FUMIAKI KOHSAKA AND TOMONARI SUZUKI


#### Abstract

We introduce the concept of Chatterjea mappings on a nonempty set and then obtain fixed point theorems and convergence theorems for Chatterjea mappings with respect to a Bregman distance and its symmetrization associated with the power of a norm in a Banach space. The class of Chatterjea mappings with respect to a Bregman distance includes that of nonspreading mappings in Hilbert spaces.


## 1. Introduction

Many nonlinear problems such as convex minimization problems, variational inequality problems, saddle point problems, equilibrium problems, and so on can be formulated as the problem of solving $0 \in A u$ for a maximal monotone operator $A$ of a Banach space $X$ into $2^{X^{*}}$; see, for instance, $[1,14-16,20]$.

The concept of nonspreading mappings proposed in [10] is closely related to the problem of finding zero points of maximal monotone operators in Banach spaces. In fact, in a smooth, strictly convex, and reflexive Banach space $X$, the set of all points $u \in X$ such that $0 \in A u$ is identical with the fixed point set of the nonspreading mapping $T$ of $X$ into itself defined by $T x=\left(J_{2}+A\right)^{-1} J_{2} x$ for all $x \in X$; see $[9,10]$ for more details.

Let $C$ be a nonempty subset of a smooth Banach space $X$ and $T$ a nonspreading mapping [10] of $C$ into itself, that is,

$$
\begin{equation*}
\phi_{2}(T x, T y)+\phi_{2}(T y, T x) \leq \phi_{2}(T x, y)+\phi_{2}(T y, x) \tag{1.1}
\end{equation*}
$$

for all $x, y \in C$, where $\phi_{2}$ is the function defined as in (2.8). Kohsaka and Takahashi [10, Theorem 4.1] showed that if $C$ is a nonempty closed convex subset of a smooth, strictly convex, and reflexive Banach space, then the fixed point set $\mathcal{F}(T)$ of $T$ is nonempty if and only if $\left\{T^{n} x\right\}$ is bounded for some $x \in C$. Further, Kurokawa and Takahashi [11, Theorem 3.1] showed that if $C$ is a nonempty closed convex subset of a Hilbert space and $\mathcal{F}(T)$ is nonempty, then the sequence

$$
\begin{equation*}
\left\{\frac{1}{n}\left(x+T x+\cdots+T^{n-1} x\right)\right\} \tag{1.2}
\end{equation*}
$$

2010 Mathematics Subject Classification. 47H09, 47H10, 47 J 25.
Key words and phrases. Banach space, Bregman distance, Chatterjea mapping, convergence theorem, fixed point theorem, nonspreading mapping.

The authors are supported in part by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science.
converges weakly to an element of $\mathcal{F}(T)$ for each $x \in C$. In the case where $X$ is a Hilbert space, $T$ is nonspreading if and only if

$$
\begin{equation*}
2\|T x-T y\|^{2} \leq\|T x-y\|^{2}+\|x-T y\|^{2} \tag{1.3}
\end{equation*}
$$

for all $x, y \in C$.
Recently, motivated by [5, 10], Suzuki [17] proposed the concept of Chatterjea mappings in Banach spaces and obtained existence and convergence theorems for such a mapping. Since the class of nonspreading mappings in Hilbert spaces is nothing but that of Chatterjea mappings with $t \mapsto t^{2}$, the results due to Suzuki [17] implies that the sequence $\left\{T^{n} x\right\}$ in the above result by Kurokawa and Takahashi [11] is actually weakly convergent to an element of $\mathcal{F}(T)$ without the convexity of $C$.

Let $(C, d)$ be a metric space, $\eta$ a continuous and strictly increasing function of $[0, \infty)$ into itself with $\eta(0)=0$, and $T$ a mapping of $C$ into itself which is Chatterjea with $\eta$ [17], that is,

$$
\begin{equation*}
2 \eta(d(T x, T y)) \leq \eta(d(T x, y))+\eta(d(x, T y)) \tag{1.4}
\end{equation*}
$$

for all $x, y \in C$. Suzuki [17, Theorems 15 and 18] showed that if $X$ is a Banach space, $C$ is a nonempty boundedly weakly compact subset of $X$ with the Opial property, and $T$ is a Chatterjea mapping of $C$ into itself with $\eta$, then $T$ has a fixed point if and only if $\left\{T^{n} x\right\}$ is bounded for some $x \in C$. In this case, the sequence $\left\{T^{n} x\right\}$ converges weakly to an element of $\mathcal{F}(T)$ for each $x \in C$.

In this paper, we propose the concept of $\rho$-Chatterjea mappings on a nonempty set in Definition 2.1 and obtain fixed point theorems and convergence theorems for mappings which are $\phi_{p}$-Chatterjea or $\Phi_{p}$-Chatterjea, where $p$ is a real number such that $p>1$ and the functions $\phi_{p}$ and $\Phi_{p}$ are defined by (2.8) and (2.9), respectively. Let $C$ be a nonempty subset of a smooth Banach space $X$. Following Definition 2.1, a mapping $T$ of $C$ into itself is said to be

- $\phi_{p}$-Chatterjea if

$$
\begin{equation*}
2 \phi_{p}(T x, T y) \leq \phi_{p}(T x, y)+\phi_{p}(x, T y) \tag{1.5}
\end{equation*}
$$

for all $x, y \in C$;

- $\Phi_{p}$-Chatterjea if

$$
\begin{equation*}
2 \Phi_{p}(T x, T y) \leq \Phi_{p}(T x, y)+\Phi_{p}(x, T y) \tag{1.6}
\end{equation*}
$$

for all $x, y \in C$.
If $X$ is a Hilbert space and $p=2$, then the conditions (1.1), (1.5), and (1.6) are equivalent to (1.3) for each $x, y \in C$. Thus the results obtained in Sections 5 and 6 generalize the following result in Hilbert spaces to Banach spaces:

Theorem 1.1 (See [17, Theorem 15 and Corollary 20]). Let $C$ be a nonempty weakly closed subset of a Hilbert space $X$ and $T$ a nonspreading mapping of $C$ into itself. Then $T$ has a fixed point if and only if $\left\{T^{n} x\right\}$ is bounded for some $x \in C$. In this case, the sequence $\left\{T^{n} x\right\}$ converges weakly to an element of $\mathcal{F}(T)$ for all $x \in C$.

