain the following convergence theorem for ϕp-Chatterjea mappings:

Theorem 6.1. Let p be a real number such that p > 1, C a nonempty weakly closed
subset of a smooth and uniformly convex Banach space X, and T a ϕp-Chatterjea
mapping of C into itself such that F(T ) is nonempty. Then {Tnx} converges weakly
to an element of F(T ) for all x ∈ C.

Proof. Let x ∈ C be given and set xn = Tnx for all n ∈ N. Let z ∈ F(T ) be given.
Since T is ϕp-Chatterjea, it follows from Lemma 4.1 that

ϕp(xn+1, z) ≤ ϕp(xn, z)(6.1)

for all n ∈ N. Thus {ϕp(xn, z)} is convergent. Since {ϕp(xn, z)} is bounded, it
follows from Lemma 3.1 that {xn} is bounded. Then the reflexivity of X implies
the existence of a weakly convergent subsequence of {xn}.

Lemma 4.2 implies that T is also Φp-Chatterjea. Since X is uniformly convex,
Lemma 4.4 implies that xn − Txn → 0. Let w be any weak subsequential limit of
{xn}. Since C is weakly closed, we have w ∈ C. By Lemma 5.1, the mapping I −T
is demiclosed at 0 and hence w ∈ F(T ). Thus each weak subsequential limit of {xn}
belongs to F(T ).

Let u, u′ be weak subsequential limits of {xn}. Then we know that u, u′ ∈ F(T )
and hence {ϕp(xn, u)} and {ϕp(xn, u

′)} are convergent. Since X is strictly convex,
it follows from (i) of Lemma 3.3 that u = u′. Thus, the sequence {xn} is weakly
convergent to an element of F(T ). □

We finally obtain the following convergence theorem for Φp-Chatterjea mappings:

Theorem 6.2. Let p be a real number such that p > 1, C a nonempty weakly
closed subset of a uniformly convex Banach space X such that the norm on X is
uniformly Gâteaux differentiable and Jp is weakly sequentially continuous, and T a
Φp-Chatterjea mapping of C into itself such that F(T ) is nonempty. Then {Tnx}
converges weakly to an element of F(T ) for all x ∈ C.
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Proof. Let x ∈ C be given and set xn = Tnx for all n ∈ N. Let z ∈ F(T ) be given.
Since T is Φp-Chatterjea, it follows from Lemma 4.1 that

Φp(xn+1, z) ≤ Φp(xn, z)(6.2)

for all n ∈ N. Thus {Φp(xn, z)} is convergent. Since {Φp(xn, z)} is bounded and

ϕp(xn, z) ≤ Φp(xn, z)(6.3)

for all n ∈ N, it follows from Lemma 3.1 that {xn} is bounded. Hence there exists
a weakly convergent subsequence of {xn}.

Since X is uniformly convex, it follows from Lemma 4.4 that xn − Txn → 0. Let
w be any weak subsequential limit of {xn}. Then the weak closedness of C implies
that w ∈ C. By Lemma 5.2, the mapping I − T is demiclosed at 0 and hence
w ∈ F(T ). Thus each weak subsequential limit of {xn} belongs to F(T ).

Let u, u′ be weak subsequential limits of {xn}. Then we know that u, u′ ∈ F(T )
and hence {Φp(xn, u)} and {Φp(xn, u

′)} are convergent. Since Jp is weakly sequen-
tially continuous and X is strictly convex, it follows from (iii) of Lemma 3.3 that
u = v. Thus, the sequence {xn} is weakly convergent to an element of F(T ). □
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