## 2. Preliminaries

Throughout this paper, every Banach space is real. The set of all positive integers is denoted by $\mathbb{N}$. Let $X$ be a Banach space with its conjugate space $X^{*}$. The value of $x^{*} \in X^{*}$ at $x \in X$ is denoted by $\left\langle x, x^{*}\right\rangle$. For a sequence $\left\{x_{n}\right\}$ in $X$ and a point $x$ in $X$, the strong convergence and the weak convergence of $\left\{x_{n}\right\}$ to $x$ are denoted by $x_{n} \rightarrow x$ and $x_{n} \rightharpoonup x$, respectively. We also denote by $x_{n}^{*} \xrightarrow{*} x^{*}$ the weak* convergence of a sequence $\left\{x_{n}^{*}\right\}$ in $X^{*}$ to $x^{*} \in X^{*}$. Let $C$ be a nonempty subset of $X$ and $S$ a mapping of $C$ into itself. We denote by $\mathcal{F}(S)$ the set of all fixed points of $S$. The mapping $S$ is said to be demiclosed at 0 if $S z=0$ whenever $\left\{x_{n}\right\}$ is a sequence in $C, z$ is an element of $C, x_{n} \rightharpoonup z$, and $S x_{n} \rightarrow 0$. It is also said to be asymptotically regular at $x \in C$ if $S^{n} x-S^{n+1} x \rightarrow 0$. We denote by $I$ the identity mapping on $C$.

We give the definition of a $\rho$-Chatterjea mapping of a nonempty set into itself.
Definition 2.1. Let $C$ be a nonempty set and $\rho$ a function of $C \times C$ into $[0, \infty)$ such that $\rho(x, x)=0$ for all $x \in C$. A mapping $T$ of $C$ into itself is said to be $\rho$-Chatterjea if

$$
\begin{equation*}
2 \rho(T x, T y) \leq \rho(T x, y)+\rho(x, T y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in C$.
Remark 2.2. If $(C, d)$ is a metric space, $\eta$ is a continuous and strictly increasing function of $[0, \infty)$ into itself with $\eta(0)=0$, and $T$ is a Chatterjea mapping of $C$ into itself with $\eta$ (see (1.4)), then $T$ is $\eta \circ d$-Chatterjea.

Lemma 2.3. Let $\alpha, \beta$ and $\gamma$ be nonnegative real numbers satisfying $2 \alpha \leq \beta+\gamma$. Then $2 \alpha^{r} \leq \beta^{r}+\gamma^{r}$ for any real number $r>1$.

Proof. Since the function $t \mapsto t^{r}$ is nondecreasing and convex on $[0, \infty)$ and $\alpha \leq$ $(\beta+\gamma) / 2$, we obtain the desired result.

Lemma 2.3 implies the following:
Lemma 2.4. Let $r$ be a real number such that $r>1, C$ nonempty set, $\rho$ a function of $C \times C$ into $[0, \infty)$ such that $\rho(x, x)=0$ for all $x \in C$. If $T$ is a $\rho$-Chatterjea mapping of $C$ into itself, then it is $\rho(\cdot, \cdot)^{r}$-Chatterjea.

The following lemma is of fundamental importance; see also [7,18]:
Lemma 2.5 ([17, Lemma 11]). Put

$$
\begin{align*}
& I_{0}=\{(m, n): m, n \in \mathbb{N} \cup\{0\}, m \leq n\} \\
& I=\{(m, n): m, n \in \mathbb{N}, m<n\} \tag{2.2}
\end{align*}
$$

If $A$ is a function of $I_{0}$ into $[0, \infty)$ such that

- $A(0, n) \leq 1$ for all $n \in \mathbb{N} \cup\{0\}$;
- $A(n, n)=0$ for all $n \in \mathbb{N}$;
- $2 A(m, n) \leq A(m, n-1)+A(m-1, n)$ for all $(m, n) \in I$,
then $\lim _{n} A(n, n+1)=0$.
Using Lemma 2.5, we can prove the following:

Lemma 2.6. Let $C$ be a nonempty set, $\rho$ a function of $C \times C$ into $[0, \infty)$ such that $\rho(x, x)=0$ for all $x \in C$, and $T$ a $\rho$-Chatterjea mapping of $C$ into itself. If $x$ is an element of $C$ such that $\sup _{m, n} \rho\left(T^{m} x, T^{n} x\right)<\infty$, then $\rho\left(T^{n} x, T^{n+1} x\right) \rightarrow 0$.

Proof. By assumption, there exists a positive real number $M$ such that

$$
\begin{equation*}
\rho\left(T^{m} x, T^{n} x\right) \leq M \tag{2.3}
\end{equation*}
$$

for all $m, n \in \mathbb{N} \cup\{0\}$. Let $I_{0}$ be the same as in Lemma 2.5 and $A$ a function of $I_{0}$ into $[0, \infty)$ defined by

$$
\begin{equation*}
A(m, n)=\frac{1}{M} \rho\left(T^{m} x, T^{n} x\right) \tag{2.4}
\end{equation*}
$$

for all $(m, n) \in I_{0}$. Then all the assumptions in Lemma 2.5 hold. Thus we obtain $\lim _{n} A(n, n+1)=0$, which implies the conclusion.

Let $p$ be a real number such that $p>1, X$ a Banach space, and $S_{X}$ the unit sphere of $X$. The duality mapping $J_{p}$ of $X$ into $X^{*}$ with weight $t \mapsto t^{p-1}$ is defined by

$$
\begin{equation*}
J_{p} x=\left\{x^{*} \in X^{*}:\left\langle x, x^{*}\right\rangle=\|x\|\left\|x^{*}\right\|,\left\|x^{*}\right\|=\|x\|^{p-1}\right\} \tag{2.5}
\end{equation*}
$$

for all $x \in X$. The space $X$ is said to be smooth if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2.6}
\end{equation*}
$$

exists for all $x, y \in S_{X}$. The norm on $X$ is said to be uniformly Gâteaux differentiable if (2.6) converges uniformly in $x \in S_{X}$ for each $y \in S_{X}$. The space $X$ is said to be strictly convex if $\|x+y\|<2$ for all distinct $x, y \in S_{X}$. It is also said to be uniformly convex if for each $\varepsilon \in(0,2]$, there exists $\delta>0$ such that $\|x+y\| \leq 2(1-\delta)$ whenever $x, y \in S_{X}$ and $\|x-y\| \geq \varepsilon$; see $[6,12,19,21]$ on geometry of Banach spaces. It is known that the following hold; see, for instance, $[6,21]$ :

- $J_{p} x=\|x\|^{p-1} J_{2}(x /\|x\|)$ if $x \neq 0$ and $J_{p} x=\{0\}$ if $x=0$;
- if $X$ is smooth, then $J_{p}$ is single valued;
- if $X$ is strictly convex, then $J_{p}$ is one-to-one;
- if $X$ is strictly convex, then $J_{p}$ is strictly monotone, that is,

$$
\begin{equation*}
\left\langle x-y, x^{*}-y^{*}\right\rangle>0 \tag{2.7}
\end{equation*}
$$

whenever $x, y \in X, x \neq y, x^{*} \in J_{p} x$, and $y^{*} \in J_{p} y$.
The mapping $J_{p}$ in a smooth Banach space $X$ is said to be weakly sequentially continuous if $J_{p} x_{n} \stackrel{*}{\rightharpoonup} J_{p} x$ whenever $\left\{x_{n}\right\}$ is a sequence in $X$ and $x$ is an element of $X$ such that $x_{n} \rightharpoonup x$. It is known that if $1<p<\infty$ and $X=l^{p}$, then $J_{p}$ is weakly sequentially continuous; see, for instance, [ 6 , Proposition 4.14 in Chapter II].

Let $p$ be a real number such that $p>1, X$ a smooth Banach space, and $J_{p}$ the duality mapping of $X$ into $X^{*}$ with weight $t \mapsto t^{p-1}$. We denote by $\phi_{p}$ the Bregman distance associated with the convex function $\|\cdot\|^{p}$ defined by

$$
\begin{equation*}
\phi_{p}(x, y)=\|x\|^{p}-p\left\langle x-y, J_{p} y\right\rangle-\|y\|^{p} \tag{2.8}
\end{equation*}
$$

for all $x, y \in X$. This concept was originally proposed by Bregman [2]; see also $[3,4]$ for more details on Bregman distances. It is clear that the following hold:

- $\phi_{p}(x, y)=\|x\|^{p}-p\left\langle x, J_{p} y\right\rangle+(p-1)\|y\|^{p}$ for all $x, y \in X$;
- $\phi_{p}(x, y) \geq 0$ for all $x, y \in X$;
- $\phi_{p}(x, x)=0$ for all $x \in X$.

If $X$ is also strictly convex, then $\|\cdot\|^{p}$ is strictly convex; see [21, Theorem 3.7.2]. Thus, in this case, $\phi_{p}(x, y)>0$ for all distinct $x, y \in X$; see [3, Proposition 1.1.4]. We denote by $\Phi_{p}$ the symmetrization of $\phi_{p}$ defined by

$$
\begin{equation*}
\Phi_{p}(x, y)=\phi_{p}(x, y)+\phi_{p}(y, x) \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$. It is clear that

$$
\begin{equation*}
\Phi_{p}(x, y)=p\left\langle x-y, J_{p} x-J_{p} y\right\rangle \tag{2.10}
\end{equation*}
$$

for all $x, y \in X$.
Choosing the power of the norm on a smooth and uniformly convex Banach space as a convex function considered in [8, Lemma 3.1], we obtain the following:

Lemma 2.7 ([8, Lemma 3.1]). Let $p$ be a real number such that $p>1$ and $X a$ smooth and uniformly convex Banach space. If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences in $X$ such that $\phi_{p}\left(x_{n}, y_{n}\right) \rightarrow 0$, then $\left\|x_{n}-y_{n}\right\| \rightarrow 0$.

We also know the following:
Lemma 2.8 ([13, Lemma 2.2]). If the norm on a Banach space $X$ is uniformly Gâteaux differentiable, then $J_{2}$ is uniformly norm-to-weak* continuous on each bounded subset of $X$, that is, $\lim _{n}\left\langle z, J_{2} x_{n}-J_{2} y_{n}\right\rangle=0$ for all $z \in X$ whenever $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded sequences in $X$ such that $x_{n}-y_{n} \rightarrow 0$.

Using Lemma 2.8, we can prove the following:
Corollary 2.9. If $X$ is the same as in Lemma 2.8 and $1<p<\infty$, then $J_{p}$ is uniformly norm-to-weak* continuous on each bounded subset of $X$.

Proof. Since $J_{p}$ is identical with $J_{2}$ on $S_{X}$, Lemma 2.8 ensures that $J_{p}$ is uniformly norm-to-weak* continuous on $S_{X}$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in $X$ such that $x_{n}-y_{n} \rightarrow 0$ and let $z \in X$ be given. Note that the sequence $\left\{\gamma_{n}\right\}$ defined by $\gamma_{n}=\left\langle z, J_{p} x_{n}-J_{p} y_{n}\right\rangle$ is bounded. Let $\gamma$ be any cluster point of $\left\{\gamma_{n}\right\}$. Then there exists a subsequence $\left\{\gamma_{n_{i}}\right\}$ of $\left\{\gamma_{n}\right\}$ tending to $\gamma$.

If $x_{n_{i}} \rightarrow 0$ or $y_{n_{i}} \rightarrow 0$, then we can see that $J_{p} x_{n_{i}} \rightarrow 0$ and $J_{p} y_{n_{i}} \rightarrow 0$ and hence $\gamma=\lim _{i} \gamma_{n_{i}}=0$. Thus we consider the case where neither $\left\{x_{n_{i}}\right\}$ nor $\left\{y_{n_{i}}\right\}$ converges strongly to 0 . Then there exist a positive real number $\delta$ and a subsequence $\left\{n_{i_{j}}\right\}$ of $\left\{n_{i}\right\}$ such that

$$
\begin{equation*}
\left\|x_{n_{i_{j}}}\right\| \geq \delta \quad \text { and } \quad\left\|y_{n_{i_{j}}}\right\| \geq \delta \tag{2.11}
\end{equation*}
$$

for all $j \in \mathbb{N}$. Set $u_{j}=x_{n_{i_{j}}}$ and $v_{j}=y_{n_{i_{j}}}$ and let $M$ be a positive real number such that $\left\|x_{n}\right\| \leq M$ and $\left\|y_{n}\right\| \leq M$ for all $n \in \mathbb{N}$. Then we have

$$
\begin{align*}
\left|\left\langle z, J_{p} u_{j}-J_{p} v_{j}\right\rangle\right|= & \left|\left\langle z,\left\|u_{j}\right\|^{p-1} J_{2}\left(\frac{u_{j}}{\left\|u_{j}\right\|}\right)-\left\|v_{j}\right\|^{p-1} J_{2}\left(\frac{v_{j}}{\left\|v_{j}\right\|}\right)\right\rangle\right| \\
\leq & \left|\left\langle z,\left\|u_{j}\right\|^{p-1}\left(J_{2}\left(\frac{u_{j}}{\left\|u_{j}\right\|}\right)-J_{2}\left(\frac{v_{j}}{\left\|v_{j}\right\|}\right)\right)\right\rangle\right| \\
& +\left|\left\langle z,\left(\left\|u_{j}\right\|^{p-1}-\left\|v_{j}\right\|^{p-1}\right) J_{2}\left(\frac{v_{j}}{\left\|v_{j}\right\|}\right)\right\rangle\right|  \tag{2.12}\\
\leq & M^{p-1}\left|\left\langle z, J_{p}\left(\frac{u_{j}}{\left\|u_{j}\right\|}\right)-J_{p}\left(\frac{v_{j}}{\left\|v_{j}\right\|}\right)\right\rangle\right| \\
& +\left|\left\|u_{j}\right\|^{p-1}-\left\|v_{j}\right\|^{p-1}\right|\|z\|
\end{align*}
$$

for all $j \in \mathbb{N}$. Since

$$
\begin{align*}
\left\|\frac{u_{j}}{\left\|u_{j}\right\|}-\frac{v_{j}}{\left\|v_{j}\right\|}\right\| & \leq \frac{1}{\left\|u_{j}\right\|\left\|v_{j}\right\|}\left(\left\|v_{j}\right\|\left\|u_{j}-v_{j}\right\|+\left|\left\|v_{j}\right\|-\left\|u_{j}\right\|\right|\left\|v_{j}\right\|\right)  \tag{2.13}\\
& \leq \frac{1}{\delta^{2}}\left(\left\|v_{j}\right\|\left\|u_{j}-v_{j}\right\|+\left|\left\|v_{j}\right\|-\left\|u_{j}\right\|\right|\left\|v_{j}\right\|\right) \rightarrow 0
\end{align*}
$$

and $J_{p}$ is uniformly norm-to-weak* continuous on $S_{X}$, we also know that

$$
\begin{equation*}
\left\langle z, J_{p}\left(\frac{u_{j}}{\left\|u_{j}\right\|}\right)-J_{p}\left(\frac{v_{j}}{\left\|v_{j}\right\|}\right)\right\rangle \rightarrow 0 . \tag{2.14}
\end{equation*}
$$

On the other hand, since $t \mapsto t^{p-1}$ is uniformly continuous on $[0, M]$ and $\left\|u_{j}\right\|-$ $\left\|v_{j}\right\| \rightarrow 0$, we have $\left\|u_{j}\right\|^{p-1}-\left\|v_{j}\right\|^{p-1} \rightarrow 0$. Thus, by (2.12), we have

$$
\begin{equation*}
\gamma=\lim _{j \rightarrow \infty} \gamma_{n_{i_{j}}}=\lim _{j \rightarrow \infty}\left\langle z, J_{p} u_{j}-J_{p} v_{j}\right\rangle=0 \tag{2.15}
\end{equation*}
$$

Therefore, we conclude that $\gamma_{n} \rightarrow 0$.

## 3. Lemmas

In this section, we obtain some fundamental lemmas on $\phi_{p}$ and $\Phi_{p}$.
Lemma 3.1. Let $p$ be a real number such that $p>1, X$ a smooth Banach space, $U$ a subset of $X$, and $z$ an element of $X$. Then the following are equivalent:
(i) $U$ is bounded;
(ii) $\left\{\phi_{p}(x, y): x, y \in U\right\}$ is bounded;
(iii) $\left\{\phi_{p}(x, z): x \in U\right\}$ is bounded;
(iv) $\left\{\phi_{p}(z, x): x \in U\right\}$ is bounded.

Proof. Since

$$
\begin{gather*}
\phi_{p}(x, y) \leq\|x\|^{p}+p\|x\|\|y\|^{p-1}+(p-1)\|y\|^{p}  \tag{3.1}\\
\|x\|\left(\|x\|^{p-1}-p\|y\|^{p-1}\right)+(p-1)\|y\|^{p} \leq \phi_{p}(x, y), \tag{3.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\|x\|^{p}+\|y\|^{p-1}(-p\|x\|+(p-1)\|y\|) \leq \phi_{p}(x, y) \tag{3.3}
\end{equation*}
$$

for all $x, y \in X$, the conclusion clearly holds.
Lemma 3.2. Let $p$ be a real number such that $p>1, X$ a smooth Banach space, both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ sequences in $X$, and both $z$ and $w$ elements of $X$. Then the following hold:
(i) If $x_{n} \rightharpoonup z$, then

$$
\phi_{p}\left(x_{n}, z\right)-\phi_{p}\left(x_{n}, w\right) \rightarrow-\phi_{p}(z, w) ;
$$

(ii) if $x_{n}-y_{n} \rightarrow 0$ and $\left\{x_{n}\right\}$ is bounded, then $\phi_{p}\left(x_{n}, z\right)-\phi_{p}\left(y_{n}, z\right) \rightarrow 0$;
(iii) if $x_{n} \rightharpoonup z$ and $J_{p}$ is weakly sequentially continuous, then

$$
\phi_{p}\left(z, x_{n}\right)-\phi_{p}\left(w, x_{n}\right) \rightarrow-\phi_{p}(w, z) ;
$$

(iv) if $x_{n}-y_{n} \rightarrow 0,\left\{x_{n}\right\}$ is bounded, and the norm on $X$ is uniformly Gâteaux differentiable, then $\phi_{p}\left(z, x_{n}\right)-\phi_{p}\left(z, y_{n}\right) \rightarrow 0$.
Proof. We first prove (i). Suppose that $x_{n} \rightharpoonup z$. Then we have

$$
\begin{align*}
& \phi_{p}\left(x_{n}, z\right)-\phi_{p}\left(x_{n}, w\right) \\
& \quad=p\left\langle x_{n}, J_{p} w-J_{p} z\right\rangle+(p-1)\left(\|z\|^{p}-\|w\|^{p}\right)  \tag{3.4}\\
& \quad \rightarrow p\left\langle z, J_{p} w-J_{p} z\right\rangle+(p-1)\left(\|z\|^{p}-\|w\|^{p}\right)=-\phi_{p}(z, w) .
\end{align*}
$$

We next prove (ii). Suppose that $x_{n}-y_{n} \rightarrow 0$ and $\left\{x_{n}\right\}$ is bounded. Then there exists a positive real number $M$ such that $\left\|x_{n}\right\| \leq M$ and $\left\|y_{n}\right\| \leq M$ for all $n \in \mathbb{N}$. The uniform continuity of $t \mapsto t^{p}$ on $[0, M]$ implies that $\left\|x_{n}\right\|^{p}-\left\|y_{n}\right\|^{p} \rightarrow 0$ and hence

$$
\begin{equation*}
\phi_{p}\left(x_{n}, z\right)-\phi_{p}\left(y_{n}, z\right)=\left\|x_{n}\right\|^{p}-\left\|y_{n}\right\|^{p}-p\left\langle x_{n}-y_{n}, J_{p} z\right\rangle \rightarrow 0 . \tag{3.5}
\end{equation*}
$$

We next prove (iii). Suppose that $x_{n} \rightharpoonup z$ and $J_{p}$ is weakly sequentially continuous. Then it follows from the weak* convergence of $\left\{J_{p} x_{n}\right\}$ to $J_{p} z$ that

$$
\begin{align*}
\phi_{p}\left(z, x_{n}\right)-\phi_{p}\left(w, x_{n}\right) & =\|z\|^{p}-\|w\|^{p}+p\left\langle w-z, J_{p} x_{n}\right\rangle \\
& \rightarrow\|z\|^{p}-\|w\|^{p}+p\left\langle w-z, J_{p} z\right\rangle=-\phi_{p}(w, z) . \tag{3.6}
\end{align*}
$$

We finally prove (iv). Suppose that $x_{n}-y_{n} \rightarrow 0,\left\{x_{n}\right\}$ is bounded, and the norm on $X$ is uniformly Gâteaux differentiable. Then we have $\left\|x_{n}\right\|^{p}-\left\|y_{n}\right\|^{p} \rightarrow 0$. Corollary 2.9 also implies that $\left\langle z, J_{p} x_{n}-J_{p} y_{n}\right\rangle \rightarrow 0$. Thus we have

$$
\begin{equation*}
\phi_{p}\left(z, x_{n}\right)-\phi_{p}\left(z, y_{n}\right)=-p\left\langle z, J_{p} x_{n}-J_{p} y_{n}\right\rangle+(p-1)\left(\left\|x_{n}\right\|^{p}-\left\|y_{n}\right\|^{p}\right) \rightarrow 0 . \tag{3.7}
\end{equation*}
$$

This completes the proof.
Lemma 3.3. Let $p$ be a real number such that $p>1, X$ a smooth and strictly convex Banach space, both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ sequences in $X$, and both $\left\{x_{n_{i}}\right\}$ and $\left\{x_{m_{j}}\right\}$ subsequences of $\left\{x_{n}\right\}$ such that $x_{n_{i}} \rightharpoonup z$ and $x_{m_{j}} \rightharpoonup w$. Then the following hold:
(i) If both $\left\{\phi_{p}\left(x_{n}, z\right)\right\}$ and $\left\{\phi_{p}\left(x_{n}, w\right)\right\}$ are convergent, then $z=w$;
(ii) if both $\left\{\phi_{p}\left(z, x_{n}\right)\right\}$ and $\left\{\phi_{p}\left(w, x_{n}\right)\right\}$ are convergent and $J_{p}$ is weakly sequentially continuous, then $z=w$;
(iii) if both $\left\{\Phi_{p}\left(x_{n}, z\right)\right\}$ and $\left\{\Phi_{p}\left(x_{n}, w\right)\right\}$ are convergent and $J_{p}$ is weakly sequentially continuous, then $z=w$.

Proof. We first prove (i). Suppose that both $\left\{\phi_{p}\left(x_{n}, z\right)\right\}$ and $\left\{\phi_{p}\left(x_{n}, w\right)\right\}$ are convergent and $X$ is strictly convex. Since

$$
\begin{equation*}
\phi_{p}\left(x_{n}, w\right)-\phi_{p}\left(x_{n}, z\right)=p\left\langle x_{n}, J_{p} z-J_{p} w\right\rangle+(p-1)\left(\|w\|^{p}-\|z\|^{p}\right) \tag{3.8}
\end{equation*}
$$

for all $n \in \mathbb{N}$, we know that $\left\{\left\langle x_{n}, J_{p} z-J_{p} w\right\rangle\right\}$ is also convergent. Hence we have

$$
\begin{align*}
\left\langle z, J_{p} z-J_{p} w\right\rangle & =\lim _{i \rightarrow \infty}\left\langle x_{n_{i}}, J_{p} z-J_{p} w\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle x_{n}, J_{p} z-J_{p} w\right\rangle  \tag{3.9}\\
& =\lim _{j \rightarrow \infty}\left\langle x_{m_{j}}, J_{p} z-J_{p} w\right\rangle=\left\langle w, J_{p} z-J_{p} w\right\rangle
\end{align*}
$$

and hence

$$
\begin{equation*}
\left\langle z-w, J_{p} z-J_{p} w\right\rangle=0 \tag{3.10}
\end{equation*}
$$

The strict convexity of $X$ implies that $z=w$.
We next prove (ii). Suppose that both $\left\{\phi_{p}\left(z, x_{n}\right)\right\}$ and $\left\{\phi_{p}\left(w, x_{n}\right)\right\}$ are convergent, $J_{p}$ is weakly sequentially continuous, and $X$ is strictly convex. Since

$$
\begin{equation*}
\phi_{p}\left(w, x_{n}\right)-\phi_{p}\left(z, x_{n}\right)=\|w\|^{p}-\|z\|^{p}+p\left\langle z-w, J_{p} x_{n}\right\rangle \tag{3.11}
\end{equation*}
$$

for all $n \in \mathbb{N}$, we know that $\left\{\left\langle z-w, J_{p} x_{n}\right\rangle\right\}$ is also convergent. Since $J_{p}$ is weakly sequentially continuous, we have

$$
\begin{align*}
\left\langle z-w, J_{p} z\right\rangle & =\lim _{i \rightarrow \infty}\left\langle z-w, J_{p} x_{n_{i}}\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle z-w, J_{p} x_{n}\right\rangle  \tag{3.12}\\
& =\lim _{j \rightarrow \infty}\left\langle z-w, J_{p} x_{m_{j}}\right\rangle=\left\langle z-w, J_{p} w\right\rangle
\end{align*}
$$

and hence

$$
\begin{equation*}
\left\langle z-w, J_{p} z-J_{p} w\right\rangle=0 \tag{3.13}
\end{equation*}
$$

The strict convexity of $X$ implies that $z=w$.
We finally prove (iii). Suppose that both $\left\{\Phi_{p}\left(x_{n}, z\right)\right\}$ and $\left\{\Phi_{p}\left(x_{n}, w\right)\right\}$ are convergent, $J_{p}$ is weakly sequentially continuous, and $X$ is strictly convex. Since

$$
\begin{align*}
& \Phi_{p}\left(x_{n}, w\right)-\Phi_{p}\left(x_{n}, z\right) \\
& \quad=\phi_{p}\left(x_{n}, w\right)-\phi_{p}\left(x_{n}, z\right)+\phi_{p}\left(w, x_{n}\right)-\phi_{p}\left(z, x_{n}\right)  \tag{3.14}\\
& \quad=p\left(\|w\|^{p}-\|z\|^{p}\right)+p\left\langle x_{n}, J_{p} z-J_{p} w\right\rangle+p\left\langle z-w, J_{p} x_{n}\right\rangle
\end{align*}
$$

for all $n \in \mathbb{N}$, we know that

$$
\begin{equation*}
\left\{\left\langle x_{n}, J_{p} z-J_{p} w\right\rangle+\left\langle z-w, J_{p} x_{n}\right\rangle\right\} \tag{3.15}
\end{equation*}
$$

is convergent. Since $J_{p}$ is weakly sequentially continuous, we have

$$
\begin{align*}
\left\langle z, J_{p} z-J_{p} w\right\rangle+\left\langle z-w, J_{p} z\right\rangle & =\lim _{i \rightarrow \infty}\left\{\left\langle x_{n_{i}}, J_{p} z-J_{p} w\right\rangle+\left\langle z-w, J_{p} x_{n_{i}}\right\rangle\right\} \\
& =\lim _{n \rightarrow \infty}\left\{\left\langle x_{n}, J_{p} z-J_{p} w\right\rangle+\left\langle z-w, J_{p} x_{n}\right\rangle\right\} \\
& =\lim _{j \rightarrow \infty}\left\{\left\langle x_{m_{j}}, J_{p} z-J_{p} w\right\rangle+\left\langle z-w, J_{p} x_{m_{j}}\right\rangle\right\}  \tag{3.16}\\
& =\left\langle w, J_{p} z-J_{p} w\right\rangle+\left\langle z-w, J_{p} w\right\rangle
\end{align*}
$$

and hence

$$
\begin{equation*}
2\left\langle z-w, J_{p} z-J_{p} w\right\rangle=0 \tag{3.17}
\end{equation*}
$$

The strict convexity of $X$ implies that $z=w$.

## 4. $\phi_{p}$-Chatterjea mappings and $\Phi_{p}$-Chatterjea mappings

In this section, we obtain some preliminary results for $\phi_{p}$-Chatterjea mappings and $\Phi_{p}$-Chatterjea mappings in Banach spaces.

Definition 2.1 readily implies the following:
Lemma 4.1. Let $C$ be a nonempty set, $\rho$ a function of $C \times C$ into $[0, \infty)$ such that $\rho(x, x)=0$ for all $x \in C$, and $T$ a $\rho$-Chatterjea mapping of $C$ into itself such that $\mathcal{F}(T)$ is nonempty. Then $\rho(T x, y) \leq \rho(x, y)$ and $\rho(y, T x) \leq \rho(y, x)$ for all $x \in C$ and $y \in \mathcal{F}(T)$.

Every $\phi_{p}$-Chatterjea mapping is also $\Phi_{p}$-Chatterjea.
Lemma 4.2. Let $p$ be a real number such that $p>1, C$ a nonempty subset of $a$ smooth Banach space $X$, and $T$ a mapping of $C$ into itself. If $T$ is $\phi_{p}$-Chatterjea, then $T$ is $\Phi_{p}$-Chatterjea.
Proof. Suppose that $T$ is $\phi_{p}$-Chatterjea. If $x, y \in C$, then we have

$$
\begin{equation*}
2 \phi_{p}(T x, T y) \leq \phi_{p}(T x, y)+\phi_{p}(x, T y) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \phi_{p}(T y, T x) \leq \phi_{p}(T y, x)+\phi_{p}(y, T x) \tag{4.2}
\end{equation*}
$$

Adding these inequalities, we have

$$
\begin{equation*}
2 \Phi_{p}(T x, T y) \leq \Phi_{p}(T x, y)+\Phi_{p}(x, T y) \tag{4.3}
\end{equation*}
$$

Thus $T$ is $\Phi_{p}$-Chatterjea.
Using a mapping $T$ found by Suzuki [17, Example 7], we can prove the following:
Example 4.3. Let $p$ and $q$ be real numbers such that $q>p>1$, $w$ a nonzero element of a smooth Banach space $X$, and $T$ a mapping of $X$ into itself defined by

$$
T x= \begin{cases}0 & (x \neq w)  \tag{4.4}\\ 2^{-1 / q} w & (x=w)\end{cases}
$$

Then $T$ is $\phi_{q}$-Chatterjea and $T$ is not $\Phi_{p}$-Chatterjea.
Proof. Let $x, y \in X$ be given. If either $x \neq w$ and $y \neq w$, or $x=y=w$ hold, then we have

$$
\begin{equation*}
2 \phi_{q}(T x, T y)=0 \leq \phi_{q}(T x, y)+\phi_{q}(x, T y) \tag{4.5}
\end{equation*}
$$

If $x=w$ and $y \neq w$, then $T x=2^{-1 / q} w$ and $T y=0$ and hence

$$
\begin{equation*}
2 \phi_{q}(T x, T y)=\|w\|^{q}=\phi_{q}(x, T y) \leq \phi_{q}(T x, y)+\phi_{q}(x, T y) \tag{4.6}
\end{equation*}
$$

If $x \neq w$ and $y=w$, then $T x=0$ and $T y=2^{-1 / q} w$ and hence

$$
\begin{equation*}
2 \phi_{q}(T x, T y)=(q-1)\|w\|^{q}=\phi_{q}(T x, y) \leq \phi_{q}(T x, y)+\phi_{q}(x, T y) \tag{4.7}
\end{equation*}
$$

Thus $T$ is $\phi_{q}$-Chatterjea.
Since $T^{2} w=0,1-p / q>0$, and $w \neq 0$, we also know that

$$
\begin{align*}
2 \Phi_{p}\left(T w, T^{2} w\right) & =2\left(\phi_{p}\left(T w, T^{2} w\right)+\phi_{p}\left(T^{2} w, T w\right)\right) \\
& =2\left(\left\|2^{-1 / q} w\right\|^{p}+(p-1)\left\|2^{-1 / q} w\right\|^{p}\right)  \tag{4.8}\\
& =2^{1-p / q} p\|w\|^{p} \\
& >p\|w\|^{p}=\Phi_{p}(T w, T w)+\Phi_{p}\left(w, T^{2} w\right)
\end{align*}
$$

and hence $T$ is not $\Phi_{p}$-Chatterjea.
By using Lemmas 2.6 and 2.7, we can prove the following:
Lemma 4.4. Let $p$ be a real number such that $p>1, C$ a nonempty subset of $a$ smooth and uniformly convex Banach space $X, T$ a $\Phi_{p}$-Chatterjea mapping of $C$ into itself, and $x$ an element of $C$ such that $\left\{T^{n} x\right\}$ is bounded. Then $T$ is asymptotically regular at $x$.

Proof. Since $\left\{T^{n} x\right\}$ is bounded, it follows from Lemma 3.1 that

$$
\begin{equation*}
\sup _{m, n} \Phi_{p}\left(T^{m} x, T^{n} x\right) \leq 2 \sup _{m, n} \phi_{p}\left(T^{m} x, T^{n} x\right)<\infty . \tag{4.9}
\end{equation*}
$$

Thus Lemma 2.6 ensures that

$$
\begin{equation*}
0 \leq \phi_{p}\left(T^{n} x, T^{n+1} x\right) \leq \Phi_{p}\left(T^{n} x, T^{n+1} x\right) \rightarrow 0 \tag{4.10}
\end{equation*}
$$

and hence $\phi_{p}\left(T^{n} x, T^{n+1} x\right) \rightarrow 0$. Since $X$ is uniformly convex, Lemma 2.7 implies that $\left\|T^{n} x-T^{n+1} x\right\| \rightarrow 0$. Thus $T$ is asymptotically regular at $x$.

We next obtain the following lemma:
Lemma 4.5. Let $p$ be a real number such that $p>1, C$ a nonempty weakly closed subset of a smooth and uniformly convex Banach space $X$, and $T$ a $\Phi_{p}$-Chatterjea mapping of $C$ into itself such that $I-T$ is demiclosed at 0 . Then $\mathcal{F}(T)$ is nonempty if and only if $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.
Proof. Since the only if part is obvious, it is sufficient to prove the if part. Suppose that $\left\{T^{n} x\right\}$ is bounded for some $x \in C$ and set $x_{n}=T^{n} x$ for all $n \in \mathbb{N}$. Then, by Lemma 4.4, we know that

$$
\begin{equation*}
\left\|x_{n}-T x_{n}\right\|=\left\|T^{n} x-T^{n+1} x\right\| \rightarrow 0 \tag{4.11}
\end{equation*}
$$

Since $\left\{x_{n}\right\}$ is bounded and $X$ is reflexive, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ which is weakly convergent to some $z \in X$. The weak closedness of $C$ implies that $z \in C$. Since $I-T$ is demiclosed at 0 by assumption, we know that $(I-T) z=0$ and hence $z \in \mathcal{F}(T)$.

## 5. Existence of fixed points

In this section, we give fixed point theorems for $\phi_{p}$-Chatterjea mappings and $\Phi_{p}$-Chatterjea mappings in Banach spaces.

We first obtain the following two demiclosedness principles:

Lemma 5.1. Let $p$ be a real number such that $p>1, C$ a nonempty subset of $a$ smooth and strictly convex Banach space $X$, and $T$ a $\phi_{p}$-Chatterjea mapping of $C$ into itself. Then $I-T$ is demiclosed at 0 .

Proof. Let $\left\{x_{n}\right\}$ be a sequence in $C$ and $z$ an element of $C$ such that $x_{n} \rightharpoonup z$ and $x_{n}-T x_{n} \rightarrow 0$. Since $T$ is $\phi_{p}$-Chatterjea, we have

$$
\begin{equation*}
0 \leq \phi_{p}\left(T x_{n}, z\right)-\phi_{p}\left(T x_{n}, T z\right)+\phi_{p}\left(x_{n}, T z\right)-\phi_{p}\left(T x_{n}, T z\right) \tag{5.1}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Since $x_{n} \rightharpoonup z$ and $x_{n}-T x_{n} \rightarrow 0$, we have $T x_{n} \rightharpoonup z$. Then it follows from (i) and (ii) of Lemma 3.2 that

$$
\begin{equation*}
\phi_{p}\left(T x_{n}, z\right)-\phi_{p}\left(T x_{n}, T z\right) \rightarrow-\phi_{p}(z, T z) \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{p}\left(x_{n}, T z\right)-\phi_{p}\left(T x_{n}, T z\right) \rightarrow 0 \tag{5.3}
\end{equation*}
$$

respectively. Thus, letting $n \rightarrow \infty$ in (5.1), we obtain $0 \leq-\phi_{p}(z, T z)$ and hence we have $\phi_{p}(z, T z)=0$. By the strict convexity of $X$, we obtain $T z=z$.

Lemma 5.2. Let $p$ be a real number such that $p>1, C$ a nonempty subset of $a$ strictly convex Banach space $X$ such that the norm on $X$ is uniformly Gâteaux differentiable and $J_{p}$ is weakly sequentially continuous, and $T$ a $\Phi_{p}$-Chatterjea mapping of $C$ into itself. Then $I-T$ is demiclosed at 0 .

Proof. Let $\left\{x_{n}\right\}$ be a sequence in $C$ and $z$ an element of $C$ such that $x_{n} \rightharpoonup z$ and $x_{n}-T x_{n} \rightarrow 0$. Since $T$ is $\Phi_{p}$-Chatterjea, we have

$$
\begin{equation*}
0 \leq \Phi_{p}\left(T x_{n}, z\right)-\Phi_{p}\left(T x_{n}, T z\right)+\Phi_{p}\left(x_{n}, T z\right)-\Phi_{p}\left(T x_{n}, T z\right) \tag{5.4}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Since $x_{n} \rightharpoonup z$ and $x_{n}-T x_{n} \rightarrow 0$, we have $T x_{n} \rightharpoonup z$. Since $J_{p}$ is weakly sequentially continuous, it follows from (i) and (iii) of Lemma 3.2 that

$$
\begin{align*}
& \Phi_{p}\left(T x_{n}, z\right)-\Phi_{p}\left(T x_{n}, T z\right) \\
& =\phi_{p}\left(T x_{n}, z\right)-\phi_{p}\left(T x_{n}, T z\right)+\phi_{p}\left(z, T x_{n}\right)-\phi_{p}\left(T z, T x_{n}\right)  \tag{5.5}\\
& \rightarrow-\phi_{p}(z, T z)-\phi_{p}(T z, z)=-\Phi_{p}(T z, z)
\end{align*}
$$

Since the norm on $X$ is uniformly Gâteaux differentiable, $\left\{x_{n}\right\}$ is bounded, and $x_{n}-T x_{n} \rightarrow 0$, it follows from (ii) and (iv) of Lemma 3.2 that

$$
\begin{align*}
& \Phi_{p}\left(x_{n}, T z\right)-\Phi_{p}\left(T x_{n}, T z\right) \\
& =\phi_{p}\left(x_{n}, T z\right)-\phi_{p}\left(T x_{n}, T z\right)+\phi_{p}\left(T z, x_{n}\right)-\phi_{p}\left(T z, T x_{n}\right) \rightarrow 0 \tag{5.6}
\end{align*}
$$

Thus, letting $n \rightarrow \infty$ in (5.4), we obtain $0 \leq-\Phi_{p}(T z, z)$ and hence we have $\Phi_{p}(T z, z)=0$. It follows from (2.10) that

$$
\begin{equation*}
p\left\langle z-T z, J_{p} z-J_{p} T z\right\rangle=0 \tag{5.7}
\end{equation*}
$$

By the strict convexity of $X$, we obtain $T z=z$.
As a consequence of Lemmas 4.2, 4.5, and 5.1, we obtain the following fixed point theorem for $\phi_{p}$-Chatterjea mappings:

Theorem 5.3. Let $p$ be a real number such that $p>1, C$ a nonempty weakly closed subset of a smooth and uniformly convex Banach space $X$, and $T$ a $\phi_{p}$-Chatterjea mapping of $C$ into itself. Then $\mathcal{F}(T)$ is nonempty if and only if $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

As a consequence of Lemmas 4.5 and 5.2, we obtain the following fixed point theorem for $\Phi_{p}$-Chatterjea mappings:

Theorem 5.4. Let $p$ be a real number such that $p>1, C$ a nonempty weakly closed subset of a uniformly convex Banach space $X$ such that the norm on $X$ is uniformly Gâteaux differentiable and $J_{p}$ is weakly sequentially continuous, and $T$ a $\Phi_{p}$-Chatterjea mapping of $C$ into itself. Then $\mathcal{F}(T)$ is nonempty if and only if $\left\{T^{n} x\right\}$ is bounded for some $x \in C$.

## 6. Convergence to fixed points

In this section, we give convergence theorems for $\phi_{p}$-Chatterjea mappings and $\Phi_{p}$-Chatterjea mappings in Banach spaces.

We first obtain the following convergence theorem for $\phi_{p}$-Chatterjea mappings:
Theorem 6.1. Let $p$ be a real number such that $p>1, C$ a nonempty weakly closed subset of a smooth and uniformly convex Banach space $X$, and $T$ a $\phi_{p}$-Chatterjea mapping of $C$ into itself such that $\mathcal{F}(T)$ is nonempty. Then $\left\{T^{n} x\right\}$ converges weakly to an element of $\mathcal{F}(T)$ for all $x \in C$.

Proof. Let $x \in C$ be given and set $x_{n}=T^{n} x$ for all $n \in \mathbb{N}$. Let $z \in \mathcal{F}(T)$ be given. Since $T$ is $\phi_{p}$-Chatterjea, it follows from Lemma 4.1 that

$$
\begin{equation*}
\phi_{p}\left(x_{n+1}, z\right) \leq \phi_{p}\left(x_{n}, z\right) \tag{6.1}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Thus $\left\{\phi_{p}\left(x_{n}, z\right)\right\}$ is convergent. Since $\left\{\phi_{p}\left(x_{n}, z\right)\right\}$ is bounded, it follows from Lemma 3.1 that $\left\{x_{n}\right\}$ is bounded. Then the reflexivity of $X$ implies the existence of a weakly convergent subsequence of $\left\{x_{n}\right\}$.

Lemma 4.2 implies that $T$ is also $\Phi_{p}$-Chatterjea. Since $X$ is uniformly convex, Lemma 4.4 implies that $x_{n}-T x_{n} \rightarrow 0$. Let $w$ be any weak subsequential limit of $\left\{x_{n}\right\}$. Since $C$ is weakly closed, we have $w \in C$. By Lemma 5.1, the mapping $I-T$ is demiclosed at 0 and hence $w \in \mathcal{F}(T)$. Thus each weak subsequential limit of $\left\{x_{n}\right\}$ belongs to $\mathcal{F}(T)$.

Let $u, u^{\prime}$ be weak subsequential limits of $\left\{x_{n}\right\}$. Then we know that $u, u^{\prime} \in \mathcal{F}(T)$ and hence $\left\{\phi_{p}\left(x_{n}, u\right)\right\}$ and $\left\{\phi_{p}\left(x_{n}, u^{\prime}\right)\right\}$ are convergent. Since $X$ is strictly convex, it follows from (i) of Lemma 3.3 that $u=u^{\prime}$. Thus, the sequence $\left\{x_{n}\right\}$ is weakly convergent to an element of $\mathcal{F}(T)$.

We finally obtain the following convergence theorem for $\Phi_{p}$-Chatterjea mappings:
Theorem 6.2. Let $p$ be a real number such that $p>1, C$ a nonempty weakly closed subset of a uniformly convex Banach space $X$ such that the norm on $X$ is uniformly Gâteaux differentiable and $J_{p}$ is weakly sequentially continuous, and $T$ a $\Phi_{p^{-}}$Chatterjea mapping of $C$ into itself such that $\mathcal{F}(T)$ is nonempty. Then $\left\{T^{n} x\right\}$ converges weakly to an element of $\mathcal{F}(T)$ for all $x \in C$.

Proof. Let $x \in C$ be given and set $x_{n}=T^{n} x$ for all $n \in \mathbb{N}$. Let $z \in \mathcal{F}(T)$ be given. Since $T$ is $\Phi_{p}$-Chatterjea, it follows from Lemma 4.1 that

$$
\begin{equation*}
\Phi_{p}\left(x_{n+1}, z\right) \leq \Phi_{p}\left(x_{n}, z\right) \tag{6.2}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Thus $\left\{\Phi_{p}\left(x_{n}, z\right)\right\}$ is convergent. Since $\left\{\Phi_{p}\left(x_{n}, z\right)\right\}$ is bounded and

$$
\begin{equation*}
\phi_{p}\left(x_{n}, z\right) \leq \Phi_{p}\left(x_{n}, z\right) \tag{6.3}
\end{equation*}
$$

for all $n \in \mathbb{N}$, it follows from Lemma 3.1 that $\left\{x_{n}\right\}$ is bounded. Hence there exists a weakly convergent subsequence of $\left\{x_{n}\right\}$.

Since $X$ is uniformly convex, it follows from Lemma 4.4 that $x_{n}-T x_{n} \rightarrow 0$. Let $w$ be any weak subsequential limit of $\left\{x_{n}\right\}$. Then the weak closedness of $C$ implies that $w \in C$. By Lemma 5.2, the mapping $I-T$ is demiclosed at 0 and hence $w \in \mathcal{F}(T)$. Thus each weak subsequential limit of $\left\{x_{n}\right\}$ belongs to $\mathcal{F}(T)$.

Let $u, u^{\prime}$ be weak subsequential limits of $\left\{x_{n}\right\}$. Then we know that $u, u^{\prime} \in \mathcal{F}(T)$ and hence $\left\{\Phi_{p}\left(x_{n}, u\right)\right\}$ and $\left\{\Phi_{p}\left(x_{n}, u^{\prime}\right)\right\}$ are convergent. Since $J_{p}$ is weakly sequentially continuous and $X$ is strictly convex, it follows from (iii) of Lemma 3.3 that $u=v$. Thus, the sequence $\left\{x_{n}\right\}$ is weakly convergent to an element of $\mathcal{F}(T)$.

## Acknowledgments

The authors would like to express their sincere appreciation to the anonymous referee for some helpful comments on the original version of the manuscript.

## References

[1] K. Aoyama, Y. Kimura and W. Takahashi, Maximal monotone operators and maximal monotone functions for equilibrium problems, J. Convex Anal. 15 (2008), 395-409.
[2] L. M. Bregman, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput. Math. Math. Phys. 7 (1967), 200-217.
[3] D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, Kluwer Academic Publishers, Dordrecht, 2000.
[4] Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34 (1981), 321-353.
[5] S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci. 25 (1972), 727-730.
[6] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers Group, Dordrecht, 1990.
[7] M. Kikkawa and T. Suzuki, Fixed point theorems for new nonlinear mappings satisfying Condition (CC), Linear Nonlinear Anal. 1 (2015), 37-52.
[8] F. Kohsaka and W. Takahashi, Proximal point algorithms with Bregman functions in Banach spaces, J. Nonlinear Convex Anal. 6 (2005), 505-523.
[9] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces, SIAM J. Optim. 19 (2008), 824-835.
[10] F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Arch. Math. (Basel) 91 (2008), 166-177.
[11] Y. Kurokawa and W. Takahashi, Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces, Nonlinear Anal. 73 (2010), 1562-1568.
[12] R. E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag, New York, 1998.
[13] S. Reich, On the asymptotic behavior of nonlinear semigroups and the range of accretive operators, J. Math. Anal. Appl. 79 (1981), 113-126.
[14] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209-216.
[15] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75-88.
[16] R. T. Rockafellar, Monotone operators associated with saddle-functions and minimax problems, in: Nonlinear Functional Analysis, Amer. Math. Soc., Providence, R.I., 1970, pp. 241-250.
[17] T. Suzuki, Fixed point theorems for a new nonlinear mapping similar to a nonspreading mapping, Fixed Point Theory Appl. 2014, 2014:47, 13 pp.
[18] T. Suzuki and M. Kikkawa, Generalizations of both Ćiric's and Bogin's fixed point theorems, J. Nonlinear Convex Anal. 17 (2016), 2183-2196.
[19] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
[20] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009.
[21] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.

Manuscript received 9 March 2016 revised 22 July 2016

## F. Kohsaka

Department of Mathematical Sciences, Tokai University, Kitakaname, Hiratsuka, Kanagawa 2591292, Japan

E-mail address: f-kohsaka@tsc.u-tokai.ac.jp
T. Suzuki

Department of Basic Sciences, Kyushu Institute of Technology, Tobata, Kitakyushu 804-8550, Japan

E-mail address: suzuki-t@mns.kyutech.ac.jp

